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Dealing with Hardware-related Disturbances in Organic
Computing Systems

Markus Gorlich-Bucher!

Abstract: The ability to withstand disturbances while remaining functioning in a desired way is
regarded as a crucial element in the field of Organic Computing. However, current approaches to
self-healing and robustness fail in considering hardware-related breakdowns. These disturbances
differ from software-sided disturbances in various aspects: They persist until being repaired, therefore
their removal necessitates maintenance actions performed by human repair workers. Furthermore, they
may be predicted to a certain degree. In this article, we formulate a problem statement and various
requirements an OC system must fulfil in order to increase its robustness against hardware-related
disturbances. Furthermore, we present a working plan for a PhD project concerning the investigation
of several aspects of the previously motivated problem statement.
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1 Introduction

Over the last decades, Organic Computing (OC) [MST17b] and its principles have been
developed in order to reduce the increasing complexity in information and communication
technology by moving design-time decisions to runtime. In order to achieve these goals,
OC systems are conceived to adapt and organize themselves in an autonomous way.
Therefore, they incorporate various so-called self-x properties, such as self-organization,
self-configuration or self-healing. The concepts developed in the scope of OC have been
employed and tested in various application scenarios in the past years. Considerable
examples include traffic control [Pr11] or self-organising communication systems [Zil1].
A crucial element to allow such autonomy is the ability to be robust against external or
internal disturbances, therefore, to maintain (or at least return to) a desired system state
despite the occurrence of failures. Intuitively, mechanisms developed to increase a system’s
robustness can be summarized under the self-healing capabilities of OC. An aspect that
distinguishes OC from other approaches in the field of autonomous systems, such as
Autonomic Computing [LMD13], is the fact that OC systems are expected to be able to
interact with their surrounding environment. Therefore, OC systems are supposed to be
equipped with sensors and actuators. Although conceived to solve complex real-world
problems necessitating a notable amount of sensors and actuators, existing self-healing
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mechanisms in OC mostly focus on software-related disturbances. Moreover, no general-
purpose methodology on how to deal with hardware-sided disturbances can be found in
the literature. These Physical Disturbances, as they are called in the following, differ from
software-sided disturbances in various aspects: A damaged sensor or actuator remains
damaged, therefore, a physical disturbance does not end by itself. Besides, no control
mechanism can end them, at least, it might be able to compensate them using e.g. redundant
infrastructure. Furthermore, a physical disturbance requires human intervention in form of
maintenance activities to handle, respectively end it.

Maintenance is a well-discussed aspect in various other scientific disciplines, such as
manufacturing or economic sciences. Hereby, current developments mostly focus on an
approach called Predictive Maintenance (PdM) [Sel7]: Sensor data or observations are
used to predict machine failures or ongoing degradation using statistical approaches or
machine learning. Using these predictions, defective machines (or parts of them) can be
maintained or replaced in a proactive manner, reducing the downtime of the corresponding
machine (and therefore the costs) to the maintenance action itself. Furthermore, in more
complex scenarios, probably with dependencies between machines or components, the
gathered predictions can be used to construct maintenance schedules [vP13]. Depending
on the application scenario, these schedules may be optimized for lower costs or shorter
downtimes.

In this paper, we present a preliminary concept for investigating various aspects of the
integration of maintenance activities into the scope of OC systems. At first, we investigate
the status quo of robustness, resilience and self-healing in the context of OC (Section 2).
Based on the previously explained characteristics of physical disturbances we formulate
a problem statement in section 3. Hereby, we focus on how physical disturbances might
affect OC systems, how they differ from software-related disturbances, and conclude
various requirements an OC system should fulfil in order to increase its robustness to them.
Afterwards, we suggest a novel evaluation measure as well as a formalization in form of a
Mixed Observability Markov Decision Process that can be used to determine the long-term
effects of physical disturbances on the robustness of an OC system (Section 4). Afterwards,
we suggest a working plan for a PhD project concerned with investigating various aspects
of identifying disturbances, predicting their possible influence on the overall robustness of a
system, as well as methodologies to integrate human-dependent maintenance activities into
the scope of OC (Section 5).

2 Related Work

2.1 Robustness, Resilience, and Self-Healing in OC: Status Quo

The IEEE standard glossary of software engineering terminology defines robustness as
“The degree to which a system or component can function correctly in the presence of
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invalid inputs or stressful environmental conditions” [IE90]. In terms of OC, robustness
is perceived as the ability of a system S to recover from any kind of previously known
disturbance. Formally defined in [Sc10], a system state Z; (describing the state of S at any
given time ) is mapped with respect to some evaluation criteria u(Z;) into various state
subspaces. States mapped into the farget space denote ideal states, while states mapped
into the acceptance space denote acceptable, but not ideal states. Besides, a mapping into
the survival space denotes states from which the control mechanism (CM) of the system
is able to recover at least to the acceptance space, while mappings into the dead space
denote unrecoverable states. An occurrence of a disturbance w € D with D denoting a set
containing all possible disturbances changes the system state Z; to a new state z;41 = w(Z;).
The actual robustness of S is measured depending on the state space Z; is moved into by any
disturbance in D. For example, a system that needs to deal with a disturbance that changes
Z; into the dead space is considered as not robust at all. The concept of robustness was later
on revised towards an approach called Quantitative Robustness [To18]. Here, the focus lies
on measuring a systems robustness as well as the influence of disturbances in a comparable
manner by using some application specific utility measure U. Both the strength and the
duration of a disturbance is measured by observing the change of U over time. The actual
state space boundaries are represented by utility limits, €.g. Grarger the upper boundary of the
target space. The actual robustness of a system is determined by the change of U during
and after the occurrence of a disturbance. For example, a recovery to U > 6,.. during
a disturbance and to U > B after the end of a disturbance denotes a strongly robust
system.

Another concept related to robustness was developed under the term resilience, defined as
“pro-active robustness” in [ST16]. Here, the focus lies on predicting upcoming incidents that
can affect a systems robustness by utilizing suitable machine learning techniques within the
CM. The concept was used to predict traffic flows in [STH16].

Robustness and Resilience provide measures (or at least concepts) to evaluate the influence of
disturbances on an OC system. However, an actual compensation or healing might incorporate
other concepts and techniques. As mentioned before, research towards increasing a systems
self-healing capabilities mostly focuses on healing software-sided disturbances (cf. e.g.,
[Sc11], [Na09]). Existing approaches concerned with healing physical disturbances mostly
focus on redundant hardware. A notable example is the six-legged robot OSCAR that
compensates failing legs by utilizing the remaining, functioning legs [Mall]. Another
recent example lies in autonomous sensor networks, where failing sensors are compensated
by other sensors in their neighbourhood [Jal4]). In general, the term ‘“self-healing” is
discussed in various other scientific disciplines as well. A comprehensive survey on the
topic can be found in [Fr13].
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2.2 (Predictive) Maintenance

As mentioned before, PAM (also termed Condition-based Maintenance) - or maintenance
in general - is well-discussed in various other scientific disciplines. A review of various
prognostic models used in this field can be found in [PDZ10]. In [AK12], an overview
focussing on the actual applicability in industrial applications is provided. Another review
evaluates the availability of contemporary sensor technology and wireless networks for the
field of PAM [Sel7]. In the last years, plenty of work on predicting failures using different
kinds of machine learning techniques has been published. Prominent examples include
artificial neural networks (cf. eg., [Fu04], [Wu07], [GWJ17]), Genetic Algorithms (cf. eg.,
[BDR13] [LVT16]), as well as unsupervised learning techniques, such as Clustering or
Anomaly Detection (cf. eg., [KS17], [Kr14]).

Another related aspect in the field of maintenance lies in the scheduling of actual mainte-
nance activities. Notable work focuses on considering economic, structural and stochastic
dependencies between components within manufacturing plants [vP13] as well as the
influences between the structure of complex, multi-component systems and the deterioration
of actual single components [NDG14].

3 Problem Statement

As already addressed in the introduction, physical disturbances differ from software-sided
disturbances in various aspects. In the following, we explain the differences and potential
problems they yield concerning the design of OC systems in detail.

First of all, the healing of a physical disturbance will most likely not lie in the scope of the
OC system itself. Although concepts like self-repair - for example, using drones - have
been investigated in the scientific community extensively for various years now, we assume
that we won’t see, for example, fully autonomously, self-repairing manufacturing plants in
the next couple of years. Therefore, the healing of physical disturbances will necessitate
humans for now. At this point, one could argue that a human repair worker does not fit into
the concept of “self-healing”, as it is clearly not the system itself that does the job. However,
we suggest to take the human out of the scope of the maintenance- and repair-actions as
far as possible: It appears suitable to degrade humans to tools the OC system utilizes to
heal itself. Therefore, humans can be regarded as (more or less trustworthy) agents in the
scope of the system. They might have their own desires and goals, but in the end, they are
expected to execute the work the CM delegates to them.

In order to reduce human intervention as far as possible, the CM must be able to identify
the source of the physical disturbance, therefore, be aware of the structure of the underlying
system. Furthermore, it must be able to determine a suitable time frame for both proactive
as well as reactive maintenance actions. Finally, a physical disturbance does not necessarily
lead do a decrease of the systems’ utility: In the example of the six-feet robot OSCAR
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mentioned in the previous section, the CM is able to compensate a failing leg using the
other legs. While this redundancy guarantees a robust system in the first place, it is more
vulnerable to additional physical disturbances afterwards.

In conclusion, we formulate three requirements to an OC system in order to be robust to
physical disturbances:

1. Depending on the hardware of the underlying system, physical disturbances might be
predicted to a certain degree. In order to assign proactive maintenance actions that
can avoid time consuming breakdowns, the CM must be able to predict disturbances
in advance, whenever possible. These predictions should take the current system
configuration, as well as possible future changes of the configuration into account.

2. Physical disturbances cannot be ended by a CM. They persist until repaired by a
maintenance action, presumably executed by a human worker. In order to ensure the
autonomy of an OC system, the responsibility and the powers of human workers
should be kept as limited as possible. Therefore, the identification of the source
of a physical disturbance, as well as the decision on and assignment of necessary
maintenance actions must be performed by the CM. In order to fulfil this requirement,
the CM must be aware of the structure of its underlying system to a certain degree.

3. The effect of physical disturbances on the overall robustness of a system might depend
on the redundancy of the used hardware. Accordingly, the CM must be able to estimate
the influence of possible future physical disturbances on the systems’ utility at any
time in order to assess if there exist situations in which it won’t remain robust. The
CM must be able to construct a suitable maintenance schedule depending on the
actual disturbance predictions, the system configuration, the availability of human
workers as well as possible combinations of multiple future physical disturbances.

4 Preliminary Concept

As shown in the previous section, we assume that a physical disturbance does not necessarily
lead to a change in a system’s utility. Rather, it might be possible that the utility does
not change until a certain combination of different physical disturbances appear at once
(or one after another). In such scenarios, using the utility as a measure to evaluate the
ability of a system to remain robust against possible future disturbances appears insufficient.
Accordingly, it is of interest to evaluate and measure the effects of physical disturbances on
hardware components of the system independently from their influence on the utility. As
introduced in [GSH19], we evaluate the physical state of hardware components in form of
an Integrity measure: A physical disturbance that affects (therefore damages) a component
of the system changes its integrity. Furthermore, the overall integrity of all components
of the system can be used to determine the robustness of the system. In simple words,
the integrity measurement acts as an abstraction between physical disturbances and their
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long-term effect on a system’ utility. The concept becomes more clear when considering
the following formalization: There exists an integrity measurement?, € I for each timestep
t, where ;, = (i;l), i§2>, .. .,i;")) with n denoting the number of components in the system.
A binary description with 0 describing fully damaged components and 1 describing fully
functioning components appears suitable for rather simple applications scenarios. However,
a more sophisticated description will be necessary in case of more complex situations, such
as hierarchical systems or components that remain functioning to a certain degree when
affected by a physical disturbance. The influence of a physical disturbance 6 € Dphysical € D
and 7 € I can be formalized as a probabilistic function f := P(ZH ﬁ;, &) (called integrity
function in the following). Accordingly, a physical disturbance may change the integrity of
one or more components in ;, The influence of an integrity measurement on a system’s
utility U, can now be expressed by g := P(Us4 |Z,.ip). If f and g were fully known, we
could determine the overall robustness of S against any disturbance in Dppysical.

5 Research Plan

In the following, we present a brief research plan for a PhD thesis based on the previously
motivated problem statement as well as our preliminary concept.

5.1 Prediction of Physical Disturbances

For now, we assume two different settings for predicting physical disturbances in OC
systems: Components that already have the ability to predict failures among themselves
(e.g. in manufacturing plants equipped with PdM capabilities), as well as components
for which the CM makes predictions using observations. Besides, it is conceivable that
a system might incorporate both types of components. The challenge among CM-based
predictions is to choose learning paradigms that are able to learn to predict failures based
on observations in a more or less automated manner: Following the OC-ish concept of
moving design-time decisions to runtime, we can assume that no pre-labeled training data
is available in advance. Though, we expect that the integrity measure for a given component
is known at all times (e.g. by observing the system utility or designated sensors that report
the state of a component), therefore, the use of Reinforcement Learning (RL)-techniques,
using the integrity measurements as rewards, appears feasible. Hence, one goal of this part
of the research plan lies in evaluating RL-algorithms regarding their applicability to predict
physical disturbances. The challenge among prediction algorithms located within the actual
underlying system lies in assessing their reliability: From the CM’s point of view, they can
be regarded as a black box.
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5.2 Architectural Aspects and Integrity Measurement

Besides the previously mentioned differentiation between predictions in the CM and in
the underlying system, various other architectural aspects need to be considered. The
most prominent CM-concept in OC is the Generic Observer/Controller-Architecture (O/C)
[Tol1], depicted in the first schema in Figure 1. In short terms, it consists of two components,
namely observer and controller. The observer investigates the underlying System under
Observation and Control (SuOC) and provides an evaluation of the current system state
to the controller, which thereupon decides if control actions are necessary. Commonly,
this control logic is represented by simple IF-THEN rules, for example implemented as an
algorithm from the field of Learning Classifier Systems (LCS) [Tol1]. Depending on the
application scenario, an OC system is not necessarily limited to a single O/C instance. As
depicted in the second and third schema in Figure 1, distributed and hierarchical topologies
are also possible, for example by equipping each component in a system with its own O/C
instance, all of them encapsulated by another O/C instance.

Controller Controller

Fig. 1: Schematics of different O/C-topologies [To11]

Later on, the concept of the generic O/C architecture was enhanced to a so-called Multi-Level
Observer-Controller-Architecture (MLOC) [MST17a]. Hereby, the first layer is intended to
observe and control the actual SuOC, while the second layer focuses on generating new rules
for the first layer’s controller in cases where no suitable rule was found for an upcoming
observation. In order to generate useful rules, a simulation of the SuOC might be part of
the second layer. The third layer is used for communication and collaboration with other
MLOC-instances, e.g. for exchanging knowledge from the local rulesets.

We aim to integrate a designated Integrity-Component (IC) into all layers of the MLOC-
Architecture. Located in the observer on layer 1, the IC will be responsible for the
identification of physical disturbances, the evaluation of their influence on the system’s
overall robustness, their prediction (if possible) as well as the calculation of a suitable
integrity measurement. The determination of a proper maintenance schedule, however, is not
up to the IC. Maintenance activities are considered as control actions, which lie in the scope
of the controller. Therefore, the Observer is expected to report the integrity measurement
as well as the predictions to the controller, where a proper schedule can be calculated.
The layer 2 part of the IC, also located in the observer, is intended to use a simulation of
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the SuOC to determine which integrity measures influence the robustness of the system,
hence, to learn the integrity function. However, the applicability of such a scenario depends
on the application scenario itself: While a simulation of a manufacturing scenario can be
used rather easily to determine critical components, more complex scenarios might not be
simulated at all (or not to a degree necessary to determine a correct integrity function).
Finally, the IC in layer 3 is expected to communicate integrity measurements or learned
predictors to other MLOC-instances that incorporate a similar SuOC.

Besides, different compositions of MLOC architectures might necessitate more complex
integrity measurements (as already stated in the previous section): In a hierarchical or
distributed topology, each single MLOC instance needs to decide which integrity measures
of the underlying SuOC are relevant for other instances, and which ones can be kept
private. Previous work that appears relevant in this context lies in the field of computational
self-awareness [Lell].

5.3 Applications in different O/C-Architectures

The problem of identifying a suitable maintenance schedule in OC systems involves both
certain information (The current system state and integrity, assuming that the corresponding
observations are always correct), as well as uncertain information (disturbance prediction
conducted by the observer or by an internal prediction algorithm in the SuOC, or unknown
future breakdowns in general). Furthermore, it incorporates multiple control actions that
might depend on limited Resources (e.g. human repair workers). This problem can be
formalized as Mixed Observability Markov Decision Process (MOMDP) [On10]. We
presented a rather minimal MOMDP that can be used to describe the prior problem in
single O/C-architectures in [GSH19]. However, more complex MOMDPs will be necessary
to describe hierarchical or distributed architectures. Furthermore, the design of such a
MOMDP may vary depending on the type of desired maintenance schedule, e.g. a focus on
a higher utility or lower downtimes of single components. Accordingly, in this part of the
research plan, we aim to define MOMDPs for different O/C application scenarios.

Afterwards, suitable algorithms to solve the resulting MOMDPs need to be developed.
Hereby, we focus on both learning paradigms that have been applied to Markov Decision
Processes (MDPs) in OC before (cf. [St17]), as well as other machine learning concepts
that have been applied successfully to MOMDPs or at least in the broader field of MDPs
(cf. [On10]). As mentioned in section 2, plenty of work on how to schedule maintenance
activities exists in various fields of research. Therefore, another part of the research plan
focuses on conducting a comprehensive survey of existing maintenance scheduling concepts
regarding their applicability in the field of OC, respectively to the designed MOMDPs.
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5.4 Evaluatory Aspects

Physical disturbances may occur in any OC system - even if the SuOC does not incorporate
actuators or sensors, the physical hardware on which the system relies might be exposed to
such disturbances. The evaluation environment for an OC system that is robust to physical
disturbances depends significantly on the type of actuators or sensors the system is using
and which abstraction level of the whole architecture we need to evaluate. In the following,
we suggest various approaches that can be used to build a suitable evaluation environment
for our proposed concept.

Simulation Environment An intuitive application scenario for the concept of predicting
machine failures lies in the field of manufacturing. On the one hand, we do not seek to
develop a whole OC-based manufacturing architecture. On the other hand, a manufacturing
plant that is controlled by an OC architecture (at least to some degree) is inevitable for
evaluating our concept in this use-case. Accordingly, a suitable simulation software or
framework must be chosen. For now, we decided to use a customized version of the open
source manufacturing simulation framework ManPy?, developed during the FP7 DREAM
project [Dal3]. ManPy was developed and tested using the manufacturing simulation
Plant Simulation by Siemens, therefore its simulatory capabilities appear, at least to our
needs, quite realistic. The framework itself is written in Python and uses the discrete event
simulation framework SimPy as a basis. Changes made to ManPy up to now include the
removal of unnecessary components as well as building abstraction layers for future O/C
bindings.

Besides this manufacturing application scenario, we plan to identify other OC scenarios
that can be used to evaluate our approach. As a manufacturing environment features more
complex hardware components with (presumably) predictable physical disturbances, it
appears suitable to determine a more simple scenario in order to investigate the applicability
of our approach in settings where disturbances cannot be predicted. Hereby, a potential
scenario might lie in the field of Smart Home Environments, or Internet of Things in general.
A suitable simulation framework for such a scenario could be integrated in our existing
framework by developing a wrapper using the underlying SimPy framework.

Simulation of Predictable Failures Simulating predictions made by components within
the SuOC appears rather straightforward: ManPy, for example, already includes functionality
to simulate machine breakdowns by repetitively sampling timestamps from a configurable
population using various distributions. Based on the actual breakdown timestamp, approxi-
mate predictions can be made by e.g. slightly varying the timestamp and adding some noise.
In order to evaluate the prediction capabilities located in the CM, it might be suitable to use
real-world PdM datasets. However, only few freely accessible datasets for such purposes

2 http://www.manpy-simulation.org/
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can be found, provided by the UCI Machine Learning Repository [DG17] or Kaggle3.
Besides the small number of suitable datasets, it is necessary to develop a methodology to
sample realistic datapoints based on the overall state of the simulated SuOC, the control
actions the CM might take, as well as potential dependencies of components within the
SuOC. Furthermore, it is indeed questionable how components like jet propulsion turbines
or vertical lift vehicles fit into the scope of potential future OC systems. Therefore, we
tend to focus on two additional potential data sources. We plan to build various testbeds to
expose rather cheap components, such as stepper motors, to different kinds of mechanical
stimulation in an automated fashion. The data gathered from various sensors embedded in
these testbeds might be used to determine some mathematical model to simulate the actual
behaviour of the tested components under the given circumstances. Besides, approaches
from mechanical engineering, such as Stochastic Degradation, can be used to actually
simulate the actual internal behaviour of more complex components. An overview on the
concept in the context of reliability engineering can be found in [Go10].

6 Conclusion

In this article, we presented a concept and a working plan for a PhD project concerned
with the integration of maintenance concepts into Organic Computing Systems in order to
deal with the occurrence of hardware-related failures. We gave a brief overview on how
these physical disturbances can affect the robustness in existing OC systems. We formulated
a problem statement focusing on the predictability of physical disturbances, the need for
human repair workers as well as the scheduling of maintenance actions in OC systems.
Besides, we presented a preliminary concept for a novel integrity measurement acting as an
abstraction layer between the physical state of an OC system and its CM. Afterwards, we
presented a working plan suggesting various approaches for solving the corresponding parts
of the problem statement.
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