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Abstract: Currently much research is devoted to the characterization and classifica-
tion of transient and permanent protein-protein interactions. From the literature, we
take data sets consisting of 161 permanent (65 homodimers, 96 heterodimers) and 242
transient interactions. We collect over 300 interface attributes relating to size, physio-
chemical properties, interaction propensities, and secondary structure elements.

Our major discovery is a surprisingly simple relationship not yet reported in the
literature: interactions with the same molecular weight or very big interfaces are per-
manent and otherwise transient. We train a support vector machine and achieve the
following results: Molecular weight difference alone achieves 80% success rate. To-
gether with the size of the buried surface the success rate improves to 89%. Adding
water at the interface and the number of hydrophobic contacts we achieve a success
rate of 97%.

1 Introduction

Protein-protein interactions are fundamental to most cellular processes such as recogni-
tion of foreign molecules, host response to infection, transport machinery across various
biological membranes, packaging of chromatin, the network of sub-membrane filaments,
muscle contraction, signal transduction, and regulation of gene expression. Aberrant or
lack of certain protein-protein interactions leads to the neurological disorders such as
Alzheimer’s disease. The forces that are responsible for these interactions include elec-
trostatic forces, hydrogen bonds, van der Waals forces, and hydrophobic effects. The
understanding of these interactions will provide the clues to their biological function.
Several groups have been analyzing protein-protein interactions by categorizing them
as homo-complexes, homo-oligomers, hetero-complexes, hetero-oligomers, obligate and
non-obligate complexes, transient and permanent complexes, folding type and recognition
type complexes (10; 14; 17; 13; 5; 2; 3; 1; 4).

A fundamental distinction in the nature of protein-protein interfaces is the separation into
permanent and transient interfaces which are also called two-state and three-state com-
plexes, respectively (21). Folding and binding are inseparable for two-state complexes.
However, in case of three-state complexes, proteins fold independently and then bind. It is
widely believed that permanent interactions can occur in homomers and heteromers, and
transient interactions mostly in heteromers. However, Nooreen et al. and and Schreiber et
al. collected 13 experimentally validated homodimers with transient interactions (15; 20).

Several studies analyze protein-protein interactions using interface properties like size,
shape, residue and atomic contact propensities, hydrophobicity, hydrogen bonds, and sec-
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ondary structure (10; 17; 13; 15; 5; 2; 3). Not a single feature analyzed in these studies
differentiates permanent interactions from transient interactions or vice versa. As Nooreen
and Thornton point out (15), it is difficult to discriminate, especially the strong transient
from permanent interactions or the weak permanent from transient interactions. Mintseris
and Weng propose atomic contact vectors to tackle this difficult problem and achieve a
91% success rate (13). However, they use 171 features to classify 340 interactions.

In this paper, we derive a data set of transient and permanent interactions from literature
and initially capture over 300 attributes for the interfaces. We analyse the most predictive
attributes in detail and show that the four attributes of molecular weight difference of the
chains, size of the buried surface, number of water molecules at the interface, and number
of hydrophobic contacts achieve a classification success rate of 97% - to our knowledge
the best success rate reported. Moreover, the difference in molecular weight of the two
interacting chains is the single most predictive attribute, which achieves a success rate
of 80% on its own. This is particularly remarkable, as it can be derived from sequence
information only.

2 Materials and Methods

We use five datasets introduced in (13; 20; 15; 1; 4). Even though all these datasets
are generated by applying stringent criteria, some of them are contradicting each other.
For example, the transferase 1d09 A:B is classified as permanent in (13) and transient
in (20) and the toxin 1bun A:B is classified as permanent in (4) and as transient in (20).
We carefully examine all the interactions with contradicting classification and label them
according to the literature. Overall, only 9 out of over 400 interactions are affected.

To obtain a non-redundant dataset, all the interacting chains’ sequences are clustered using
BLASTCLUST (ftp.ncbi.nih.gov/blast/). The interactions which have both
interacting chains with ≥25% sequence identity are clustered together and one interaction
from each cluster is selected. As a result, we have 161 permanent and 242 transient in-
teractions in our dataset. For these two classes, it is important to cover both homo- and
heterodimers. This is indeed the case for our dataset, as the breakdown below shows:

transient permanent sum
homo 13 65 81
hetero 229 96 322

sum 242 161 403

Feature Collection. We collect over 300 attributes about the interacting chains, residues,
interfaces, and secondary structure elements and categorize them into the following four
sets:

Size. Number of residues per chain, molecular weight and Accessible Surface Area (ASA)
of each interacting chain, molecular weight difference, interface area ΔASA, number of
residues at interface compared to individual chains, number of residues at interface com-
pared to total residues, contact surface area, contact volume, total number of residue con-
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tacts, number of residues at interface.

Physiochemical properties. Isoelectric Point of each interacting chain, hydrophobicity
of the interface, normalized hydrophobicity by the interface size, hydrogen bonds, salt
bridges, disulfide bonds and hydrogen bonds per 100 ASA in interface, water at inter-
face, interaction strength, number of aromatic, charged, polar, hydrophobic, hydrophilic,
hydro-neutral residues in interface, and the contacting residues pairs properties like aro-
matic aromatic etc.

Amino acid propensities. Counts of residues A,C, . . . , Y and contacts A-A, A-C, . . . , Y-Y
at interface.

Secondary structure elements. The absolute and normalized counts of interacting residues’
secondary structure elements (helix, strand, coil, and turn).

The above attributes range from very general attributes like the number of hydrophobic-
hydrophobic contacts to very special ones like the individual residue pair propensities
including all pairs of hydrophobic residues, which appears redundant. However, the ob-
jective behind collection of both specific and general attributes is that all of them may play
a role. If permanent interactions have large interfaces, there should be hydrophobic cores
and hence hydrophobic-hydrophobic contacts could be important. Residue propensities
vary strongly for different pairs and hence individual counts of residue-residue interac-
tions may also be important. In the end, all of these attributes are collected, so that the
algorithm can select the most predictive ones.

The molecular weight and the isoelectric points are calculated using the bioperl module
with the EMBOSS value set. Accessible surface areas and ΔASA are determined using
NACCESS (wolf.bms.umist.ac.uk/naccess/). The contact surface area and
volume are derived by computing convex hulls of interaction interfaces (7). A novel,
experimentally determined Stephen-White hydrophobicity scale (9) is used to calculate
hydrophobicity. It does not lead to different results compared to the Kyte–Doolittle scale
(12). The number of hydrophobic contacts is computed at residue level (F, A, I, M, L,
V, C are hydrophobic) and if a residue participates in several hydrophobic-hydrophobic
contacts, all of them are counted. While hydrophobic-hydrophobic contacts are a count,
hydrophobicity is the sum of all interface residues’ hydrophobicity according to (9).

Different types of bonds between two chains are determined using WHATIF (22). The
interaction strength is calculated based on the bonds formed between two chains. The
bond strength is measured by the amount of energy required to break the bond. Although
the strength of a bond depends on the environment, a covalent bond is nearly 90 times
stronger than a single hydrogen bond in water. Therefore, we consider disulfide bridges
with a strength of 90, salt bridges with 3 and hydrogen bonds with 1.

Water at the interface is the number of water molecules which are ≤ 5Å distance to both
interacting chains.

The absolute and normalized counts of all amino acids in the interface are considered along
with the contacting residue pairs. The two residues are said to be in contact if their atoms
are within or equal to 5 Å distance.

Using STRIDE (8), the secondary structure elements of the interacting residue pairs are
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determined. We consider both the absolute and the normalized counts.

Algorithms. We have 161 instances of permanent and 242 instances of transient inter-
actions each with a vector of over 300 attributes in the training set. To identify the most
relevant attributes for the classification task, we use relief estimation (11), which ranks the
most predictive features independent of any learning algorithm. For the classification of
permanent and transient interactions we use decision trees (C4.5) (18) to derive specific
rules and support vector machines (SVM) to carry out an overall classification. For the
SVM we use the LIBSVM library (6). We use a Radial Basis Function (RBF) kernel to
map data into a higher dimensional space. We perform a grid search on internal parameters
C and γ using cross validation and the value set with the best cross validation accuracy is
picked. To avoid the problem of overfitting we use stratified 10-fold cross validation for
both, the SVM and C4.5 algorithms.

Evaluation. In the results section we apply support vector machines to compute the overall
success rate for a set of attributes, as well as sensitivity and specificity of built model and
decision trees to derive intuitive classification rules. For these rules we report accuracy
and support. Accuracy assesses how good the rule’s classification is and support assesses
to how many examples in the data set the rule applies.

The success rate is defined as the number of correctly predicted interfaces divided by all
interactions: Success rate = Correct predictions / All interactions i.e. the success rate
assesses the overall percentage of correct predictions. The sensitivity = TP / TP+FN and
the specificity = TN / TN+FP .

To define the accuracy and support of a rule, let us denote the correct predictions of the
rule as TP (True Positives) and the incorrect predictions as FP (False Positives). Then, the
accuracy of a rule’s prediction is defined as the percentage of correctly predicted examples
for the rule: Accuracy = TP / TP+FP. The support indicates how general a rule is, i.e. to
how much of the data it applies to: Support = TP+FP / All interactions. Generally, we
wish to define rules with high accuracy and support.

3 Results

Molecular weight difference achieves 80% classification success rate. The ten most
highly predictive attributes (in descending order) are molecular weight difference, ΔASA,
hydrophobic-polar contacts, hydrophobic-hydrophobic contacts, water at interface, no.
alanine-lysine contacts, no. isoleucine-tyrosine contacts, no. helix-helix contacts, no. me-
thionine at interface, and no. leucine-serine contacts. The difference in molecular weights
is the most outstanding feature separating permanent from transient interactions - both for
homo- and heterodimers. Consider the scatterplot in Fig. 1a. Most permanent interactions
are located on or close to the diagonal, i.e. both chains are of (nearly) equal molecular
weight. This is not surprising for homodimers, but the majority (96 out of 161) of perma-
nent interactions in the data set are actually heterodimers. Using a support vector machine
(see materials and methods), the molecular weight difference alone can classify 80% of
interactions correctly with a sensitivity of 71% and specificity of 86%. A closer exami-
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Figure 1: a) Scatterplot for molecular weight difference of interacting chains. Permanent
interactions are close to the diagonal as they have similar weights. This is particularly
remarkable as 96 out of 161 permanent interactions are heterodimers. Transient interac-
tions mostly involve a lighter and a heavier chain. b) Scatterplot for molecular weight
difference of interacting chains against ΔASA. Permanent complexes loose more surface
accessible surface area upon complexation than the transient ones. Permanent interactions
with more than 5 kDa molecular weight difference have mostly large interface of greater
than 2000 Å2. c) Scatterplot for absolute counts of water at the interface plotted against
ΔASA. There is some correlation (0.486) between the two attributes. d) Scatterplot for
the number of hydrophobic contacts plotted against molecular weight difference. The plot
shows that permanent interfaces have more hydrophobic contacts and are therefore a useful
additional feature in the classification task.
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Figure 2: Decision tree with molecular weight difference and ΔASA. The boxes contain
the predicted class. The total number of interactions and the number of incorrectly classi-
fied examples are in brackets. The ovals are the decision points defined by the algorithm.
It identifies more or less than 7 Da molecular weight difference as main separating feature
for transient and permanent interactions. It also automatically separates very big interfaces
from other interfaces.

nation of the distribution also reveals that the interaction between chains with less than 7
Da weight difference are mostly permanent (88% accuracy and 30% support), while in-
teractions between chains with more than 10 kDa molecular weight difference are usually
transient (83% accuracy and 40% support).

The interesting aspect of these two rules is that they do not require any structural informa-
tion and as only 65 out of 161 permanent interactions are homodimers.

Molecular weight difference and buried surface achieve 89% classification success
rate.. As stated above, ΔASA is the second most predictive feature. The scatterplot in
Fig. 1b shows that permanent complexes loose more solvent accessible surface area than
transient complexes. In particular, nearly all permanent interactions with more than 5 kDa
molecular weight difference have interfaces bigger than 2000 Å2, while most transient
interactions have smaller interfaces.

To quantify this observation, we trained a support vector machine (see materials and meth-
ods) for molecular weight difference and ΔASA and achieved a classification success rate
of 89% (sensitivity 84% and specificity 93%). In order to capture intuitive rules for this
classification task, we also generated a decision tree (see materials and methods) shown
in Fig. 2. The decision tree procedure automatically derives cut-off values. For ΔASA,
it distinguishes very big (3455Å2) or not and for molecular weight differences small (≤ 7
Da) or not. Overall, the decision tree consists of three rules as shown in Fig. 3, which can
be summarized as follows: Interactions with very small molecular weight difference (≤ 7
Da) or very big interfaces (≥ 3455Å2ΔASA) are permanent, otherwise they are transient.
This single rule on its own achieves accuracy of 87% and a support of 100%.
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No Weight Difference ΔASA Class. Acc. Supp.

1 Very small ≤7 Da Does not matter Permanent 88 30
2 Not small >7 Da Very big > 3455Å2 Permanent 71 12
3 Not small >7 Da Not very big ≤ 3455Å2 Transient 91 58

Figure 3: Classification rules derived from a decision tree with their accuracy (Acc.) and
support (Supp.). Rule 1 and 3 have the biggest support, i.e. they capture a large portion of
the data set. Rule 1 states that if the molecular weight difference is very small the inter-
action is permanent. Rule 3 states that a difference in molecular weights and an interface,
which are not very big, imply a transient interaction.

Adding hydrophobic contacts and water achieves 97% classification success rate.. To
further improve the classification results we added two more features: water at the in-
terface, which is a feature for transient interfaces (16), and the number of hydrophobic
contacts, which is important for permanent interactions. As stated above, the number
of hydrophobic-polar contacts is the third most predictive feature. However, molecular
weight difference, ΔASA, water at the interface and hydrophobic-hydrophilic contacts
are performing slightly worse (96.03%) than hydrophobic-hydrophobic contacts (97.27%).
Both features achieve roughly similar results as they are highly correlated (0.8), but hydrophobic-
hydrophobic contacts are slightly less correlated to water at the interface (0.35) than
hydrophobic-hydrophilic contacts are (0.43). It is also established that large interfaces
have hydrophobic cores (see e.g. (10)), so that the better performance of hydrophobic-
hydrophobic contacts and its role in large interfaces led us to choose it over hydrophobic-
hydrophilic contacts. So, the attributes molecular weight difference, ΔASA, water at the
interface, and hydrophobic-hydrophobic contacts could classify 97% of interactions (sen-
sitivity 95% and specificity 99%) correctly.

Although the absolute number of water molecules at the interface correlates to some de-
gree (0.486) with the interface size ΔASA (see Fig. 1c), it improves the classification
success rate as shown below. As an additional feature relating to the role of water, we also
checked water mediated contacts. These are contacts between two residues from different
interacting chains, which are in contact through a single water molecule but not in direct
contact (> 5Å distance).

However, water-mediated contacts do not play a role in this classification task, which is
consistent with Rodier et al. (19), who found that water density at homodimeric interfaces
and protein-protein complexes is the same. Note, that the number of water molecules at
the interface and the number of water-mediated contacts are not highly correlated (only
0.424).

Besides water, we investigated hydrophobic contacts as it is widely believed that perma-
nent interfaces are more hydrophobic than transient ones. For the analyses of hydropho-
bicity we used the Stephen-White hydrophobicity scale (9). Fig. 1d shows that the feature
of hydrophobic contacts separates transient and permanent interfaces well.

As a final step, we trained a support vector machine (see materials and methods) with
the four attributes molecular weight difference, ΔASA, number of water molecules at the
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Molecular weight difference
transient permanent sum

homo 0/13 65/65 65/78
hetero 207/229 50/96 257/325
sum 207/242 115/161 322/403

Molecular weight difference, ΔASA
transient permanent sum

homo 8/13 58/65 66/78
hetero 217/229 77/96 257/325
sum 225/242 135/161 360/403

Weight diff., ΔASA, hydrophobic-hydrophobic contacts, water at interface
transient permanent sum

homo 11/13 61/65 72/78
hetero 229/229 91/96 320/325
sum 240/242 152/161 392/403

Figure 4: Breakdown of correctly classified protein-protein interactions for transient ho-
modimers, transient heterodimers, permanent homodimers, and permanent heterodimers.
The overall success rates achieved are consistent with all these subclasses. Molecular
weight difference alone classifies permanent homodimers and transient heterodimers very
well and permanent heterodimers reasonably well. Adding the other three attributes, suc-
cess rates for all these subclasses are in the 90s.

interface (within 5Å), and number of hydrophobic contacts. We achieve a classification
success rate of 97% for over 400 interactions in the data sets taken from (13; 20; 15; 1; 4).

Heterodimers vs. Homodimers and Transient vs. Permanent.. To test whether the
above results also hold for heterodimers only, we considered 96 transient and 96 perma-
nent heterodimer interactions. Thus, a random predictor achieves an expected success rate
of 50%. The four attributes considered above perform as follows: Molecular weight dif-
ference alone achieves 73%. Molecular weight difference and delta ASA achieve 84%.
Molecular weight difference, delta ASA, water at the interface and hydrophobic contacts
achieve 88%. These results are in line with the ones for hetero- and homodimers reported
above, in particular as homodimer interactions are not always permanent and as our dataset
contains 13 such transient homodimer interactions, which are difficult to classify.

Indeed, it is an interesting questions how the success rates for the classification of the
full 403 interactions break down between the classes of homo-transient, hetero-transient,
homo-permanent, and hetero-permanent. Figure 4 shows three tables with these success
rates for the three combinations of the four attributes. The first table shows that molecular
weight difference alone classifies permanent homodimers and transient heterodimers very
well and permanent heterodimers reasonably well. It does not handle the transient homod-
imers well. Adding ΔASA, the success rates for transient homodimers and permanent het-
erodimers greatly increase. Finally, the third table in Fig. 4 shows that the overall success
rate of 97% is consistently achieved in all subclasses of transient homodimers (85%), tran-
sient heterodimers (100%), permanent homodimers (94%), and permanent heterodimers
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(95%). Also, homo- and heterodimers achieve consistent success rates (92% and 99%,
respectively) and transient and permanent interactions, too (99% and 94%, respectively).

4 Conclusion

There is great interest in characterizing and classifying protein interactions as transient or
permanent (10; 14; 17; 13; 5; 2; 3; 1; 4). In particular, Mintseris and Weng achieve 91%
prediction success rate using their atomic contact model with 171 features to classify 340
interfaces (13).

In this paper, we have assembled a data set consisting of 161 permanent and 242 transient
interactions taken from the literature (13; 20; 15; 1; 4). For the interfaces we collected
over 300 attributes relating to the size, physiochemical properties, residue propensities,
and secondary structure elements.

Based on these data, we made a surprisingly simple discovery not yet reported in the
literature: The difference in molecular weight between the interacting chains is the single
most informative feature to distinguish transient from permanent interactions. Using this
feature, 80% of interactions can be correctly classified. This is particularly important,
as the molecular weight can be derived from sequence alone, so that no structural data
is needed. Together with attributes known to play a role such as the size of the solvent
accessible surface area lost upon complex formation, we can formulate the simple rule that
interactions with small molecular weight difference or very big interfaces are permanent
and otherwise they are transient. This simple rule achieves 87% success rate.

Finally, we added two more attributes known to be important, namely water at the interface
and number of hydrophobicity contacts. Overall, we achieve a classification success rate
of 97%, thus improving on other results previously published.

As next step, we wish to underpin our key insight that permanent interactions - like lasting
marriages - require equal partners by developing physical models of the protein masses
and moments, which can shed further light on this observation.
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