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Abstract: Law enforcement agencies around the world use biometrics and fingerprints
to solve and fight crime. Forensic experts are needed to record fingermarks at crime
scenes and to ensure those captured are of evidential value. This process needs to
be automated and streamlined as much as possible to improve efficiency and reduce
workload.

It has previously been demonstrated that is possible to estimate a fingermark’s
evidential value automatically for image captures taken with a mobile phone or other
devices, such as a scanner or a high-quality camera.

Here we study the relationship between a fingermark being of evidential value and
its correct and certain identification and if it is possible to achieve identification despite
the mark not having sufficient evidential value. Subsequently, we also investigate the
influence the capture device used makes and if a mobile phone is an option worth
considering.

Our results show that automatic identification is possible for 126 of the 1,428 fin-
germarks captured by a mobile phone, of which 116 were marked as having evidential
value by experts and 123 by an automated algorithm.

1 Introduction

Increases in the rate of reported crime are evident in Victoria. Official recorded offences

for the year 2012/13 have risen by 3.4% to 406,497, compared to 2011/12 [Vic13]. Foren-

sic experts must travel in many cases to the crime scene and collect the evidence them-

selves, spending a lot of time travelling. Highly trained specialists such as fingerprint

examiners are valuable resources, making streamlining of processes and the search for

tools to assist both experts and non-experts in the field a priority. Therefore, we want

to determine if fingermarks are of insufficient evidential value as early as possible to en-
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sure the marks collected are of sufficient evidential value and to assist in case evidence

collection for the specialists. This can be achieved by using mobile phones to capture fin-

germarks, determine their binary evidential value and transmit the valuable ones directly

to the forensics unit; all done automatically either at the scene or at the lab after mark

development/enhancement. This task can be performed by regular police officers or pro-

fessionals with a different area of expertise, thus allowing the fingerprint experts to focus

on the analysis of the fingermarks.

Fingermark

EVA

[KDH+15]

{EV,EV}

Rescaling

(CRE)
Database

Identification?

⊕

Figure 1: Diagram of the experiment performed. A fingermark is captured, its evidential value

{EV,EV} is estimated by the Evidential Value Algorithm (EVA) of [KDH+15]) and rescaled in the
same way as in EVA. The number of correct and certain identifications (ccID) of the mark matched
to a reference database is measured w.r.t. the image capture device and evidential value estimation
method.

Previously, Kotzerke et al. have established that e.g. mobile phone images are suitable

to estimate if a fingermark is of sufficient evidential value (EV) and that an automated

algorithm (EVA) can achieve results close to an expert assessment, based on the image

quality [KDH+15]. Now, we extend this work and investigate the following worst case

scenario. Are there any marks, which can be automatically and with certainty identified

(against a reference database we collected) but are not of EV according to either the al-

gorithm or the expert assessment from [KDH+15]? The proposed experiment is shown in

Figure 1.

1.1 Background

Fingermarks are of essential value in order to exclude or to identify suspects. Nowadays,

law enforcement agencies rely heavily on the fingermark via automatic systems such as

IAFIS and forensic experts [Mal09]. These examiners are expected to follow the Analysis,

Comparison, Evaluation, and Verification (ACE-V) protocol [Ash99]. During the analysis

phase, they decide if the mark at hand is of value for individualisation (VID), value for

exclusion only (VEO) or no value (NV). Those with VID or VEO are EV; those with NV

are EV.

However, fingermarks suffer often from low quality due to being smudged or partial, over-

lap with other marks [FSZ12], or distorted by the surface pattern of the object they are

found on [SHAF11]. Their forensic value is difficult to grasp for non-experts. Ulery et al.

show that accuracy and repeatability varies even for forensic experts and mostly depends

on the print quality [UHBR11, UHBR12], especially for borderline decisions. Conse-

quently, Kellman et al. use image features to predict “expert performance and subjective
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assessment of difficulty in fingerprint comparisons” [KME+14].

Most quality measures are used to prevent low quality images from being automatically

matched because they tend to produce false minutiae and consequently false matches

[AFFOG+07]. Therefore, they are suited to operational law enforcement agency setups

and only optimised and tested for contact scanners [CDJ05, FKB06, LCCK08, The13] but

not fingermarks. This has resulted in various algorithms tuned to a capture resolution of

500 ppi.

On the other hand, fingermarks require robust methods to estimate their quality because

all factors mentioned above will vary and influence the quality and its estimate. Yoon and

Jain demonstrated in [YJ13] that the current NIST quality estimator reference implemen-

tation NFIQ1 is outdated because IAFIS was able to return the print’s mate although it

has been classified to have the lowest possible quality. Currently, NFIQ2 [The13] is under

development and closing this gap; it is scheduled to be released soon. However, it is still

primarily developed for fingerprints captured at a known resolution. In a scenario where

the capture resolution is unknown, an estimate based on image features can improve the

performance significantly [KDH+15].

Despite the need to reject low quality fingermarks for matching to avoid false identifica-

tions, the proposed scenario takes place much earlier. It includes the danger of missing a

potentially valuable mark, which could solve a criminal case, because according to some

algorithm the mark isn’t of EV. Naturally, there is a trade-off involved between the likeli-

hood of missing some important marks and capturing as few marks as possible.

1.2 Outline

We investigate how the (estimated) EV of a fingermark influences an identification sce-

nario, the performance achieved w.r.t. the capturing device (scanner, high-quality camera,

phone) and capture resolution estimation (CRE) algorithm used (cf. Figure 1) and if any

certain identifications would be missed if only marks of EV were to be analysed.

In the following sections we set up the methodology used during the identification scenario

(Section 2), elaborate on the databases employed, perform identification experiments to

demonstrate the interplay between a mark’s correct and certain identification (ccID) and

if it is of EV, and discuss the results (Section 3). Finally, we summarise our findings and

their implications and point out the direction for our future research (Section 4).

2 Methodology

The main idea behind our experiment is to evaluate if fingermarks, which are not of EV

and hence wouldn’t be collected in a crime scene scenario, can be correctly identified with

certainty (worst case). We now recap some important concepts relevant to the experiment,

which have been introduced in [KDH+15].
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As already motivated, there are scenarios when the capture resolution for an image is un-

known because of an unconstrained setup. Most quality or feature extraction algorithms

are optimised towards a certain resolution, most commonly 500 ppi and if the input image

deviates from the assumed resolution, the applied algorithm usually falls short. Therefore

it is sensible to perform a CRE. The RLAPS algorithm introduced in [KDH+15] estimates

the inter-ridge spacing of a fingerprint or fingermark image and infers the capture reso-

lution used. The power spectrum is computed and its radial average is determined only

around its maximum peak within a certain frequency range. Finally, the assumption of an

average inter-ridge spacing of 9 px for an adult is applied and leads to a capture resolution

estimate.

Number of Prints of sufficient evidential value

Type of distortion marks taken Assessor 1 Assessor 2 Assessor 3 Ground truth EVA

(i) light placement 168 48.2% 48.2% 48.2% 48.2% 54.2%

(ii) smeared 168 3.6% 4.2% 3.6% 3.6% 14.9%

(iii) finger twisted lightly 168 4.2% 4.8% 4.8% 4.8% 11.3%

(iv) strong twist 168 0.0% 0.0% 0.0% 0.0% 6.0%

(v) heavy placement 168 69.6% 65.5% 65.5% 65.5% 64.9%

(vi) partial, heavy placement 168 45.8% 48.2% 48.2% 48.2% 50.6%

(vii) normal 420 47.4% 49.0% 50.0% 49.0% 50.7%

Total 1,428 34.1% 34.5% 34.7% 34.5% 38.66%

Table 1: A breakdown of the 1,428 marks into the categories of distortion (including no deliberate
distortion), and the final status of the assessment of the 3 experts in terms of the proportion of
marks found to be of EV. Assessor 1’s opinion regarding the marks of categories (iii) and (vii) are
respectively 9 and 21 decisions short of the total number. However, the other assessors agree on
those marks and therefore a clear decision on ground truth can be made via majority vote. The EV
distribution for EVA has been calculated for the mobile phone images which have been rescaled
using CRE Global and the fused quality feature set at the decision threshold corresponding to the
EER because of its performance (cf. Figure 3 and [KDH+15]).

Furthermore in [KDH+15], the idea of sufficient evidential value has been introduced and

an algorithm to compute it based on image features has been presented. The feature sets

of NFIQ2 as specified in the preliminary definition guide [The13], Neurotechnology Ver-

ifinger 6.7 [Neu15] and its quality value and the number of minutiae and their Fusion

(concatenation of their feature vectors) have been investigated. We refer to this specific

estimation algorithm as EVA. For details see [KDH+15].

Finally, we would like to clarify the concept of ccID. Assuming that a fingermark is com-

pared against a reference database containing N unique fingerprints, a verification score

Si is returned for every comparison. We define a decision as correct and certain if and

only if the mark and the print with the highest score are from the same subject and if the

largest score is larger by factor d > 1 than any other score:

∄Sj ∶ Si ≤ dSj , i, j ∈ [1,N], i ≠ j. (1)

This would lead to a correct and certain identification. One has to keep in mind that the

smaller d is chosen, the greater the likelihood becomes that a decision is considered to be

certain but is in fact due to low verification scores derived from poor quality images.
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3 Experiments and discussion

In this section we evaluate the ability of an automatic system to perform a certain identifi-

cation and how many of the fingermark images are considered to be of EV in the context

of different capture devices such as a flatbed scanner, a high-quality camera and a mobile

phone and their interplay with different CRE methods (cf. Figure 1).

First, we recapitulate the properties of the fingermark database and its ground truth from

[KDH+15] and introduce our own reference database (Section 3.1), then we determine

the identification performance and look at those images’ evidential value determined by

the experts and an algorithm w.r.t. the use of different CREs and image capture devices

(Section 3.2). Finally we discuss our findings and their implications (Section 3.3).

3.1 Databases

Recently, Kotzerke et al. have introduced a pseudo fingermark database [KDH+15]; it

consists of 1,428 normal and deliberately distorted fingermarks from two males and two

females. In order to create the distorted marks, they defined six different distortion cate-

gories listed in the first column of Table 1. There are 168 marks per distortion category,

the other 420 marks are “normal” and don’t suffer from deliberate distortions (cf. Table 1).

(a) Scanner (b) High-quality camera (c) Mobile phone (d) Fingerprint scanner

Figure 2: A subject’s right middle finger “heavily” placed on the sheet captured by different devices:
scanner (a), high-quality camera (b), mobile phone (c) and fingerprint scanner (d). The first three
images (a – c) have been cropped more closely before entering them into the database, the image
captured with the fingerprint scanner (d) is used in the reference database and only shown here for
reference purposes.

All fingermarks were left on a sheet of paper, brushed with magnetic black powder and

laminated afterwards, under the supervision of a fingerprint expert. All sheets were digi-

tised with 3 different capture devices: (i) a flatbed scanner (HP Scanjet G4010, abbr:

Scanner), (ii) a high-quality camera (Nikon D3S with a Nikkor f/2.8 60 mm-macro lens

attached, abbr: DSLR) and (iii) a mobile phone (Apple iPhone 4S, abbr: Phone). It has

to be noted that capture resolution for the mobile phone varies as it has been used in an
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unconstrained setup. However, its captures were taken perpendicular to the fingermark

sheets and both capturing and lighting conditions were kept as consistent as possible. The

high-quality camera was attached to an operational stand setup, which is usually used for

police work. The estimated capture resolutions are 1200 ppi (Scanner), 460 ppi (DSLR)

and 890 ppi (Phone). More details can be found in [KDH+15].

All laminated marks have been assessed by three Victoria Police experts who decided for

each mark if it is of EV by undergoing at least a partial markup process. The ground truth

is the majority vote of their assessment. The EV distribution can be found in Table 1.

In this research, we created a reference database to match the marks against. For this

purpose, we collected all ten fingerprints of the same subjects as found in the fingermark

database with a Digital Persona U.are.U 4000 fingerprint scanner. We captured one im-

age per print without any deliberate distortion to imitate a reference scenario (cf. Figure

3.1). Also, we added imposter images with alike characteristics (no deliberate distor-

tion) which were all captured with optical fingerprint scanners similar to the one we em-

ployed. Specifically, we used all third prints of FVC2000 DB3 [MMC+02a] and FVC2004

DB2 [MMC+04] and all sixth prints of FVC2002 DB1 [MMC+02b]. This leads to a refer-

ence database consisting of 40 genuine and 330 imposter prints. We verified via the cross

verification scores that there are no duplicates included.

3.2 Experiment

This experiment aims to investigate the relationship between a fingermark, which can be

automatically identified with a high certainty and the evidential value assigned to it by

experts or EVA (cf. Figure 1).

The EVA is predominantly influenced by (i) the image properties such as capture device

used and CRE and hence (ii) the quality features extracted as briefly discussed in Section

2. The feature sets of NFIQ2, Verifinger and their fusion (concatenation of their feature

vectors) have been investigated. In this context, we use EVA from [KDH+15] to obtain

the estimated evidential values for three different CREs (None, Global, RLAPS) and three

capture devices (Scanner, DSLR, Phone) for all 1,428 fingermarks. This process is exten-

sively described in [KDH+15].

Next, a verification score for every fingermark matched against every print in the reference

database is computed. This verification process is performed by a commercial fingerprint

extractor and matcher, Neurotechnology Verifinger 7.0. We consider it to be ccID if and

only if the highest score returned for one particular fingermark is from the comparison to

the same subject’s finger and the second highest score multiplied by d = 1.5 is still smaller

than the highest one (see Equation 1). The factor d has been empirically chosen in order

to ensure a reliable and certain estimation due to the actual fingermark and fingerprint

similarity rather than poor image quality (cf. Section 2).

This experiment is carried out on all fingermarks, which have been digitised and rescaled

using different CREs such as no rescaling, a global rescaling factor for each device, or an

individual estimate based on image characteristics (RLAPS).
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Figure 3: The first row ((a) to (c)) shows the top left corner of the receiver operating characteristics
(ROCs) for all capture devices calculated on the Fusion image quality feature set with global rescal-
ing. The colour varies according to the fraction of EV & ccID/ccID as the classification threshold moves
along the ROC; the smaller the fraction, the lighter the colour (only applicable to “Scanner, None”
and “Phone, None”; the fraction equals one across the whole range in all other cases). The second
row ((d) to (f)) shows the EV distribution according to the mark’s distortion class which has been
computed by EVA (solid) and the experts (dashed). The latter isn’t affected by the decision threshold
and hence remains constant. The third row ((g) to (i)) shows the number of ccIDs classified as EV
by EVA (light colour), the additional ones by the experts (dark colour) and the ones not classified as
EV by either but are ccID (white). The gray line is the threshold corresponding to the EER when the
operating point moves along the ROC.

Additionally, we check if the ccID fingermarks are considered to be of EV by either the

experts or EVA. In case of the algorithm, the decision threshold corresponding to the equal

error rate (EER) has been chosen (cf. Figure 3g to 3i).

The step to determine if a fingermark is of EV is performed first and subject to capture

device and CRE. Therefore, the verification scores used for identification are calculated

afterwards on the already rescaled image (see Figure 1). Verifinger failed to compare 20
query fingermarks to the database because of their very high image resolution; this was
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only the case for unrescaled scanner images.

Finally, we applied different decision thresholds (instead of just the one corresponding to

the EER) to the evidential value raw scores. The aim is to observe if allowing more false

positive errors (and hence collecting more marks in a real world scenario) would lead to a

set of marks of being EV according to EVA which is a superset of the experts’ decision.

The results are shown in Figure 3 and Table 2.

Capture device

CRE Scanner DSLR Phone

ccID

None 4 118 6

Global 145 122 126

RLAPS 29 46 36

Experts Global 133 117 116

EVANFIQ2 137 118 123

EVAVerifinger Global 134 118 119

EVAFusion 137 119 120

Table 2: Number of fingermarks which have been correctly and with certainty identified (ccID)
and the amount of those marks which have been classified by experts or EVA to be of sufficient
evidential value (EV) w.r.t. capture device (Scanner, DSLR, Phone), CRE Global and quality feature
set (NFIQ2, Verifinger, Fusion) if applicable. EVA uses the threshold corresponding to the EER.
The EV results for the CREs None and RLAPS are not reported separately due to their much smaller
numbers compared to Global (see ccID). Please refer to Table 1 for the total number of EV decisions
or their distribution amongst the different distortion classes.

3.3 Discussion

The experiment shows a strong correlation between the automatically estimated evidential

value and if a certain identification is possible to be performed for a particular fingermark.

This is partially due to the setup used because both the matching score computation and

EV estimation are based on image features.

Further limitations of the matching system used became evident and confirm the findings

in [KDH+15]. Verifinger is very resolution dependent and requires marks or prints to

be in a very narrow capture resolution window (around 500 ppi) with as little variation

as possible to perform properly. This is the reason that a global rescaling factor and the

high-quality camera images without any rescaling work well. It also explains why there

are very few ccIDs when images with very high resolution without (CRE None) or with

individual (CRE RLAPS) rescaling are used. Nevertheless, the image quality due to the

use of different capture devices is not a major drawback. The mobile phone performs more

strongly than the DSLR but falls shy of the scanner, under the condition that the capture

resolution is adjusted properly. The difference between the quality feature sets is rather

small but should be considered in a real world framework.

Further, we note there are prints which can be automatically identified with certainty but

haven’t sufficient evidential value according to the experts’ assessment. This might be
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again due to experimental setup that heavily favours image processing algorithms or the

limited size of the test population and database. Additionally, it is worth pointing out that

some of the identified fingermarks are only considered to be of evidential value by the

experts or the algorithm, but not both.

Encouragingly, only one of the 116 marks being identified with certainty and having EV

according to the experts was missed by the algorithm in a mobile phone scenario with

global rescaling and the NFIQ2 feature set.

Table 1 also indicates that EVA works rather conservatively and tends to flag a fingermark

as being of sufficient evidential value slightly more often than an expert who applies other

considerations (such as court eligibility) than just image quality. Nevertheless, an expert’s

accuracy and repeatability can vary mostly due to the print quality [UHBR11, UHBR12]

regarding borderline decisions and experts “tend to free the guilty rather than to convict

the innocent” [TTM11].

Our results underscore the importance of capturing all fingermarks of sufficient evidential

value in the field. They should have VEO if they don’t have VID.

4 Conclusion and future work

The experiment performed indicates a strong correlation between the fact that a fingermark

can be automatically identified with certainty and its inferred evidential value. Therefore,

it is sensible to run fingermarks with sufficient evidential value against a reference database

to potentially obtain an identification.

Also, our findings indicate that an automatic mobile phone setup is suitable to determine

if a fingermark at a crime scene is of sufficient evidential value and could be operated by

non-experts. In the case that the capture conditions are unknown, it is sensible to use a

capture resolution estimator to improve performance.

In the future, we would like to perform more exhaustive testing on additional and con-

siderably larger databases with different matching systems as well. Also, a fingermark

determined to be of EV needs to be evaluated as either VEO or VID. Eventually we would

like to test performance in the field.
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