
i
i

“proceedings” — 2017/8/24 — 12:20 — page 1591 — #1591 i
i

i
i

i
i

Maximilian Eibl, Martin Gaedke (Hrsg.): INFORMATIK 2017,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017

Measuring the Capability of Smartphones for Executing

Context Algorithms

Dennis Kroll1 and Klaus David2

Abstract: While the rise of context aware apps remains, the question arises whether algorithms for

context processing can be applied to any smartphone and for any user. In this paper, we propose to

test context algorithms for each specific smartphone, user, and situation to which a context algorithm

is applied. Towards this, we present our framework which automatically measures all relevant

information about an app´s runtime properties, i.e. resource utilization and the time taken to process

sensor values by a context algorithm. Both information can be automatically returned to the app

developers in order to improve the app. We implemented the framework on Android and tested it

using the example of a state-of-the-art context algorithm to find out whether our test smartphone is

capable of running the context algorithm without delays and deadlocks.

Keywords: smartphones, apps, context awareness, context algorithms, evaluation, usability

1 Introduction

The first device which was called a smartphone and which was available to the public was

the IBM Simon in the year 1994. With a price of about 900 $, it came with a touch screen

and served basic applications such as calendars, calculators, and an email application.

After the first smartphones were developed, the trend has kept rising during the last two

decades. Nowadays, smartphones are the daily companion of a large fraction of people

worldwide. In 2016, the global population was 7.39 billion, and 2.1 billion of them already

owned a smartphone. This means about 30 % of the global population are smartphone

owners. This is not surprising, since nowadays smartphones are often at low cost and come

with a variety of useful features. Modern apps connect billions of people via social media,

enable secure online banking, some apps are even aware of their users´ contexts. Context,

as defined by A. K. Dey et. Al., is “any information that can be used to characterize the

situation of an entity.” [Ab99]. The entity can be a smartphone user, and examples for user

contexts are the user´s location or activity. More and more apps are aware of such contexts:

A fitness app is aware of the activities its user does; An Ambient Assisted Living app

detects and reacts when its user falls, and so on. There are two basic requirements for

supporting context aware apps on smartphones. First, sensors such as accelerometers,

magnetometers, and compasses are required. These sensors measure information about the

user´s activity and environment. Secondly, a processor and memory is required to apply

1 University of Kassel, Chair for Communication Technology, Wilhelmshöher Allee 73, 34121 Kassel,

dennis.kroll@comtec.eecs.uni-kassel.de
2 University of Kassel, Chair for Communication Technology, Wilhelmshöher Allee 73, 34121 Kassel,

david@uni-kassel.de

cbe doi:10.18420/in2017_159

Maximilian Eibl, Martin Gaedke. (Hrsg.): INFORMATIK 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1591

https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/in2017_159

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1592 — #1592 i
i

i
i

i
i

2 Dennis Kroll and Klaus David

context algorithms to sensor data. Context algorithms input sensor values, process them

and interpret them as contexts. Those algorithms consist of several steps, i.e. value

pre-processing, feature extraction, context classification and context prediction. Note that

context algorithms do not nessesarily consist of all of these steps, and a concrete step

implementation varries for different algorithms. In earlier days, smartphones were mainly

used for data acquisition. The acquired data was not directly processed by a context

algorithm on the smartphone up to the smartphones´s little processor and memory

performance. Instead, data was transferred to a server with higher ressource performance.

Context algorithms were then applied at the server´s side. Modern smartphones gained

much ressource performance what makes the transmission of data to external computers

often unnessesary. However, when applying context algorithms on smartphones, the

question arises whether context algorithms can be applied to any smartphone, in any

situation and for any user. While app developers test and adjust their apps in limitted test

environments, they cannot reproduce any situation to which an app might be applied. In

real world conditions there is a high number of different devices and users, and

innumerable situations. In some cases, an app might lead to problems such as delays or

deadlocks of a smartphone´s operating system. Thus, during the development of an app, it

is not possible to make a prognosis of the general feasibility of using a context algorithm in

a smartphone. One option to get user and smartphone specific feedback is to lookup app

ratings at app suppliers such as the Google Play Store or the Apple App Store.

Unfortunately, it takes time till ratings are created, and ratings are often more general (such

as “the app doesn´t work well”) what makes it hard for developers to spot problems.

Therefore, we propose to test context algorithms in the real world for each specific

smartphone, user, and situation to which the algorithm is applied. Towards this, in this

paper we present our framework which automatically measures all relevant information

about the utilized ressources and the times taken to process sensor values by a context

algorithm. This information can be returned as feedback to the app developers and can be

used to further improve the app. We implemented our framework on the mobile operating

system Android and tested it using the example of a state-of-the-art context algorithm to

find out whether our test smartphone is capable for executing the algorithm without delays

and deadlocks. The contributions of this paper are: 1. explaining how we measure a

smartphone´s capability for executing a context algorithm; and 2. presenting and using our

framework to evaluate the capability of a specific smartphone to execute a specific context

algorithm.

2 Related Work

For the evaluation of several context algorithms, meaningful information about a

smartphone´s capability for executing context algorithms were measured, i.e. resource

utilization and processing times for sensor values. In [Be10], a service for recognizing

activities on mobile phones is presented. To answer the question of capability, the authors

preliminary measured the CPU utilization when running and when not running an

algorithm. The authors of [La14] present an extended version of BeWell, a mobile app to

1592 Dennis Kroll, Klaus David

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1593 — #1593 i
i

i
i

i
i

Executing Context Algorithms On Smartphones

measure a person´s wellbeing. As a part of the app´s evaluation, the battery drain when

running their algorithm on different smartphones was analyzed. In [Kj12], another study

on battery drain is presented. The authors focused on building low-power location-based

services and analyzed the power consumed by GPS, Wi-Fi, and other sensors which can

be used for localization. Besides the energy consumption and the resulting battery drain,

the authors of [Re10] also investigated the memory utilization of mobile phones which

run an context algorithm. In [LL12], a mobile platform for real-time human activity

recognition is presented. The authors not only investigated resource utilization, but also

the response time which is the time their test smartphone needed to process the pre-

processing, feature extraction, and context classification steps of their algorithm. The main

difference of the above approaches and the framework presented in this paper is that our

framework automatically measures complete and detailed runtime information without

requiring any user action. Furthermore, our framework is not limited to the app

development process, but can also be applied after an app was released. This allows to

evaluate context algorithms on the user´s side, and thus, beyond any situations which could

be reproduced in a test environment.

3 Measuring the Capability of Smartphones for Executing Context

Algorithms

To find out whether a smartphone is capable for executing a context algorithm, our

framework answers two questions: 1. How much CPU, memory, and battery is utilized?

and 2. How much time takes it to process sensor values? The results of the first question

indicate whether a user can use a smartphone as usual. Otherwise, if the CPU utilization

is at maximum for a longer duration, the smartphone will no more response to the user´s

commands swiftly. The same effect appears when the memory runs full since the CPU is

then busy with managing and shifting data from one memory (RAM) to the other (hard

disc) and back. The third resource, the battery level, indicates how long the smartphone

will operate. From this information it turns out whether the operation time of a smartphone

is still sufficient when executing a context algorithm. From the second question one can

find whether the smartphone is able to process sensor values swiftly. Otherwise, when the

processing takes too long, new sensor values might be sampled faster than they can be

processed. In this case, a context algorithm does no more operate in real time. Furthermore,

a delay in processing times will get larger with time. We measure processing times

separately for each step of a context algorithm in order to ease searching faults, if any.

The design of our framework is presented in Fig. 1. At the right side, a user who can

interact with an app which contains a context algorithm is shown. At the left side,

important hardware components are shown, i.e. the sensor(s) to sample sensor values, and

the smartphone´s storage to write measurement results. The middle component is our

framework, or “Measurement-App” since it is an app itself.

Measuring the Capability of Smartphones for Executing Context Algorithms 1593

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1594 — #1594 i
i

i
i

i
i

4 Dennis Kroll and Klaus David

The components of the Measurement are:

 Communication Service: This service forwards sensor values to the Algorithm-App.

The Algorithm-App in turn reports when values are processed. While the

Measurement-App is static, the Algorithm-App must implement a simple, pre-defined

interface to enable the communication.

 Measurement Service: This service encapsulates the three services which log the

resource utilization and one service which logs the sensor value processing durations.

 Menu: A graphical user interface through which a user could start and stop measuring

both, properties when the Algorithm-App is running and properties when the

smartphone is in idle mode. These user functions are optional and can be triggered

automatically as well.

 Data visualization: Users can quick-analyze the measurement results themselves.

This is optional since the framework was designed to transfer measurements to the

app developers, of course only in case that the user permitted this.

Fig. 1: Component diagram of our framework

1594 Dennis Kroll, Klaus David

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1595 — #1595 i
i

i
i

i
i

Executing Context Algorithms On Smartphones

4 Prototype and Experiments

We implemented our framework as Android OS application. For experiments, we used

our framework to test a context aware app which runs the context algorithm Implicit

Positioning [KKD16]. This algorithm analyses compass values of a smartphone carried

by a person and finds, learns, and recognizes patterns in it. Our experiments results answer

whether our test smartphone, a Samsung Galaxy S5, is capable for execution if the sensor

sampling rate is 5 Hz. Our framework did a one-hour measurement while Implicit

Positioning was running, and one while it was not running. In Fig. 2., the resource

utilization for both cases is compared. First, the raw and filtered CPU utilization is shown.

The CPU is utilized about 30 % more when Implicit Positioning is running. However, a

CPU utilization about 60 % does not influence the smartphone usability. The memory

utilization stays more or less constant and is similar in both cases. This shows that Implicit

Positioning does not utilize much memory. Lastly, the battery drain is compared. As

expected, the battery drains more when Implicit Positioning is running. From these results

one can say that Implicit Positioning works in real-time, but consumes more energy. Next,

we analyzed the processing times which are concluded in Tab. 1. Often, the processing

Fig. 2: Resource utilization for a smartphone in idle mode and while running the context algorithm

Implicit Positioning

Measuring the Capability of Smartphones for Executing Context Algorithms 1595

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1596 — #1596 i
i

i
i

i
i

6 Dennis Kroll and Klaus David

times were shorter than 1 ms and rarely longer than a couple of milliseconds. However,

neither the longest nor the delta processing times are longer than the timespan between

two sensor readings which is 200 ms. This means, that Implicit Positioning processes all

steps much faster than the compass sensor is sampled, and no delays appear.

Shortest processing

duration (ms)

Longest processing

duration (ms)

Delta

Pre-processing 0 ms 168 ms 3 ms

Feature Extraction 0 ms 8 ms 1 ms

Context Classification 0 ms 7 ms 1 ms

Tab. 1: Sensor value processing durations for steps of the context algorithm Implicit Positioning

5 Conclusion

In this paper, we presented our novel framework for measuring the capability of

smartphones for executing context algorithms. We explained that both resource utilization

as well as processing times of sensor values are important indicators for capability

evaluations. We implemented our framework on Android OS and tested it with a context

algorithm in order to find out whether our test smartphone is capable of running the context

algorithm without delays and deadlocks.

References

[Ab99] Abowd, G. D.; Dey A. K.; Brown P. J.; Davies N.; Smith M.; Steggles P.: Lecture Notes

in Computer Science - Towards a Better Understanding of Context and Context-

Awareness, vol. 1707, 1999, Berlin, Germany.

[Be10] Berchtold M.; Budde M.; Gordon, D.; Schmidtke H. R.; Beigl M.: ActiServ: Activity

Recognition Service for mobile phones. In Proc. of the 14th Int. Symp. on Wearable

Comp., Seoul, South Korea, pp. 1–8, 2010.

[Kj12] Kjasrgaard M. B.: Location-Based Services on Mobile Phones: Minimizing Power

Consumption. In IEEE Perv. Comp., vol. 11, no. 1, pp. 67–73, 2012.

[KKD16] Kroll D.; Kusber R.; David K.: Implicit Positioning Using Compass Sensor Data. In

Proc. of the Int. Conf. on Perv. and Ubiquitous Comp., pp. 732–741, 2016.

[La14] Lane N. D. et.al.: BeWell: Sensing Sleep, Physical Activities and Social Interactions to

Promote Wellbeing. In Proc. of Mob. Netw. Appl., vol. 19, no. 3, pp. 345–359, 2014.

[LL12] Lara O. D.; Labrador M. A.: A Mobile Platform for Real-Time Human Activity

Recognition. In IEEE Consumer Commun. and Netw. Conf., pp. 667–671, 2012.

[Re10] Reddy S.; Mun M.; Burke J.; Estrin D.; Hansen M.; Srivastava M.: Using Mobile Phones

to Determine Transportation Modes. In ACM Trans. Sens. Netw., vol. 6, no. 2,

pp. 1–27, 2010.

1596 Dennis Kroll, Klaus David

