n-Dimensional Border Growth

Daniel Berg, Herwig Unger
Department of Communication Networks,
FernUniversitit Hagen, Germany
{daniel.berg|herwig.unger} @fernuni-hagen.de

Abstract: Peer-To-Peer (P2P) networks become more and more present in the con-
sumer area as well as in industrial applications. Especially in the industrial- and the
business area, reliable and scalable protocols are needed, that produce low network-
overhead and react quickly on any network-changes. In this paper a generalization of
the Border-Growth-algorithm is introduced, that improves the network’s scalability, its
connectivity, and decreases its diameter by providing multiple dimensions, rather than
just two of them.
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1 Introduction

Decentralized overlay topologies provide characteristics that cannot be achieved with clas-
sical client/server architectures. Due to their completely decentralized architectures they
can provide wide scalability and fault-tolerance [LCP04, SUL0O4]. However, maintaining
those structures is not trivial. When participants join or leave the network, it has to be en-
sured that the structure is kept consistent after those operations. This can become a com-
plex task, depending on the complexity of the network’s structure [RFHO1, CHORDO1,
STRUCTO02].

In [STRUCTO2] the Border-Growth-Algorithm was introduced. This algorithm builds a
complete, contradiction- and hole-free two-dimensional lattice. Regular lattice-like over-
lays are very useful for xy-routing based algorithms [RFID0O7, THERMO09, 3DIOS09].
Compared to existing algorithms for overlay structures, like CAN, Chord, Koorde, Pastry
or Tapestry the Border-Growth-Algorithm can manage Join- and Leave operations very
quickly. As long as the lattice is not broken into two distinct clusters, there are always
multiple available paths from any node to another.

This paper aims to improve the scalability of this algorithm by increasing its dimensions
from two to n dimensions. It will be showed that this can be achieved without increasing
the complexity of the growth-algorithm itself. (The complexity of updating a new node’s
neighborhood increases linearly with the dimension n.)

Section 2 provides the requirements and a brief description for the 2D-Border-Growth
algorithm. In section 3 follows a detailed discussion for the new, n-dimensional version,
starting with the motivation in section 3.1 and the modifications made to the new version

296



£ The border modes. ol the
Ind and dih qedant ges
rirw [l bonded nades of the

LT T S ST

B The boroes sodes ol th
fau! pumdrant canral grow
Tha irasr nepide i ifhee prigen
of the 1™ guadrasd can
P, Gn0E e rwe PR
Wil Feinjielaat i 05 - @FEd -
darpchion

o The 108 gudrant w borses
mooes have 1o wal il
wyhc hirenikalian of S olhed
RN Bgais

ulep miteng e soen

Figure 1: The rules defined by the two-dimensional Border-Growth-algorithm

in section 3.2 Section 3.3 gives the mathematical description, and section 3.4 gives some
information about the simulation environment that was used to run the algorithm. Section
4 discusses the simulation results and compares them to the results of the two-dimensional
version. Section 5 finally gives a conclusion and a outlook for further work based in the
new algorithm.

2 The Border-Growth-Algorithm
2.1 Two-Dimensional Border-Growth

This section gives a brief description for the two-dimensional border-growth-algorithm.
The algorithm defines three node types: The Root Nodes, that reside at a discrete, virtual
coordinate-system’s origin in all quadrants, the Border Nodes that are positioned along
an axis of the virtual coordinate system, and finally the Inner Nodes that are all nodes,
which are neither Border Nodes nor Root Nodes. The Root Nodes are special cases of the
Border Nodes.

Nodes in the two-dimensional lattice have knowledge about their direct neighbors in north-
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, west-, south-, and east-direction. To simplify the algorithm, and to increase connectiv-
ity, all nodes additionally posses links to their direct neighbors in the diagonal directions
northwest, southwest, southeast, and northeast.

The initial state of the structure is illustrated in Fig. 1a): Each quadrant of a virtual,
discrete coordinate system has one Root Node in its origin. A Root- or a Border Node is
allowed to grow along its axis, if it has a neighbor at the other side of the corresponding
axis. This condition is true for the first quadrant’s Root Nodes in Fig. 1a and for the first
quadrant’s Border Nodes in Fig. Ic.

An Inner Node, a Root Node, or a Border Node can grow away from the coordinate sys-
tem’s origin, if the position to which it wants to grow already has neighbors into the x- and
y-direction. This condition is fulfilled by the Root Node in Fig. 1b and for two of the first
quadrant’s Border Nodes in Fig. 1d.

When a new node is accepted as the neighbor of a node in the structure, the new node’s
neighborhood has to be updated. That means that the surrounding nodes need to update
their neighbor-links to accept the new node.

For a detailed mathematical description of this algorithm, refer [BORDERO9] and section
3.3 of this paper, which gives a detailed description of the n-dimensional Border-Growth
algorithm. Though some modifications had to be made to the new version (see section
3.2), the two-dimensional case is just a special case of the n-dimensional structure.

3 n-Dimensional Border-Growth
3.1 Motivation

Though it is easy to replace a failed node within the structure by another (new or existing)
node, such a structure is only able to grow at its borders, which is one reason for why join-
operations are very simple and quick. However, growth-scalability in terms of the ratio of
the number of all nodes and the number of nodes that can grow, decreases with growing
structure size.

In order to lower this effect, the algorithm was modified in that way, that it grows into
an arbitrary number of dimensions. Increasing the dimensions of the lattice leads to more
advantages: The connectivity of the structure increases, any (inner) node is connected to
2" other nodes, rather than just to 22 = 4 nodes. Therefore there are more possible paths
between any two nodes. Another effect implied by the former one is the reduction of the
structure’s diameter; the paths between any two nodes of the structure becomes shorter in
average.

While the connectivity (which corresponds to the maximum number of neighbors) - and
therefore the complexity for updating the neighborhood of a new node - increases ex-
ponentially, the complexity of finding a potential position for a neighbor stays constant,
independently of the number of dimensions. Even in a n-dimensional grid with n > 2, a
node just has to consider two dimensions to make a decision, if it can grow or not. The two
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dimensions can be selected randomly. A single node gets many more potential positions
into which it can grow. If a node recognizes that it cannot grow considering the two chosen
dimensions, it can just choose other dimensions and check if the growth-rules are fulfilled
for these dimensions.

3.2 Modifications

Some modifications were to be made to the n-dimensional version of the Border-Growth-
Algorithm. The first modification is the elimination of diagonal links. Since the number
of those diagonal links grows exponentially with the number of dimensions it would not
be useful to maintain them within a higher dimensional grid. In 5 dimensions there would
be 2° = 32 additional links. The main purpose for doing so was to increase connectivity.
But now, better connectivity is achieved by the higher number of dimensions. The math-
ematical model was relaunched and generalized and now works without diagonal links at
all.

To simplify the mathematical description of the algorithm, only the positive quadrants
are considered. This makes it necessary to adapt the Border Node growth rule. In the
new version a Border Node does not synchronize with a neighbor-node of the neighbor-
quadrant, but with its neighbor on the other side within the quadrant. The potential growth-
rate of all nodes is equal, and the growth-behavior it symmetric to the origin, so these
modification will not significantly change the structure’s qualitative growth behavior.

3.3 The n-Dimensional Border-Growth Algorithm

This section gives a detailed mathematical description of the new n-dimensional border-
growth-algorithm. Let n € N, n > 1 be the grid’s dimension and ¢ € N the discrete time
needed, to clearly identify multiple join-operations that occur at the same time. To refer to
direct and indirect neighbors of a node, linear combinations of normalized unit vectors are
used: J = {fl, ,5n| ji = (T1, .y ), Tk = { é:;; Z ; z } is the set of unit vectors
along the positive main axes and J_ = {—fi| V1 < i < n} the set of unit vectors along
the negative main axes. J = J; U J_ is the set of unit vectors along all main axes.

The network itself can be described as a graph G with a vertex-set V, and an edge-set
E. Since the graph describes a network that changes over time, V and E, and therefore
G depend on the discrete time t: G(t) = (V(t), E(t)), E(t) C V2(t). Every vertex
of the graph describes a network-node. The function pos associates a n-dimensional
position to every node v € V(t): pos| V(t) — Ny, pos(v;) = (z1,..x,). The
function N associates a node v € V(t) with a neighbor N (v, j;,t) for each j; € J at
time ¢. If v does not have a neighbor in j;, then N(v,j;,t) is 0: N| (V(t),J,t) —

- neighbor of v in direction j;
V(t)Uu{0}, N(v,j;t) = . . -
(HU{0} (v, Ji ) { 0, if Aw e V(t)with pos(v) + j; = pos(w)
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The growth-process starts at ¢ = 0. The only node at start-up is a Root Node vg residing at
the coordinate-system’s origin. Since vy is the only node, no neighbor-relationships are es-
tablished yet: ¢ := 0, V(t) := vg, E(t) := {}, pos(vo) = (0, ..,0). We classify the nodes
that joined the structure into three types. The Root Nodes that reside at the center of the
virtual, discrete coordinate system: Vy(t) = {vo| vo € V (t) A pos(vg) = 0} The Border
Nodes, that grow along the axes: V(&) = {vg| v € V(t)Apos(vg) = mxJj; Vj; € J, }
The Inner Nodes, that are all nodes which are neither Root Nodes nor Border Nodes:
Vi(t) = {vr] o1 € V() \ (Vo(t) U V(1))

A node that wants to accept a new node, must fulfill at least one growth-rule. The node-
type specifies which rules can be used to determine if it can grow, and in which directions
it can grow. There are three growth-rules. For a given node they specify a set of directions
into which this node could grow according to the used rule. All rules contain the basic
condition N (v,f, t) = 0, which ensures that nodes only can grow into directionsf that
are currently free. Root Nodes use the Root-Growth-Rule L( to determine into which
directions they could grow:

Root-Node-Growth-Rule Lj,: Root Nodes can grow into any free positive direction:
Lo(vg € Vo(t)) = {jx € J4| N(vo,jr,t) = 0}. Border-Node-Growth-Rule L 5:
A Border Node vp can grow along its positive axis, if the position into which it wants to
grow is free, and if it has a neighbor, which is an Inner Node: Lg(vp € V(1)) = {zk €
Ji|(N(vB, gk, 1) = 0) A Bw € V(t),51 € J4 \ {jr} with pos(w) = pos(vp) + ji) }
Inner-Node-Growth-Rule L;z: A Border Node vp or an Inner Node v; can grow, if the
position in direction j:» is free, and if the new position has a neighbor in at least one further
dignension, which has_ia common neighbor with the growmg node: L L (v 1B € VIUVE) =
(i € Jel(N(rp,jut) = 0) A Gu,z € V(0,51 € T\ {je—in})| (pos(w) =
pos(vig) + Ji) A (pos(z) = pos(vip) + ji + jr ) } Following these rules it is possible
that a node can accept multiple new nodes at the same time. All possible grow directions
for anode v € V (t) are given by: L(v) = Lo(v) U Lg(v) U Lig(v).

It is possible (and for neighboring nodes even likely) that two different nodes v, w want to
grow to the same position at the same time: pos(v) + l; = pos(w) + I, l; €L(), I €
L(w). This must be avoided, since it leads to overlapping, inconsistent structures. The
way to do this, is to provide a locking-mechanism. Nodes can be locked. A lock is related
to a certain growth-position. If a node wants to grow into a certain direction, it first has
to lock all nodes that belong to the neighborhood of the new position. If at least one node
is already locked by another growing node, the growth process must be canceled. This
locking-mechanism is not part of the mathematical model described here. The simulation
uses a simplified way to avoid those situations by taking advantage of having a global view
to all nodes that want to grow. See section 3.4 for further details.

Once a node v € V(t) with a join-request from a new node vy has a rule which allows it
to grow into a direction j; € L(v) of an unlocked environment, it will initiate the growth
process. The first step of this process is to initiate the new node vx by giving it a position
within the grid: pos(vx ) := pos(v)+j;. vx has to be added to the graph G(t+1)’s vertex
set. The edge set is appended by two new tuples since all neighbor-links are bidirectional:
Vit+1)=V(#t)U{vx}, E(t+1) := E(t) U{(v,vx), (vx,v)}. The neighbor-links
between v and vy have to be established:N(v,fi,t +1) :=vx, N(vx, — g t+ 1) :=w.
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Figure 2: Illustration of the neighborhood-update in a 3d-lattice for a new node vx, that was accepted
by node v in direction j;

Now, the neighbor-links of all nodes in vx’s neighborhood have to be updated. To make
v find these nodes, all neighbors vy of v in all dimensions, except that given by j:— are
re_guested to Inakg their neighbors UNN in direction fi being a neigllbor of vx (see Fig. 2):
Vik € I\ {ji» —ji}l(vn := N(v, jk, t) # 0) A(vnn := N(vn,Ji,t) #0)

N(’UNN, 7jk,t+ 1) = Vx, N(Ux,jk,t + 1) ‘= UNN

E(t+1) := E(t) U{(vnn,vx), (vx,vnn)}

Summarizing, a node that got a join-request performs the following steps:

e check the rule(s) applicable for this node type.

o if there’s no direction to which to grow, reject or forward join-request, else choose
one possible direction.

e try to lock the environment, which would be involved in the growth-process
e if locking failed, choose another direction and try again.

e if an unlocked environment could be found, lock it. Iif there’s no unlocked environ-
ment for any grow-direction, reject or forward join-request.

e perform growth-process (see below) and unlock environment.
The algorithm described here does not yet take any node failures into account. It assumes

"perfect’ nodes and communication channels. Detailed strategies on how to deal with node
failures in real-life networks is part of further work.
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3.4 Simulation

For simulating the 2D-algorithm from [BORDERO09] P2PNetSim [P2PNETSIMO06], a dis-
tributed Java-based network simulator was utilized. A protocol suite for node-(un)locking,
neighborhood establishment, and join requests was implemented. It could directly be used
in real network applications.

To simplify performance- and efficiency analysis a much more compact, non-distributed
Java application was provided for the n-dimensional border-growth implementation. It
focuses on the algorithm itself, rather than on “real-life’s” technical issues. Since the
implementation was intended to be a proof-of-concept, the focus of the implementation
was to provide a quick, stable realization of the algorithm. The implementation makes use
of the fact, that there is a global view on the whole network in the implementation: No local
locking mechanism was implemented. Instead, in each discrete time-step ¢ a data structure
is built that contains lists of those nodes, that want to grow to the same position. From this
list, only one randomly selected node is allowed to grow. From the ’local point of view’,
this would be the node that first got the chance to lock the new position’s environment. The
advantage is, that the simulation needs fewer resources and can simulate growth-processes
with millions of nodes on a single machine. Comparisons between this code running with
two dimensions with the 2d-simulation from [6], which uses (un-)locking-protocols show
that there are no qualitative differences between the global and the local way of resolving
conflicts. Later versions will be distributed again, and will implement the lock-/unlock-
protocol again in order to get closer to a real networking scenario.

Fig. 3a, 3b, 3c, and 3d show the output of four small simulations with 40 nodes that grew
in two, three, four and five dimensions. Fig. 3e shows the output of a larger simulation
that built 20.000 nodes into a five-dimensional lattice. Remember, that, for simplicity, the
algorithm described here, just considers the positive quadrants. The dark lines are the five
positive axes of the lattice - projected to a two-dimensional circle.

4 Simulation results

Fig. 4 shows the growth-rates in the first 100 time steps for simulations with two, three,
four, and five dimensions. In the simulation of two dimensions the growth-rate has roughly
linear characteristics (notice, that the growth-rate axis has a logarithmic scale.) After 100
time steps the growth-rate is 17 nodes/time-step. The five dimensional case shows an ex-
ponential course which leads to a growth-rate of about 300.000 nodes/time-step after 100
time steps. As expected, the growth-scalability can be strongly improved by increasing the
structure’s dimension. Assuming that the number of nodes and the growth rate follow these
equations: #nodes = G4nodes * t"#70% and growthRate = agrowthRate * T 970w ihRate
The coefficients a and exponents n were computed, based on the simulation data in Fig.
4, as follows: The tables in show that growth-scalability is improved exponentially with
the increasing dimensions, though the fractions of growable nodes decrease with more
dimensions. The nodes’ ability to grow into several dimensions within one time step
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Figure 3: a-d: simulation with 40 nodes in a 2d-, 3d-, 4d- and 5d-lattice, e: simulation with 5
dimensions and 20k nodes

Figure 4: a: growth rate depending on time and dimension
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Figure 5: The diameter (bold graph) and the number of links per node (thin graph) of a network with
1.000 nodes depending on the number of dimensions

| 2d] 3d] 4d] d | 2d] 3d] 4d] d
a [ 0,269 [ 0,087 ] 0,025 [ 0,006 a [ 0,563 [ 0470 ] 0,303 [ 0,169
n [ 1,912 ] 2,869 | 3,807 | 4,736 n | 0,892 [ 1,729 [ 2,548 | 3,348

Figure 6: left table: growth equation parameters, right table: growth-rate-equation parameters

does obviously not affect the growth-behavior in a positive way. Detailed analysis of
the growth-behavior with increasing dimensions will be subject of further research.

For estimating the network’s diameter it is assumed as a first approximation that the struc-
ture has a n-dimensional cubic shape, that grow uniformly into each possible direction.
The diameter of a network with 1000 nodes depending on the dimension then would be:
diameter(n) = /1000 (see bold graph in Fig. 5). While the network’s diameter de-
creases exponentially with the number of dimensions, the number of neighbor-links that
have to be managed by each node, grows only linearly: #links(n) = 2n (thin graph in
Fig. 5).

By providing more than two dimensions a node has multiple directions in which it could
grow within a single time step. Originally it was expected that this will improve growth-
behavior especially in higher dimensions. Since this is valid for all nodes, this leads to
the situation that more nodes compete for the same position, which lowers the advantage
of the nodes’ possibilities of multi directional growth. That might be the reason, why the
algorithm can’t really take advantage of this effect. This might change in much later time
steps of the simulation, especially when higher dimensions (> 7) are used.

Beside that there are other factors that hinder growth, the more so as more dimensions
are used. Detailed investigations have to be made to find exact formulas to predict the
n-dimensional growth behavior.
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5 Conclusion & Outlook

By increasing the structure’s dimension, the scalability can be significantly improved. The
structure’s diameter decreases exponentially. The complexity of the growth-process stays
constant independently of the number of dimensions, the complexity of the update-process
of anew node’s environment increases linear with the number of dimensions. Since there is
no limit for the number of dimensions, topologies with small diameters can be established.
[RFIDO7] introduces an algorithm that uses EPCs (Electronic Product Codes) to manage
product information in a decentralized network spanning across multiple organizations.
The two-dimensional address-space of such a network is defined by splitting a 28-bit part
of the EPC into two components representing the coordinates in the network. It could be
improved by mapping the 28-bit code to a, for example, seven-dimensional border-growth-
structure. This would result into a network with a diameter of 2% = 16.
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