
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 81

On Facilitating Reuse in Multi-goal Test-Suite Generation

for Software Product Lines12

Malte Lochau3, Johannes Bürdek3, Stefan Bauregger3, Andreas Holzer4, Alexander von

Rhein5, Sven Apel5, Dirk Beyer5

Abstract: Software testing is still the most established and scalable quality-assurance technique in
practice today. However, generating effective test suites remains computationally expensive, con-
sisting of repetitive reachability analyses for multiple test goals according to a coverage criterion.
This situation is even worse when it comes to testing of entire software product lines (SPL). An
SPL consists of a family of similar program variants, thus testing an SPL requires a sufficient cov-
erage of all derivable program variants. Instead of considering every product variant one-by-one,
family-based approaches are variability-aware analysis techniques in that they systematically ex-
plore similarities among the different variants. Based on this principle, we propose a novel approach
for automated product-line test-suite generation incorporating extensive reuse of reachability infor-
mation among test cases derived for different test goals and/or program variants. The developed tool
implementation is built on top of CPA/TIGER which is based on CPACHECKER. We further present
experimental evaluation results, revealing a considerable increase in efficiency compared to existing
test-case generation techniques.

Software product line (SPL) engineering aims at developing families of similar, yet well-

distinguished software products built upon a common core platform. The commonality

and variability among the family members (product variants) of an SPL are specified as

features. In this regard, a feature corresponds to user-configurable product characteris-

tics within the problem domain, as well as implementation artifacts being automatically

composeable into implementation variants. The resulting extensive reuse of common fea-

ture artifacts among product variants facilitates development efficiency as well as product

quality compared to one-by-one variant development. However, for SPLs to become fully

accepted in practice, software-quality assurance techniques have to become variability-

aware, too, in order to benefit from SPL reuse principles. In practice, systematic software

testing constitutes the most elaborated and wide-spread assurance technique, being directly

applicable to software systems at any level of abstraction. In addition, testing enables a

controllable trade-off between effectiveness and efficiency. In particular, white-box test

generation consists of (automatically) deriving input vectors for a program under test with

respect to predefined test goals. The derivation of sufficiently large test suites is, therefore,

guided by test selection metrics, e.g., structural coverage criteria like basic block coverage

and condition coverage [Be13]. These criteria impose multiple test goals, thus requiring

sets of test input vectors for their complete coverage [Be13]. In case of mission-/safety-

1 This is a summary of a full article on this topic that appeared in Proc. FASE 2015 [Bü15].
2 This work was partially supported by the DFG (German Research Foundation) under the Priority Programme

SPP1593: Design For Future – Managed Software Evolution.
3 TU Darmstadt, Germany
4 TU Wien, Austria
5 University of Passau, Germany



82 Malte Lochau et al.

critical systems, it is imperative, or even enforced by industrial standards to guarantee a

particular degree of code coverage for every delivered product. Technically, automated

test input generation requires expensive reachability analyses of the program state space.

Symbolic model checking is promising approach for fully automated white-box test gen-

eration using counterexamples as test inputs [Be04]. Nevertheless, concerning large sets

of complex test goals, scalability issues still obstruct efficient test case generation when

being performed for every test goal in separate. This problem becomes even worse while

generating test inputs for covering entire product line implementations. To avoid a variant-

by-variant (re-)generation of test cases potentially leading to many redundant generation

runs, an SPL test-suite generation approach must enhance existing techniques.

In [Bü15], we presented a novel technique for efficient white-box test-suite generation for

multi-goal test coverage of product-line implementations. The approach systematically ex-

ploits reuse potentials among reachability analysis results by means of similarity among

test cases (1) derived for different test goals [Be13], and/or (2) derived for different product

variants [Ci11]. The combination of both techniques allows for an incremental, coverage-

driven exploration of the state space of entire product lines under test implemented in C en-

riched with feature parameters. We implemented an SPL test-suite generator for arbitrary

coverage criteria on top of the symbolic software model checker CPACHECKER [Be13].

We evaluated our technique considering sample SPL implementations of varying size. Our

experiments revealed the applicability of the tool to real-world SPL implementations, as

well as a remarkable gain in efficiency obtained from the reuse of reachability analysis

results. compared to test suite generation approaches without systematic reuse. As a future

work, we plan to improve reuse capabilities by applying multi-property model-checking

techniques of CPACHECKER which allows for reachability analyses of multiple test goals

in a single run.

Literaturverzeichnis

[Be04] Beyer, Dirk; Chlipala, Adam J.; Henzinger, Thomas A.; Jhala, Ranjit; Majumdar, Rupak:
Generating Tests from Counterexamples. In: ICSE. pp. 326–335, 2004.

[Be13] Beyer, Dirk; Holzer, Andreas; Tautschnig, Michael; Veith, Helmut: Information Reuse for
Multi-goal Reachability Analyses. In: ESOP, pp. 472–491. Springer, 2013.

[Bü15] Bürdek, Johannes; Lochau, Malte; Bauregger, Stefan; Holzer, Andreas; von Rhein, Alexan-
der; Apel, Sven; Beyer, Dirk: Facilitating Reuse in Multi-Goal Test-Suite Generation for
Software Product Lines. In: FASE. Springer, 2015.

[Ci11] Cichos, Harald; Oster, Sebastian; Lochau, Malte; Schürr, Andy: Model-based Coverage-
Driven Test Suite Generation for Software Product Lines. In: MoDELS. Springer, pp.
425–439, 2011.


