
Comparison of Centralities for Biological Networks∗
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Abstract: The analysis of biological networks involves the evaluation of the vertices
within the connection structure of the network. To support this analysis we discuss
five centrality measures and demonstrate their applicability on two example networks,
a protein-protein-interaction network and a transcriptional regulation network. We
show that all five centrality measures result in different valuations of the vertices and
that for the analysis of biological networks all five measures are of interest.

1 Introduction

Centrality analysis is particularly useful in analyzing biological networks and hence in
helping to understand the underlying biological processes. It has been shown that central
vertices in protein-protein interaction networks are often functionally important and the
deletion of such vertices is related to lethality [JMBO01]. In [WS03] three different types
of centralities are defined and applied to metabolic, protein-protein interaction and domain
sequence networks. Fell and Wagner discuss the possibility that metabolites with highest
degree may belong to the oldest part of the metabolism [FW00].

However, it has also been shown that the degree of a vertex alone, as a specific centrality
measure, is not sufficient to distinguish lethal proteins clearly from viable ones [Wu02],
that in protein networks there is no relation between network connectivity and robustness
against amino-acid substitutions [HCW02], and that for biological network analysis sev-
eral centrality measures have to be considered [WS03]. To assist scientists in the explor-
ation of biological networks, we discuss and compare five different centrality measures.
Some of these are already known in biological sciences, others are transferred from differ-
ent fields of sciences such as social network analysis. The application of these measures
shows that some correlate strongly in one network and weakly in another. As a result,
we conclude that for the analysis of biological networks several measures should be con-
sidered.

∗This work was supported by the German Ministry of Education and Research (BMBF) under grant
0312706A.
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This paper is organized as follows: in Sect. 2 we define the graph model on which we
operate. Section 3 introduces the five centralities in networks, all are explained using one
example graph. These measures are applied to typical biological networks in Sect. 4.

2 Definitions

A undirectedgraphG = (V,E) consists of a finite setV of vertices(n = |V |) and a finite
setE ⊆ V × V of edges(m = |E|). An edgee = (u, v) ∈ E connects two verticesu
andv. The verticesu andv are said to beincidentwith the edgee andadjacentto each
other. The set of all vertices which are adjacent tou is called the neighborhoodN(u) of
u (N(u) = {v : (u, v) ∈ E}). A graph is calledloop-freeif no edge connects a vertex to
itself. An adjacency matrixA of a graphG = (V,E) is a(n × n) matrix, whereaij = 1
if and only if (i, j) ∈ E andaij = 0 otherwise. The adjacency matrix of any undirected
graph is symmetric.

The degreed(v) of a vertexv is the number of its incident edges. Let(e1, . . . , ek) be a
sequence of edges in a graphG = (V,E). This sequence is called awalk if there are
verticesv0, . . . , vk such thatei = (vi−1, vi) for i = 1, . . . , k. If the edgesei are pairwise
distinct and the verticesvi are pairwise distinct the walk is called apath. The lengthof a
walk or path is given by its number of edges,k = |(e1, . . . , ek)|. A shortest pathbetween
two verticesu, v is a path with minimal length, all shortest paths betweenu, v are called
geodesics. Thedistance(dist(u, v)) between two verticesu, v is the length of a shortest
path between them. Two verticesu, v of a graphG = (V,E) are calledconnectedif there
exists a walk from vertexu to vertexv. If any pair of different vertices of the graph is
connected, the graphG = (V,E) is calledconnected. If a walk starts at vertexu, chooses
uniformly at random one of the incident edges of the current vertex until it finally reaches
the targetv then we call this walk arandom walkbetweenu andv.

In the remainder of this paper we consider only non-trivial1 undirected loop-free connected
graphs. This restriction is required for a common definition of all centrality measures
covered in this paper. Some of the centralities can easily be expanded to cover directed or
unconnected graphs, even an extension towards weighted edges is possible.

3 Centralities in Networks

Formally a centrality is a functionC which assigns every vertexv ∈ V of a given graphG
a valueC(v) ∈ R. As we are interested in the ranking of the vertices of the given graph
G we choose the convention that a vertexu is more important than another vertexv iff
C(u) > C(v). In the following sections we explain five different centrality measures and
show an example graph and the corresponding centrality values.

1Graphs of at least two vertices and one edge.
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3.1 Degree

An obvious order of the vertices of a graph can be established by sorting them according
to their degree. The corresponding centrality measuredegree-centrality(Cd) is defined as
Cd(v) := d(v). See the work of Freeman [Fr79] for a long list of references to the usage
of degree-centrality in social network analysis. For biological network analysis degree-
centrality for example is used in [JMBO01] to correlate the degree of a protein in the
network with the lethality of its removal. See Fig. 1 for an example graph and Table 1 for
the corresponding centrality values.

3.2 Eccentricity

The next three definitions of centralities all operate on the concepts of paths within the
given graph. The simplest definition uses the distance between vertices. Theeccentricity
ecc of a vertexu is defined asecc(u) := maxv∈V dist(u, v) and theeccentricity-centrality
(Ce) asCe(u) := 1

ecc(u) . The reciprocal ofecc(u) is used to assure that more central
vertices have a higher value ofCe, because such central vertices are the ones with the
smallest eccentricity value. An application of eccentricity within the biological context is
shown in [WS03]. Again, as for degree-centrality, Fig. 1 and Table 1 show an example.

3.3 Closeness

In contrast to eccentricity, closeness-centrality uses not only the maximum distance
between the vertex of interest and all other vertices but uses the sum of the distances of this
vertex and all other vertices. Thecloseness-centralityis defined asCc(u) := 1

sumdist(u)

with sumdist(u) =
∑

v∈V dist(u, v). Closeness-based centrality measures are cited ex-
tensively in the work of Freeman [Fr79]. Wuchtyet al. [WS03] apply this centrality to
different biological networks and show the correspondence with the service facility loca-
tion problem.

3.4 Random Walk Betweenness

Within networks a communication between two verticesu, v may be visible to a third
vertexw if this vertex lies in the path of the communication between these vertices.
To measure the centrality of a vertex the ability to observe communication is a feas-
ible approach. Different methods to model communication are conceivable. There are
for example communications over shortest paths, paths with maximum flow and random
walks. All of these are potential models forbetweennessand are covered in the literat-
ure [Fr77, FBW91, Ne03].
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Figure 1: A graph to show the five different centrality measures

Newman’s random walk approach models information transmission and therefore matches
problems often modelled in biological networks. For therandom-walk betweenness cent-
rality (Cr) the centrality of a vertexw is equal to the number of times that a random walk
from u to v goes throughw, averaged over allu andv [Ne03]. A detailed coverage of the
required calculations for the random-walk betweenness is beyond the scope of this paper
and the reader is directed toward [Ne03].

3.5 Bonacich’s Eigenvector Centrality

A different approach to order the vertices of a graph was suggested by Bonacich [Bo72].
His idea is based on the assumption that the value of a single vertex is determined by
the values of the neighboring vertices. In contrast to the previous measures not only the
position of a vertex within the graph is considered but also the centrality values of its
neighbors.

Bonacich suggested the following definition:Cλ(u) :=
∑

v∈N(u) Cλ(v). If we con-
sider the adjacency matrix representation of the graph, this is equivalent toCλ(vi) :=∑n

j=1 aijCλ(vj). This leads directly to the well known problem of eigenvector computa-
tion λS = AS and the eigenvector of the largest eigenvalue is theeigenvector-centrality
(Cλ := S) [Bo72].

3.6 Centralities shown on an example graph

To demonstrate that all of the explained centrality measures usually give different results
we use the example graph shown in Fig. 1. For this graph Table 1 shows all centrality
values for the five centrality measures.
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Vertex Cd Vertex Ce Vertex Cc Vertex Cr Vertex Cλ

8 4 5 0.2500 7 0.0286 7 0.7429 7 0.5021
9 4 4 0.2000 6 0.0263 6 0.5619 8 0.4563
7 3 6 0.2000 8 0.0238 5 0.5143 9 0.4563
2 2 3 0.1667 9 0.0238 8 0.4762 6 0.2761
3 2 7 0.1667 5 0.0233 9 0.4762 10 0.1927
4 2 2 0.1429 4 0.0200 4 0.4476 11 0.1927
5 2 8 0.1429 10 0.0182 3 0.3619 12 0.1927
6 2 9 0.1429 11 0.0182 2 0.2571 13 0.1927
1 1 1 0.1250 12 0.0182 1 0.1333 14 0.1927
10 1 10 0.1250 13 0.0182 10 0.1333 15 0.1927
11 1 11 0.1250 14 0.0182 11 0.1333 5 0.1517
12 1 12 0.1250 15 0.0182 12 0.1333 4 0.0830
13 1 13 0.1250 3 0.0169 13 0.1333 3 0.0448
14 1 14 0.1250 2 0.0143 14 0.1333 2 0.0230
15 1 15 0.1250 1 0.0120 15 0.1333 1 0.0097

Table 1: The centrality values for the example graph. The vertices are ordered by descending cent-
rality value

4 Application and Discussion

We applied the presented centrality measures to two biological networks, a protein-protein-
interaction (PPI) network and a transcriptional regulation (TR) network. The PPI net-
work is based on the April 2004 release of theHomo sapiensnetwork from the DIP-
Database [SMS+04]. It models proteins as vertices and interactions as edges. The TR
network ofEscherichia colimodels operons as vertices and regulation between transcrip-
tion factors and operons as edges, see [SOMMA02] for details and the link to the data.

For the PPI-network we removed 51 self interactions as the graph has to be loop-free for
the calculation of the eigenvector-centralityCλ. Furthermore, we removed vertices and
edges not connected to the giant component, and the resulting graph consisted of 563
vertices and 870 edges. For the TR network we used the data from [SOMMA02] and
applied the same strategy: we removed self regulation and used the giant component for
the analysis. As the regulation data is directed we used the underlying undirected graph.
The activation and repression information at the edges was not used as our framework
is based on unweighted graphs. Finally, the graph for the TR network consisted of 325
vertices and 453 edges.

The calculation of the five centrality measures for both graphs was done on a modern
desktop PC (3 GHz, 2 GB Ram, Linux 2.6.x, Java 1.4.2) and took between less than a
second (Cd) and several minutes (Cr). This was expected as the complexity of the different
algorithms ranges fromO(n) toO((n+m)n2).

To analyse a network we calculated the presented centralities for all vertices. Then for
each centrality all vertices were ordered by descending centrality value and, for vertices
with the same centrality value, by ascending vertex-label. The vertices were enumerated
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from 1 to n, this number is the position of the vertex according to the centrality. Finally,
we build a new table which for every vertex and every centrality contains the position of
the vertex according to the centrality.

With the calculated positions we made several analyses of the correlation. It shows that
some of the measures, e.g. eccentricityCe and eigenvectorCλ, are highly correlated in the
PPI-network (see Fig. 2) while others are only weakly correlated. Within the TR network
a strong correlation between eigenvectorCλ and closenessCc was observed (see Fig. 3),
but in contrast to the PPI network there is only a weak correlation betweenCe andCλ.
Tables 2 and 3 show all correlation coefficients based on Pearson’s method. Note that the
strong correlation of degreeCd and random-walk betweennessCr is discussed in [Ne03].

In conclusion, the analysis of biological networks clearly benefits from the application of
several centrality measures. Our next step lies in the comparison of different centralities
measures with biological information.
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Figure 2: Scatter plot matrix of the centrality positions for the PPI network

Cd Ce Cc Cr Cλ

Degree Eccentricity Closeness RWB Eigenvector

Cd 1.0000 0.2794 0.3396 0.9534 0.2703
Ce 0.2794 1.0000 0.4231 0.2776 0.9248
Cc 0.3396 0.4231 1.0000 0.3843 0.4726
Cr 0.9534 0.2776 0.3843 1.0000 0.2627
Cλ 0.2703 0.9248 0.4726 0.2627 1.0000

Table 2: Correlation coefficients for the centrality positions for the PPI-network
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Figure 3: Scatter plot matrix of the centrality positions for the TR network

Cd Ce Cc Cr Cλ

Degree Eccentricity Closeness RWB Eigenvector

Cd 1.0000 0.3974 0.5861 0.9700 0.5499
Ce 0.3974 1.0000 0.2208 0.4172 0.0514
Cc 0.5861 0.2208 1.0000 0.5856 0.9552
Cr 0.9700 0.4172 0.5856 1.0000 0.5164
Cλ 0.5499 0.0514 0.9552 0.5164 1.0000

Table 3: Correlation coefficients for the centrality positions for the TR network
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