
Heinrich C. Mayr, Martin Pinzger (Hrsg.): INFORMATIK 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 313

Semantic Object-Oriented Programming (SOOP)

Florian Weber1 Andreas Bihlmaier2 Heinz Wörn3

Abstract: Currently, the interaction between ontologies and general purpose programming lan-
guages mostly consists of an indirect mapping between the ontology and the programming language.
The language and libraries are often basically used as a programmable ontology editor. In this paper
we present a different approach that creates an ontology from regular data objects in a (statically
typed) mainstream language (C++). Because in our case the mapping is going from object-oriented
programming (OOP) language to the ontology, we can avoid many problems that approaches going
into the opposite direction have to face. Furthermore, the interaction between the domains becomes
more straight forward and can be mostly kept free of uncommon language constructs. The declara-
tive programming paradigm on the one hand and the (object-oriented) imperative paradigm on the
other hand are in this manner combined into the Semantic Object-Oriented Programming (SOOP)
paradigm. As a result, SOOP allows programmers to directly use semantic technologies, especially
reasoners, for their usual language objects from within C++.

Keywords: Ontology, Object-Oriented Programming (OOP), Semantic Reasoner, C++

1 Introduction

An ontology is a formal, explicit speci®cation of a shared conceptualization [Gr92][SBF98].

This means that it is a suitable way to represent data for theorem-provers and reasoners, so

that they can algorithmically search answers for questions posed in the ontology language.

For example, a subject matter, modeled using the ontology, can be checked for consistency.

Similarly, the set of individuals satisfying a formula can be extracted.

Since two different domains are brought together here, semantic technologies on the one

hand and object-oriented programming (OOP) on the other, we must de®ne some terms

(cf. Tab. 1): Atom or individual refers to a logical individual, i.e. an element of the uni-

verse of discourse. An axiom is a logical statement that is either true or false. Predicate

and quantor are used in the same manner as in predicate calculus and related logical for-

malisms. Also variable is used in the sense of predicate calculus, more speci®cally it is

synonymous with bound variables.4 The terms class and object have the same meaning as

in OOP, they refer to the de®nition of a data type and its instances. Entity is used in both

domains, it can refer to an individual (semantic domain) or to objects (OOP domain) that

represent the individuals within the programming language.

1 Karlsruhe Institute of Technology (KIT), Institute for Anthropomatics and Robotics (IAR) - Intelligent Process

Control and Robotics (IPR), Engler-Bunte-Ring 8, 76131 Karlsruhe, Germany, uagws@student.kit.edu
2 KIT, IAR-IPR, andreas.bihlmaier@kit.edu
3 KIT, IAR-IPR, woern@kit.edu
4 In the context of OOP source code, C++ variable is used explicitly to denote program variables.



314 Florian Weber et al.

As will be explained in the following, entity does not only connect the domains termi-

nologically, but is the core concept that facilitates semantic object-oriented programming

(SOOP).

Tab. 1: Illustration of how the vocabulary used here is assigned to the OOP and semantic domain.

OOP Shared Ontologies

Class Entity Atom, Individual

Object Axiom, Variable

Predicate, Quantor

The most common method to ®ll such an ontology with data currently is some kind of

ontology editor or ontology API. However, even the APIs that allow to de®ne ontologies

from within programming languages, don’t allow a direct combination of existing program

data structures with the ontology. This results in a strong division between the raw data and

the semantic data. The raw data is easily accessible from the programming language (e.g.

printing, sorting or direct calculations). The semantic data, presented in the ontology, is

easily accessible to reasoners, but falls short with regards to usability in the programming

language.

One example for this kind of gap is the OWL-API. While the semantic data is well acces-

sible from Java, the Java objects that represent semantic entities have only a single Java

type - and thus have no semantics from the programming language point of view: Entities

have types like OWLLiteral or OWLNamedIndividual; this means that the static type-

checker is unable to verify the absence of many obvious errors such as an email address

being assigned to a username or a company to vehicle.

Our goal was to ®nd a new approach that brings ontologies together with mainstream

programming languages, while avoiding the loss of type information. Thereby, creating

a deeper integration compared to existing methods. To avoid the common problems that

result from ontologies having greater expressive power compared to object-oriented pro-

gramming (OOP) languages (as pointed out by [Or07]), especially statically typed ones,

we decided to reverse the mapping direction: Instead of creating ontologies with some kind

of standalone ontology editor and a subsequent import of the resulting ontology descrip-

tion into the programming language or reasoner, our approach goes directly from OOP

to a reasoner. For this purpose, we extended or wrap programming language data struc-

tures in such a way that they can be used as semantic entities and combined with existing

ontologies. Since ontologies have more expressive power then OOP languages, they can

easily represent all the semantic connections that exist in OOP. We call this novel deep

integration between semantic technologies and OOP languages Semantic Object-Oriented

Programming (SOOP).

The remainder of this paper is structured as follows: In the following section an overview

of existing integration approaches between ontologies and OOP is provided. Section 3

details the Semantic Object-Oriented Programming (SOOP) concept and its implementa-

tion in C++. Afterwards, the bene®ts of our integration approach for semantic technologies

with OOP are illustrated in an exemplary use case (section 4). The impact of SOOP for this



Semantic Object-Oriented Programming 315

use case and a general discussion follows in section 5. In the ®nal section, open questions

and directions of further research are addressed.

2 State of the Art

Nowadays ontologies are primarily created with speci®c ontology-editors. Particularly

well known in this context is Protégé [Kn04]. With regards to the use from within pro-

gramming languages, there exists a relatively wide range of approaches, some of which

we will present in more detail.

However, ®rst, we will describe those approaches in which entities of an ontology are

represented in an OOP by a set of generic classes. The aim here is not to create exact

representations of the ontology within the OOP-language, but to provide a programmable

tool for editing them. These approaches are also called ªindirect approaches” [Pu08]. The

most important software libraries to mention here are the OWL API [HB11] and Jena

[Je13] from the Apache project.

The OWL API is a Java library, which allows access to OWL triples with a comparatively

low level of abstraction. Furthermore, it provides a general interface for provers, allowing

to easily exchange them with each other. The API provides both the ability to ask questions

by means of queries and to edit the ontology. Changes made through the library can be

written back to permanent storage. The OWL API is used as backend by Protégé. Apache

Jena follows a similar approach, but offers a higher level of abstraction. The basic idea

of Jena is to represent data and types of ontologies as objects of classes derived from

OntRessource (for instance resource) and to use these through generic methods. The

obvious downside of both OWL API and Jena is the lack of typing with regards to the

ontology objects in the Java environment and the strong focus on the use of strings instead

of native language objects with types.

Moreover, it is also possible to realize simple queries in Jena with native Java (for example

to iterate over the classes of an individual). However, the recommended method for com-

plex requests is to use the query language SPARQL (SPARQL Protocol And RDF Query

Language). SPARQL is a language that is standardized by the W3C and modeled after

SQL (Structured Query Language). It allows to formulate relatively complex semantic

requests, which are then answered by a prover.

At the other end of the existing approaches spectrum, there are attempts to translate the

data from ontologies into regular OOP languages, which is also known as the ªdirect ap-

proach” [Pu08]. Unfortunately, there are some fundamental problems with this kind of

translation, due to the fact that ontologies are much more general and expressive than

most OOP languages. Nevertheless a couple of interesting approaches can be found in

literature and are discussed in the following.

ActiveRDF [Or07] for example bypasses many of the common limitations by using Ruby

as its implementation language instead of the otherwise widespread Java. As a result many

of the common problems posed by a static type system disappear, since Ruby is not only



316 Florian Weber et al.

dynamically typed, but also allows to catch any attempt to use non-existing functions. Yet,

it is exactly this dynamic type system that implies several downsides for this approach.

Most notably is the lack of basic (compile-time) sanity checks that static type systems

provide.

The approach ªSWCLOS” presented in ªOWL vs. Object Oriented Programming” [KAH05]

also uses a dynamically typed Language (Lisp + CLOS). Unlike our work, they concen-

trate on how a program that uses ontologies can be typed to represent semantic structures,

whereas we emphasize the semantics of dynamically created objects.

The ®nal related proposal that tries to unite ontologies and object-oriented programming,

can be found in ªIntegrating Object-Oriented and Ontological Representations: A Case

study in Java and OWL” [Pu08]. There an attempted is made to combine direct and indirect

representations by making the gap between the ontologies and the OOP data ªmoveable”.

Nevertheless, in contrast to SOOP, there are still two ªworlds” with some entities only

existing as individuals in the semantic domain or as objects in the OOP domain.

3 SOOP

The fundamental idea behind SOOP is to create or populate an ontology from within C++

using regular C++ classes and objects.

This means that we perform the data mapping into the opposite direction compared to the

direction of the approaches described in section 2. As an advantage of this direction, many

of the usual problems that result from the attempt to map data from a more powerful data

representation into a less powerful one are no longer an issue. See table 2 for a summary.

Furthermore, the SOOP approach allows us not only to preserve static typing, but also to

make active use of the type system in a way that pro®ts the ontology. It is possible to use

the C++ entities as regular C++ types, also outside of the ontology context.

Existing knowledge in form of an ontology could be imported into SOOP in two ways:

One method directly imports the ontology into the reasoner from a textual representation

such as SUO-KIF, i.e. entities from the ontology do not exist as OOP classes and objects.

The other method generates OOP code from the ontology5, which in turn uses SOOP as

described below.

5 The constraints described in Tab. 2 apply here.



Semantic Object-Oriented Programming 317

Tab. 2: Ontologies provide a much more powerful and dynamic representation of data compared to

object-oriented programming languages. Therefore it is easy to translate data from OOP languages

into an ontology, but basically impossible to do it the other way round (left side according to [Or07]).

Ontology → OOP OOP → Ontology

Mapping the dynamic relations of enti-

ties into a static type system is basically

impossible.

Mapping the type relations of a static

type system into a dynamic ontology is

trivial.

In ontologies, arbitrary objects may be

linked using arbitrary relations. This

can be hardly translated into object at-

tributes.

Attribute connections are relatively

simple in OOP languages and easy to

map into an ontology.

An ontology is a hypergraph that can

naturally represent very complex rela-

tions. It is not in general possible to map

this to the acyclic inheritance graphs of

OOP languages, even if these support

multiple inheritance.

The directed, acyclic inheritance graphs

of OOP languages are always repre-

sentable, since they represent subgraphs

with respect to the much more general

hypergraphs of ontologies.

A central mechanism of ontologies is

the dynamic evolution of its structure.

However, this can results in signi®cant

problems, if it is to be translated into a

static language.

The constant inheritance structures of

OOP languages can easily be trans-

formed into dynamic ontological struc-

tures.

3.1 General concept

In order to structure the SOOP concept, we divided it into the following submodules:

• A prover module that handles the communicating with a theorem prover (Z3).

• An ontology module that manages the knowledge and creates queries for the prover

module.

• A module that implements the base class of all entities that are backed by a C++

object: entity.

• A module that implements formulas in a way that preserves their semantics in a

usable manner, while providing a simple syntax in C++ that closely resembles pred-

icate calculus.

The entity base class stores a pointer to the associated ontology and an integer that

serves as unique ID within the ontology. Due to the unclear semantics of copying6, no

copy-constructor is provided. In contrast, move operations are allowed and simply inform

the ontology of the new address of the moved entity. Every class that inherits from entity

can be used as an entity of the ontology context. Thereby, it is fully supported for these

classes to have regular data members and methods, whose meaning or even existence is

6 See the discussion in section 6.



318 Florian Weber et al.

Answer

entity

ID: size_t

+Ontology-Pointer: mutable ontology*

(V-table)

e

+operator*()

+operator->()

T:class

ontology

-axioms: vector<formula>

-entities: vector<pair<const entity*, vector<size_t>>

-types: unordered_set<string>

-predicates: vector<pair<string, size_t>>

formula

-formula: unique_ptr<basic_formula>

+args: vector<size_t>

formula::basic_formula

+(V-table)

+stream()

formula::basic_formula

-pred: Predicate

Predicate:class

z3 (Prover-Module)

+try_proof()

+request_entities()

Request

Fig. 1: Overall SOOP architecture in terms of modules and their relations.

not formalized within the ontology. Furthermore, it allows regular usage of the data with

normal language facilities, such as sorting or printing functions.

In order to also support the use of already existing types, a class template e is provided

that wraps the existing types in such a way that the wrapped version (e<T>) inherits from

entity and is therefore usable from within the ontology.

Predicates in SOOP consist of two parts: First, a class template, whose instantiations rep-

resent saturated predicates and contain its arguments. Second, a function template that

instantiates the class template. By convention the function template is named identically

to the predicate (e.g. f) and the class template receives t as a suf®x (e.g. f t). Through

nesting of such predicates, it is possible to create more complicated expressions and types.

If f, g and h are for instance predicates and a and b are entities that are instances of the

types A and B, then f(g(a), h(a)) will result in the type f t<g t<A>, h t<B>> for

the entire expression. In order to store different formulas in mixed containers, a wrapper

that makes use of type erasure7 was created.

7 Type erasure is a technique that allows to treat independent types as if they had a common base class. This is

accomplished by a base-class base with virtual methods for the desired behavior and a template derived<T>

that inherits from it and implements them via T.



Semantic Object-Oriented Programming 319

The ontology class stores a list of all C++ objects, which are at the same time entities

of this ontology. The same class also stores the list of all axioms associated with this

ontology. Requests whether a speci®c set of axioms is satis®able are processed by creating

a full textual representation of the entire ontology, which is then sent to the prover module,

whose answer is returned to the caller in C++. Notably, it is not only possible to check

for satis®ability of a formula, but also to request the set of variable assignments in the

model and return the actual C++ objects that are associated with them. Requests for these

actual entities are processed similar to the satis®ability check, except that an additional

function, which maps all entities to their SOOP ID is de®ned; the prover is then asked for

the value of that function when receiving a suitable entity. These IDs are then used to ®nd

the corresponding C++ object, by means of a mapping to its address that is known by the

ontology.

In order to get the full power of description logics, quanti®ers and variables are needed

in addition. The approach that we choose here is to create unique types for all variables

by providing a class-template variable that receives the identi®er as template argument

and a class bound vars that receives a variadic number of variables in its constructor

and internally safes a textual representation of this list as a string. Thus, it is possible to

implement quanti®ers in the same manner as predicates with the exception that the former

receive an instance of bound vars as their ®rst constructor argument.

A downside of this approach can be seen in the requirement, to de®ne variables before

it is possible to use them (at least if a clean syntax is desired). We believe that this is an

acceptable trade-off for now, as the variable types are empty and can therefore be used

for global constants without much overhead.

Combined these features allow the easy creation of complex formulas without requiring

a syntax that is unusual for either description logics or C++. Stating for instance that a

predicate f is transitive can be done with the following valid C++ code:

forall({x, y, z}, implies(and (f(x, y), f(y, z)), f(x, z))).

3.2 Implementation

We implemented SOOP in C++14 in ªmodern C++” style.8

The basic idea for a predicate foo is to provide a class template foo t and a helper func-

tion foo:

template<typename T>

class foo_t: soop::is_predicate {

public:

foo_t(const T& arg): arg{arg} {}

void collect_entities(std::vector<std::size_t>& ids);

void stream(std::ostream& out,

8 It is available as free software at https://gitlab.com/FJW/soop.



320 Florian Weber et al.

const std::vector<std::string>& names) const;

private:

T arg;

};

template<typename T>

auto foo(const T& arg)

-> foo_t<soop::to_bound_type<T>> {

return {arg}

}

Here soop::is predicate is an empty type that is used by the implementation to dis-

patch printing and collecting arguments to the correct function templates. The methods

collect entities and stream are needed to allow simple management of different

kinds of formulas and will be explained later in this section. The basic idea behind this

model is to allow the user to nest predicates such that each predicate-template would be

instated with its arguments types, which in turn might be instantiated predicate-templates.

In order to store different kinds of such formulas in the same container, we created another

class formula that uses type erasure to store arbitrary formulas while providing uniform

access to them. This is where the collect entities and stream-methods come into

play: In order to keep the information about which entities are used inside the formula

easily accessible and editable, their IDs are collected by the former in a depth-®rst tree

traversal and memorized in a regular vector outside the erased type. Printing a formula is

accomplished by converting the collected IDs to their textual representations and passing

them into the stream method. This in turn also traverses the tree depth-®rst and uses the

IDs in all places where entities were collected earlier.

Since the de®nition of predicates does require a lot of boilerplate code, SOOP provides

four macros that allow the de®nition of a new predicate in just one short statement:

SOOP_MAKE_TYPECHECKED_RENAMED_PREDICATE(Id, Name, Rank, ...)

SOOP_MAKE_RENAMED_PREDICATE(Id, Name, Rank)

SOOP_MAKE_TYPECHECKED_PREDICATE(Id, Rank, ...)

SOOP_MAKE_PREDICATE(Id, Rank)

These macros allow to create predicates with arbitrary (even unlimited) rank. Optionally,

it is even possible to check the types of the predicate arguments in order to bene®t from

type safety offered by a typed OOP language. The later three macros are de®ned in terms

of the ®rst universal one, but pick sensible defaults for the other arguments.



Semantic Object-Oriented Programming 321

3.3 A minimalistic SOOP example

In order to illustrate the direct integration between semantic information processing and

native OOP in SOOP, a minimal complete SOOP program that will print ªMax Muster-

mann is a parent.” follows:

#include <iostream>

#include <string>

#include <soop/onto.hpp>

class person {

public:

person(std::string name): name{std::move(name)} {}

std::string name;

};

using person_e = soop::e<person>;

SOOP_MAKE_TYPECHECKED_PREDICATE(parent_of, 2,

person_e, person_e)

int main() {

using namespace preds;

using namespace soop::preds;

soop::ontology o{};

o.add_type<person_e>();

o.add_predicate<parent_of_t>();

soop::variable<’p’> p;

soop::variable<’c’> c;

// parents and children are persons:

o.add_axiom(forall({p, c}, implies(parent_of(p, c), and_(

instance_of(p, soop::type<person_e>),

instance_of(c, soop::type<person_e>)))));

// parents are not their childrens’ children:

o.add_axiom(forall({p, c}, implies(parent_of(p, c),

not_(parent_of(c, p)))));

person_e max{o, "Max Mustermann"};

person_e erika{o, "Erika Mustermann"};

o.add_axiom(preds::parent_of(max, erika));

soop::variable<’s’> s;

const auto& parent = std::get<0>(

o.request_entities<person_e>(

exists({c}, parent_of(s, c)), s));



322 Florian Weber et al.

std::cout << parent->name << " is a parent.\n";

}

4 Exemplary Use Case: Conference Planner

In order to test the usability and practicality of SOOP in a realistic scenario, we created a

small conference planner. The motivation for this particular use case is that the problem is

easy to understand, realistic and NP-complete.

The basic model that we choose is the following: There are rooms, timeslots, speakers

and talks. Every speaker may participate in more than one talk and every talk may have

multiple speakers. Obviously, no two talks can be in a single room at the same time and

no speaker can hold more than one talk in the same timeslot.

First, we create four C++ classes talk, speaker, room and slot that all inherit from

entity. All of these contain data represented in the usual C++ manner, i.e. without any

relation to SOOP. Most of this data does not have a semantic meaning in the use case, but

is still important for the ®nal software, such as a description of the talks or a name for the

speakers. Only selected ®elds were given semantics by connecting them to the ontology

using SOOP.

This is accomplished by two custom predicates:

SOOP_MAKE_TYPECHECKED_PREDICATE(is_speaker_of, 2,

speaker, talk);

SOOP_MAKE_TYPECHECKED_PREDICATE(talk_assignment, 4,

talk, speaker,room, slot);

A make ontology function uses these classes and predicates to create an ontology with

all the required types and axioms. In order to de®ne the axioms, one function exists for

each axiom, which is returned as a formula. One typical example of these functions is

shown in the following. It de®nes that every talk must be held in one room and one slot

and that it must be the only talk in that room during that slot:

soop::formula uniqueness_of_talks() {

return forall({t1,t2,s1,s2,r1,r2,sl1,sl2},

implies(

and_(

talk_assignment(t1,s1,r1,sl1),

talk_assignment(t2,s2,r2,sl2)),

equal(

equal(t1,t2),

and_(equal(r1,r2), equal(sl1,sl2)))));

}



Semantic Object-Oriented Programming 323

After parsing the data about talks, speakers, rooms and slots from a plain text ®le, the data

is stored in containers and axioms are associated to it: Which speakers participate in which

talks and all talks are distinct from each other (instead of just different objects referring to

the same entity):

auto o = make_ontology();

auto data = read_dataset(file, o);

for (const auto& talk : data.talks) {

for (const auto speaker_id: talk->speaker_ids()) {

o.add_axiom(preds::is_speaker_of(

data.speakers.at(speaker_id), talk));

}

}

o.add_axiom(soop::preds::distinct_range(

data.talks.begin(), data.talks.end()));

Given this initialisation of the ontology, it is possible to request an assignment for all talks

to rooms and time slots. The prover ensures that all constraints - as speci®ed by the axioms

- hold. Otherwise the request is not satis®able and an exception is thrown. It is noteworthy

that the returned answers contain references to the actual C++ data with the correct types

and can thus be used as all other C++ objects:

for (const auto& talk : data.talks) {

const auto& speaker = data.speakers.at(

talk->speaker_ids().front());

auto solution = o.request_entities<room, slot>(

talk_assignment(talk, speaker, r, sl), r, sl);

const auto& used_room = std::get<0>(solution);

const auto& used_slot = std::get<1>(solution);

std::cout << talk->title()

<< ": in room #" << used_room->number()

<< ", in slot #" << used_slot->time() << ’\n’;

o.add_axiom(talk_assignment(talk, speaker,

used_room, used_slot));

}

In the above example code, the assignments are requested sequentially. Thus, it is impor-

tant to add the selected assignment back to the ontology as axioms. Otherwise, further

requests may return assignments that con¯ict with earlier requested ones.



324 Florian Weber et al.

5 Evaluation and Discussion

While some details and most of the axioms where left out, the above provides an impres-

sion of the look and feel when using SOOP (as implemented in modern C++). In principal,

there are two alternatives to SOOP with very different properties, which is why this evalu-

ation will be split into two parts: The comparison to alternative uses of ontologies and the

comparison to approaches that don’t use ontologies at all.

With regards to the ®rst point of comparison, SOOP integrates ontologies and regular OOP

languages much tighter than existing approaches without requiring idioms that seem out

of place for either. The expressive power of the provided description-logic is large enough

to describe even complicated problems (such as the NP-complete timetable assignment

problem), but still ensures that every statement can be represented in C++. Furthermore,

SOOP never requires to compromise type safety or to deal explicitly with translating data

from the ontology (usually strings) into actual OOP objects.

Excluding functionality such as parsing the input that are always necessary, creating a

working software with SOOP for the use case required less then one hundred lines of code

for the actual program logic. From our point of view, the effort is less or equal to the effort

necessary with other ontology APIs and it is far less compared to the effort for a solution

without using semantic technologies.

This brings us to the comparison with unaugmented OOP languages. The main work when

working with SOOP is formalizing the problem, which is a step that is not strictly neces-

sary otherwise. However, this seems a small price to pay, since formalization is always

advisable when tackling complex problems, if a correct solution is desired. Using SOOP

to formalize the problem has the added advantage that it is easier to spot incomplete for-

malizations as simple test cases may produce obviously wrong results. Since everything is

performed within C++ test cases can be generated in the same manner and with the same

tools as for normal unit testing.

With regards to the disadvantages, it is important to note that the theorem prover Z3 cur-

rently used in our proof of concept implementation was not designed for use cases such

as SOOP. Thus, it can be expected that signi®cant performance improvements are possible

in both the prover interface and selection of a different reasoner. Similarly, the scalabil-

ity of the SOOP approach is largely determined by the employed solver. In the current

SOOP implementation, no constrained is imposed on the expressiveness of the axioms in

®rst-order predicate calculus. However, even rather constrained domain logics are able to

represent the minimal required expressiveness for OOP relations (cf. Tab. 2).

Another restriction on the usability of SOOP is that formalizing problems can be surpris-

ingly dif®cult to do correctly, which means that an imperative implementation may be

easier for many straightforward problems. However, the later argument applies to ontolo-

gies and semantic technologies in general, which often show their full potential only in

domains of a certain minimum level of complexity.



Semantic Object-Oriented Programming 325

One advantage of SOOP certainly lies in the fact that it enables to easily mix imperative

solutions with ontological reasoning. Thus, different aspects of the application at hand

can be solved in the domain (imperative OOP or declarative semantic reasoning), which

is most suitable - or at least feels that way to the application programmer. This also ®ts

nicely with C++ being a multiparadigm language.

Furthermore, libraries using SOOP present a shared conceptualization on two levels: From

an OOP perspective, the SOOP classes can be connected to user de®ned types by inheri-

tance and composition and thus reused just as non-SOOP libraries. At the same time, due

to the connection between the OOP types and an ontology in SOOP, different libraries de-

rived from the same base library are also compatible on a semantic level. Thus, a ªfounda-

tional” SOOP library, directly derived from an upper ontology, has the potential to render,

thus far incompatible, OOP libraries at least interoperable.

A much more in depth explanation of the C++ implementation and an extended discussion

can be found in [We16].9

6 Directions of Further Research

During the course of the presented work, we created a working research prototype in C++

and solved several conceptual and implementation issues, but there are still several open

topics and a lot of room for further research into SOOP:

The biggest potential for improvement appears to be in the area of static typing: While we

implemented a method to state type requirements for predicates, variables are currently

still largely untyped. This leads to all the dangers of untyped languages and also means

that semantic information available in the OOP type system might not be provided to the

reasoner.

Related to the topic of type information is the lack of checks for shadowing variables

inside a formula, which results in unexpected answers by the reasoner. All the required

information should be available at compile-time and we are convinced that these checks

could be performed algorithmically.

Another interesting open question is how to approach copies of entities. In general there

are three possible semantic meanings:

• Copy and original are independent of each other and the copy inherits no properties

from the original.

• Copy and original are the same entity and always share all semantics (¯at copy).

• Copy and original are different entities with the same semantics, that are copied as

well when creating the copy (deep copy).

9 The PDF manuscript (German) is available at http://florianjw.de/ba/soop.pdf



326 Florian Weber et al.

For each behavior there are cases where this particular behavior is desirable and others

where it isn’t. For example, the elements in a buffer may even switch desirable semantics

during the run of a program. To avoid picking a wrong default, we disabled copying in

the current implementation, but want to point out that the architecture supports all of these

three possibilities.

References

[Gr92] Gruber, Thomas R.: A Translation Approach to Portable Ontology Speci®cations. 1992.

[HB11] Horridge, Matthew; Bechhofer, Sean: The OWL API: A Java API for OWL Ontologies.
Semant. web, 2(1):11±21, January 2011.

[Je13] Jena, Apache: Apache jena. jena. apache. org [Online]. Available: http://jena. apache. org
[Accessed: Mar. 20, 2014], 2013.

[KAH05] Koide, Seiji; Aasman, Jans; Ha¯ich, Steve: OWL vs. object oriented programming. In:
the 4th International Semantic Web Conference (ISWC 2005), Workshop on Semantic
Web Enabled Software Engineering (SWESE). Citeseer, 2005.

[Kn04] Knublauch, Holger; Fergerson, Ray W.; Noy, Natalya F.; Musen, Mark A.: The
Protg OWL plugin: An open development environment for semantic web applications.
Springer, pp. 229±243, 2004.

[Or07] Oren, Eyal; Delbru, Renaud; Gerke, Sebastian; Haller, Armin; Decker, Stefan: Ac-
tiveRDF: Object-oriented Semantic Web Programming. In: Proceedings of the 16th In-
ternational Conference on World Wide Web. WWW ’07, ACM, New York, NY, USA,
pp. 817±824, 2007.

[Pu08] Puleston, Colin; Parsia, Bijan; Cunningham, James; Rector, Alan: The Semantic Web -
ISWC 2008: 7th International Semantic Web Conference, ISWC 2008, Karlsruhe, Ger-
many, October 26-30, 2008. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg,
chapter Integrating Object-Oriented and Ontological Representations: A Case Study in
Java and OWL, pp. 130±145, 2008.

[SBF98] Studer, Rudi; Benjamins, V.Richard; Fensel, Dieter: Knowledge engineering: Principles
and methods. Data and Knowledge Engineering, 25(1-2):161 ± 197, 1998.

[We16] Weber, Florian: Semantische Objektorientierte Programmierung. Bachelor thesis, Karl-
sruhe Institute of Technology, Germany, 2016. http://¯orianjw.de/ba/soop.pdf.


