
Structured Forest Edge Detectors for Improved Eyelid and

Iris Segmentation

Michael Happold

Independent Researcher

217 Hunt Rd

Fox Chapel, PA 15217, U.S.A.

mhappold@startmail.com

Abstract: Edge detection has long figured into iris segmentation algorithms, often

providing a first-pass estimate of the inner and outer iris boundaries. Standard edge

detectors, however, generally produce too many extraneous edges inside and

outside the iris to be used for simple ellipse fitting to robustly find the iris

boundaries. Solutions to this problem have been either to have additional filtering

to select relevant edges or to design specialized edge detectors that highlight iris

boundary edges and suppress irrelevant edge types. This description holds ever so

more for eyelid boundaries, which are often very subtle. An edge detector that will

trigger on an eyelid boundary will also likely trigger on almost any slight intensity

gradient in an image. We seek to solve this problem by learning specialized edge

detectors for each type of relevant boundary in an iris image. Using a fast

Structured Random Forest approach developed for learning generalized edge

detectors, we train detectors for the iris/sclera, iris/pupil, and eyelid boundaries.

The results show that learned edge detectors should become part of the standard

toolbox for iris segmentation and eyelid boundary detection.

1 Introduction

Edge detection seems like the obvious first step when one initially approaches the

problems of iris segmentation and eyelid boundary detection. The human visual system

has little trouble picking out these boundaries in all but the most degraded images. What

one discovers immediately is that tweaking a threshold to find the right balance between

maximizing true edges and minimizing false edges rarely produces satisfactory results

and surely does not generalize to novel instances. One could search for the threshold that

produces the best results over a large sample of images, but this is hardly a solution as

we show in Section 6.

Better approaches than the naïve approach would be either to design specialized edge

detectors for each type of boundary or to apply an independent form of filtering to the

outputs of the detectors. For example, in [Hu09] the authors develop a radial-suppression

edge detector that retains annular edges while suppressing radial edges by employing a

non-separable wavelet transform and radial non-maxima suppression. This technique,

73

however, is not applicable to detecting eyelid boundaries. The Canny edge detector

appears as component in numerous techniques. For example in [Ma03], the Canny edge

detector is used to find prospective boundaries followed by a circular Hough transform

to extract the circles best corresponding to pupil and iris boundaries. Again, this method

is inapplicable to eyelid boundaries due to the assumption of a canonical shape. Pre-

filtering can also be used to improve the results of edge detection, such as applying a

Contourlet transform to smooth the image before employing the Canny edge detector as

[ZAS12].

Daugman’s integro-differential operator [Da04] has been interpreted as a circular edge

detector, but it is really a circular boundary detector because the entire set of edges

making up the boundary of the iris is considered when computing the gradient. Its

success highlights the importance of including context in a boundary detector. Daugman

extended the method to eyelid detection by changing the parameterized shapes to be

second order curves with mixed results.

Similar to the iris segmentation algorithms described above, edge-detection-based

techniques for eyelid boundary discovery are focused on pre- and post-filtering edge

images and specialized detectors. In [Ad08], the image is filtered using anisotropic

diffusion before a Canny edge detector is run, with the output then being fitted with a

parabolic curve model. Another filtering step is to remove eyelashes before edge

detection or parabolic curve fitting. For example, authors in [Al11] use a wavelet

transform and a neural network to extract eyelashes before detecting the eyelid.

Given the stark differences between pupil, iris and eyelid boundaries, it makes sense to

search for specialized detectors and to employ pre- and post-filtering on the detector

outputs. However, there is a better way to design the specialized detectors than trying to

make an educated guess at what is needed. Recent research on learning edge detectors

can be employed to train up individualized boundary detectors that run quickly and

accurately, suppressing irrelevant image gradients. They achieve this spurious edge

detection by exploiting the image context of a candidate edge pixel. We make use of

Structured Random Forests [Ko11] adapted to produce edge-label patches as output

[DZ13] to train these specialized edge detectors. Our detectors can more accurately find

the boundaries of the structures of interest than standard techniques, especially in poor

quality images, such as those with significant reflections or thick eyelashes.

The rest of the paper is organized as follows. Section 2 discusses the algorithmic flow.

Section 3 describes the Structured Forest approach to edge detection, starting with an

overview of Random Forests and moving to the modifications needed to adapt them to

structural learning. Section 4 gives an overview of the features used. Section 5 describes

the training methodology. Section 6 provides results on CASIA [Ca11] and ND-IRIS-

0405 [Ph06] datasets for pupil, iris, and eyelid boundary detection, comparing them to

adaptive threshold Canny detection. Section 7 gives a summary, our conclusions, and

suggestions for future work.

74

2 Algorithmic Flow

The input to our algorithm is the raw grayscale image of the eye, without cropping for

the iris, taken by standard infrared IR cameras. The Structured Forest approach operates

on multiple feature channels; in the original work of [DZ13], these included color

channels and pixel differences. We instead apply standard edge detectors and a

combination of histogram equalization and anistropic diffusion to augment the intensity

image. We extract patches of these channels to include context which are then paired

with corresponding label patches from hand labelings of the pupil, iris and eyelid

boundaries. We then train on these pairs, producing individual classifiers for each

boundary type as well as a combined classifier trained on all three boundary types. The

classifiers output a label patch for a given image region representing the boundaries.

Figure 1 illustrates the flow.

Figure 1: Algorithmic Flow

3 Structured Random Forests

The Random Forest framework forms the basis of our learning approach. A Random

Forest is an ensemble of Decision Trees, each grown independently and in a manner that

results in them being largely decorrelated. The output of the Forest for classification

problems is a combination of the individual trees, often through simple majority voting,

although other means are possible. Random Forests combine two basic ideas to increase

75

robustness: Bagging and random feature subset selection. Bagging [Br96], or Bootstrap

aggregation, generates new training sets from a base training set by means of randomly

sampling examples from the base uniformly and with replacement. By means of

Bagging, each Decision Tree is exposed to a different bootstrap sample. Further

robustness is introduced by randomly selecting a different subset of the feature space to

grow each node of a given tree. Traditionally, the feature that maximally reduces a

measure of impurity, whether Gini impurity or entropy, is chosen at each node, but

randomness can be introduced at this stage as well, leading to the Exremely Random

Tree. Random Forests are fast, well-suited to be adapted to structured learning tasks, and

easily understood in their operations. The success of the Structured Random Forest

approach of [DZ13] on the Berkeley Segmentation Dataset [Ma01] strongly suggests its

applicability to iris and eyelid segmentation.

To adapt the Random Forest framework for structured learning, we need an appropriate

splitting function for the tree nodes and a method for producing structured labels at the

tree leaves and from the tree ensemble. Following the method of [DZ13], we treat only

the output space as structured, the input space being just a bag of features. The insight of

[DZ13] that the leaves of the forest‘s trees can store any type of label is key: we can

simply store edge segmentation patches at the leaves that represent the edges predicted

in the given image region. What this implies is that the method will only be able to

predict edge masks that it has been exposed to, increasing the importance of a

representative training set. This seeming limitation turns out to be less a drawback than a

benefit for our domain, because the edges that we are seeking are highly constrained in

their shape, relative position, and gradient orientation. For example, the boundary

between the pupil and the iris is always curved in toward the pupil with a gradient that

always points away from the pupil. Limiting the predicted edges to what the forest has

been exposed to in the training set will work toward filtering spurious edges, particularly

eyelashes and the interior structure of the iris.

Creating a splitting function for structured labels implies designing a measure of

information gain, even if approximate, for a complex space. Rather than attempt to

create a measure of similarity for this complex space, the Structured Random Forest

approach is to map the output space  to an intermediate space  that is more suited to

measuring the similarity between labels. The intermediate space  should also have a

straightforward mapping to the space of simple labels C, where C = {1,...,k}. Similar

complex labels should at the end of the mapping have similar discrete label cC.

Our labels for edge detection in the space  are patches of NxN binary labels, with N in

this case being 16. The transformation from  to  presented in [DZ13] such that a

Euclidean distance metric can be used in  is to create a long binary vector of segment

membership comparisons for each pair of pixels (1 if they belong to the same segment, 0

if not). There are 32640 pixel pairs for a 16x16 pixel patch, so creating the exact space 
for every member of  would be too expensive for an edge detection algorithm. To

reduce the dimensionality, the space  is randomly sampled down to 256 dimensions,

which gives an added degree of randomization, and is then further reduced to 2

dimensions via Principal Component Analysis (PCA).

76

The next step is to develop an information gain criterion for splitting nodes in the trees.

The method of [DZ13] is used here, which uses standard information theory entropy to

compute information gain. PCA discretization yields two classes, but this discretization

occurs at each node during training rather than globally, and so the distributions found at

each node determine different discretizations, further decorrelating the trees.

Because each leaf could have multiple label patches, we must have a method for

combining them into a single prediction. Similarly, the ensemble of trees needs to

combine possibly conflicting predictions from each tree. At each leaf, the medoid zk is

chosen, where zk is defined as   
j

jkjk zz
2

min . This same method is used to

combine the outputs of the trees to produce a final label. Using the mediod is what limits

the forests from generating novel results; what comes out is the already observed label

that best fits the data. As we noted, this apparent limitation is in fact an important

constraint in our domain.

4 Features

The work of [DZ13] focused on segmenting and detecting edges in color images; thus

the features used were primarily derived from the color space, including simple pixel

look-ups and color gradient magnitudes. This makes less sense in the iris segmentation

domain as most iris imagery is grayscale representation only an infrared channel. There

is also no reason why we shouldn’t learn from low level edge information produced by

standard detectors such as the Canny edge detector. Thus we replaced the color space

features with those derived from the raw grayscale image, as well as from the output of a

Canny edge detector and from histogram equalization followed by anisotropic diffusion.

Anisotropic diffusion [PM87] applied to a histogram equalized image serves suppress

noise in the image while preserving the initially faint edges, such as those found along

the eyelid, that histogram equalization will strengthen. Formally, anisotropic diffusion is

defined as:

 ),,(Ityxc
t

I





,

where  is the divergence operator,),,(tyxc is the diffusion coefficient that controls its

rate, and I is the image gradient. In our case, the coefficient was chosen to be

   2KI
eIc

 ,

where K is a constant that controls how sensitive the diffusion is to edges. An example

of this process on a typical iris image from CASIA is found in Figure 2. A comparison

with the output of Canny edge detection is shown in Figure 3, where the anistropic

diffusion output is inverted, thresholded, and then small blobs are filtered out. What can

be seen relative to the Canny output is suppression of the eyelashes while the eyelid

boundaries in the lower left corner of the eye are picked out.

77

Figure 2: Histogram equalization followed by anisotropic diffusion (R) on an image (L) from the

CASIA dataset

Figure 3: Comparison of Canny edge detection (L) and filtered anistropic diffusion (R). Note the

suppression of eyelashes and highlighting of faint eyelid boundaries

Similar to [DZ13], we compute the gradient magnitudes at two scales and the gradient

orientations, which we discretize into four bins, but we does this individually for the

grayscale intensity image and the output of anistropic diffusion, producing four

magnitude channels and 16 orientation features at each pixel. We add to this the raw

intensity and diffused intensity values as well as the binary edge value from the Canny

edge detection mask. In total, this gives us 23 features for each pixel in a patch, to which

we apply the method of [DZ13] for downsampling and selecting patch features. This

consists of downsampling by a factor of 2 in each patch dimension to get to 5888

features per patch. Each feature channel is blurred using a triangle blur and

downsampled to 5x5, from which all pairwise differences for that channel are computed.

Thus, for 23 channels, we have 6900
2

55
23 







 
 additional features, for a total of

12788 for each patch.

5 Training and Testing Methodology

Ground truth edge masks for training and testing were created by hand-labeling

randomly chosen subsets of the CASIA-Iris-Thousand and ND datasets with simple

polygons representing the eyelid and ellipses representing the iris and pupil boundaries.

The eyelid polygon is used to trim the iris and pupil ellipses when they overlap the

eyelid.

We break up the labeled CASIA-Iris-Thousand dataset into a training and a testing hold-

out set; we do the same for the ND dataset. We then train a classifier on the CASIA

training data and test on its hold-out set, repeating the same procedure on the ND

78

dataset. Because cross-dataset validation is an important test of generalizability [To11],

we then use the entire CASIA dataset as our training set and test on the entire ND set

(and vice-versa). Our evaluation methodology is to generate Precision-Recall curves and

Average Precision scores by varying the threshold at which a response from the

classifier is considered an edge and checking whether there is a corresponding edge in

the ground-truth edge mask. The method for determining the correspondence between a

machine-generated edge and a ground-truth edge is described in detail in [Ma04]. It is

formulated as a bipartite assignment problem with the distance between a machine-

generated edge pixel and a ground-truth edge pixel serving as the weight between the

two in the graph. Full details of this method are beyond the scope of this paper and can

be found in the above reference. False positives are those machine-generated edge pixels

that do not match with any ground-truth within a given distance threshold. False

negatives are those ground-truth edge pixels that have no matching machine-generated

edge pixels.

This training and testing pipeline is used for both a classifier trained with Canny and

anisotropic diffusion features as well as one trained using only intensity as input to the

algorithm. We compare both classifier types to the results from a Canny edge detector,

this time varying its low threshold [Ca83] to generate Precision-Recall curves.

6 Results

On both the CASIA and ND datasets, both classifier types substantially outperform a

Canny edge detector, as seen in Figure 4 and Figure 5. The Canny edge detector

performance is shown in blue, our classifier using only intensity input is shown in green,

and our classifier using Canny edge and anisotropic diffusion input is shown in red.

Figure 4: Precision-Recall for the CASIA dataset. Average Precisions are given in the Legend.

The classifier trained on the combination of intensity, Canny edge, and anisotropic

diffusion slightly outperforms the classifier trained on intensity alone at the higher recall

79

levels for the CASIA set, but the difference is insignificant. An example of Canny edge

detection versus the two classifier types on a CASIA image is shown in Figure 6. Note

the suppression of responses to reflection edges in the learned edge detection (bottom

row), and that both classifier types pick out eyelid edges in addition to finding iris and

pupil boundaries.

Figure 5: Precision-Recall Curve for the ND dataset

Figure 6: An example of Canny edge detection (Upper Right) and learned edge detection (Bottom

Row) on the CASIA, with Intensity, Canny, and Anisotropic Diffusion inputs (Bottom Left) versus

purely intensity inputs (Bottom Right).

80

The Precision-Recall curve for the ND dataset also shows a small gain for adding Canny

edge and Anisotropic Diffusion features. An example of results on the ND set is given in

Figure 7. Again, both classifiers pick out eyelid boundaries along with the pupil and iris

edges while suppressing eyelash and reflection edges.

Figure 7: An example of Canny edge detection (Upper Right) and learned edge detection (Bottom

Row) on the ND dataset, with Intensity, Canny, and Anisotropic Diffusion inputs (Bottom Left)

versus purely intensity inputs (Bottom Right).

Our cross-dataset validation was conducted using CASIA to train and ND to test, and

vice versa. There is a substantial drop-off in performance compared to the intra-dataset

evaluation for both training-testing schemes, although the results still greatly exceed the

accuracy of using the Canny edge detector to find these important boundaries. The

benefit of using the additional anistropic diffusion and Canny inputs over purely

intensity becomes evident in the cross-dataset validation.

Figure 8: Precision-Recall Curve on the ND dataset for classifiers trained on the CASIA dataset

81

Figure 9: Precision-Recall Curve on the CASIA dataset for classifiers trained on the ND dataset

A comparison of the Average Precisions (APs) for each of the methods on the CASIA

and ND datasets is given in Table 1. The two classifier types achieve APs that are 4-5

times greater than the Canny edge detector.

Table 1: Intra-dataset average precisions

Method Training

Set

Test Set

(holdout

)

Average

Precisio

n

Training

Set

Test Set

(holdout

)

Average

Precisio

n

Classifier with

Intensity inputs

CASIA CASIA 0.76 ND ND 0.3

Classifier with

Canny, Anistopic,

and Intensity

Inputs

CASIA CASIA 0.75 ND ND 0.85

Canny N/A CASIA 0.15 N/A ND 0.18

The AP scores for the classifiers drop significantly in the inter-dataset test, though they

still outperform the Canny edge detector by 2.5 to 3.5 times, as shown in Table 2. Note

that the test sets are the full labeled datasets indicated rather than just their hold-out sets

used in the intra-dataset comparison, hence the slight variations in Canny AP scores

between the two experimental set-ups.

82

Table 2: Inter-dataset average precisions

Method Training

Set

Test Set

(Full)

Average

Precisio

n

Training

Set

Test Set

(Full)

Average

Precisio

n

Classifier with

Intensity inputs

CASIA ND 0.5 ND CASIA 0.39

Classifier with

Canny, Anistopic,

and Intensity

Inputs

CASIA ND 0.6 ND CASIA 0.42

Canny N/A ND 0.18 N/A CASIA 0.16

7 Conclusion

The learned edge detectors described here significantly outperform the Canny edge

detector at finding eyelid, pupil and iris boundaries while showing admirable resistance

to irrelevant edges such as eyelashes. Using the boundaries generated by this

methodology would remedy the weaknesses of edge-based approaches to segmenting the

usable iris regions in eye imagery. There is considerable opportunity for improving even

further on these results by developing additional features that generalize better across

datasets.

References

[Ad08] Adam, M. et. al.: Reliable Eyelid Localization for Iris Recognition. In Proc. 10th Int.

Conf. on Advanced Concepts for Intelligent Vision Problems, 2008.

[Al11] Aligholizadeh, M. et. al.: Eyelid and Eyelash Segmentation based on Wavelet Transform

for Iris Recognition. In Proc. 4th Int. Congress on Image and Signal Processing. 2011: pp.

1231-1235.

[Br96] Breiman, L.: Bagging Predictors. In Machine Learning, 24(2), 1996; pp. 123-140.

[Ca83] Canny, J.: A Variational Approach to Edge Detection. In Proc. of AAAI-83, 1983; pp.

54-58.

[Ca11] CASIA Iris Image Database (ver 4.0). http://www.sinobiometric.com/casiairis.html

(Retrieved 1-10-2011).

[Da04] Daugman, J.: How Iris Recognition Works. In IEEE Trans. on Circuits and Systems for

Video Technology, 14(1), 2004; pp. 21-30.

[DZ13] Dollar, P.; Zitnick, C.: Structured Forests for Fast Edge Detection. In Proc. IEEE Int.

Conf. on Computer Vision, Sydney, 2013; pp. 1841-1848.

[Hu09] Huang, J. et. al.: A Novel Iris Segmentation using Radial-Suppression Edge Detection.

In Signal Processing, 89(12), 2009; pp. 2630-2643.

83

[Ko11] Kontschieder, P. et. al.: Structured Class-Labels in Random Forests for Semantic Image

Labelling, In Proc. 13th Int. Conf. on Computer Vision, 2011; pp. 2190-2197.

[Ma01] Martin, D. et. al.: A Database of Human Segmented Natural Image and its Application to

Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In Proc. 8th

Int. Conf. on Computer Vision, 2001; pp. 416-423.

[Ma03] Masek, L.: Recognition of Human Iris Patterns for Biometric Identification. M.S.

Dissertation, University of Western Australia, 2003.

[Ma04] Martin, D. et. al.: Learning to Detect Natural Image Boundaries Using Local Brightness,

Color, and Texture Cues. IEEE Trans. on Pattern Analysis and Machine Intelligence,

vol. 26, no. 5, 2004:; pp. 530-549.

[PM87] Perona, P.; Malik, J.: Scale-space and Edge Detection Using Anistropic Diffusion. Proc.

IEEE Computer Society Workshop on Computer Vision, 1987; pp. 16-22.

[Ph10] Phillips, P. et. al.: FRVT 2006 and ICE 2006 Large-Scale Experimental Results. In IEEE

Trans. on Pattern Analysis and Machine Intelligence, 32(5), 2010; pp. 831-846.

[To11] Torralba, A.; Efros, A.: Unbiased look at dataset bias. In Proc. 13th Int. Conf. on

Computer Vision, 2011; pp. 1521-1528.

[ZAS12] Zali-Vargahan, B.; Amirani, M.; Seyedarabi, H.: Contourlet Transform for Iris Image

Segmentation. In Int. Journal of Computer Applications, 60(10), 2012; pp. 41-44.

84

