R. Reussner, A. Koziolek, R. Heinrich (Hrsg.): INFORMATIK 2020,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2021 995

Unified Approach to Static and Runtime Verification

Olga Thoss! Andreas Werner! Robert Kaiser! Reinhold Kroeger1

Abstract: Smart living environments are increasingly based on embedded information and communi-
cation technology. Generally, users are no technical experts and rely on the correct functioning of the
system. Formal verification of a system’s functional and non-functional properties is often regarded as
the ultimate way to achieve the highest levels of trust as demanded for today’s dependable systems.
However, static verification, though sound in theory, is often impractical given the ever-increasing
complexity of software and the non-deterministic nature of some mechanisms of the underlying
hardware architecture. We argue that by supplementing static verification with runtime verification, a
high level of trust can be achieved. In this paper, we report on an ongoing effort for tool-supported
verification of functional and non-functional properties by combining static and runtime verification
techniques.

Keywords: static verification; runtime verification; OS microkernel; SPARK; WCET; AQUAS

1 Introduction

Today’s systems become more and more complex, and even domain experts are sometimes
in doubt regarding their correct behaviour in rare and non-standard situations. Especially
embedded systems incorporate increasing functionality and have to deal with a wide
spectrum of sensors and actors interacting with the environment. Real-time properties
requiring a guaranteed reaction of the system within a given limited time window are
often associated as well, and safety of the users has to be ensured by law. Furthermore,
these critical systems often have to face uncertainty which may originate from unknown
device configurations at design time or unforeseen changes of the environment during
operation. Uncertainty may also exist in control algorithms. For example, to guarantee a safe
behaviour of trained Al algorithms in previously unseen situations is inherently difficult, if
not impossible.

Under these conditions it is a complex and highly responsible task for developers to deliver a
high level of trust in the developed software. This is commonly achieved through certification.
To certify software for a given Safety Integrity Level (SIL), or ASIL level in the automotive
systems context, it has to be thoroughly tested, specific models and analysis methods have
to be used up to a formal, mathematical verification of required system properties. Today,
all this has to happen before the system is actually used.

Due to the described complexity of current and future systems we do not believe that a full
static verification and validation at design time is possible any longer to deliver the necessary
trust. Instead, we have started to work on a methodology which distinguishes between

! RheinMain University of Applied Sciences, firstname.lastname @hs-rm.de

©@@®@® doi:10.18420/inf2020_93

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2020_93

996 Olga Thoss, Andreas Werner, Robert Kaiser, Reinhold Kroeger

verification activities carried out at design time and those at runtime. In summary, at design
time static verification takes place, i.e. specified functional as well as non-functional or
timing system properties are formally proven to the highest possible degree for a reasonable
maximal effort. For properties which cannot be proven statically, sufficiently strong monitors
are generated which are executed at runtime to monitor correct system behaviour. In
the undesired case of detecting a property violation at runtime, the underlying system
architecture is prepared to reconfigure the application to ensure acceptable behaviour. This
adaptivity has to be supported by the application design. In total, a trusted self-adapting
application seems to be reachable.

In the following Section 2, the functional properties, their verification and the approach
for adaptation are considered. In Section 3, timing is taken into account as this is the most
important non-functional property regarding real-time behaviour. In both sections, the
current status of work is described. The paper closes with a summary and outlook. The
considered use case and examples are taken from the AQUAS EU project [20b] to which
we contribute.

2 Functional Verification
2.1 Static Verification

Typically, in the design phase a system model is constructed which specifies the overall
system and its functional and non-functional properties and constraints. To simplify the
designer’s work, rather than using the industry standards SysML and OCL directly, we
propose to use a DSL (Domain Specific Language) with an expressiveness to target the
class of applications in mind. Such standard models shall then be generated from the DSL.

This generated system model will then be semi-automatically transformed into a set of
views by exporting and transforming the model. Each view provides information concerning
a specific aspect of the system. For the functional view and its verification, the SysML
model is transformed into a SPARK interface definition, and functional OCL constraints
into SPARK contracts with pre- and post-conditions (see Fig. 1). In addition to specified
application constraints, other conformance rules, e.g. standards, company rules etc., can be
taken into account as well, resulting in additional contracts or contract restrictions.

feedback formal verification
[R
i System View Static
Properties
System transformation BrEraENED
Specification property] & unverified
SysML/OCL (semi-automated) Contracts extraction
SEEEEEEI= defined in T Dynamic
SPARK Properties
Implementation ["
‘l’ generation
generation |
Monitor
Conformance Rules
e.g. standards, company rules, etc. (Ada Expressions)

Fig. 1: Functional Verification During the Design Phase
During the design phase, the verification of selected functional properties can be carried

Unified Approach to Static and Runtime Verification 997

out solely at the contract or API level by taking advantage of a hierarchical system structure,
deducing higher-level contracts from lower layers and assuming elementary contracts as
facts [LNR8O]. Thus, it is possible to provide early feedback regarding correctness of the
system specification. Later, the assumed facts have to be proven by verification of the
corresponding implementation.

2.2 Runtime Verification

Runtime verification is regarded as the discipline of computer science dealing with techniques
to monitor systems during runtime in order to detect violations of given correctness properties
[LS09]. More recent research, however, also considers controlling the system via feedback
as belonging to runtime verification as well [LS09; Rul6]. Augmenting a functional system
with a corresponding management or control system allows for autonomous behaviour of
the system during operation.

As previously explained, not all contracts can be statically verified at design time. Our
methodology extends the verification activities to the system runtime. The amount of
possible static analysis and needed dynamic verification depends on the specific system
and the complexity of its constraints. During the design phase, our methodology aims to
separate as many properties or partial predicates as possible that can be verified statically
and to automatically derive the complementary properties or predicates that have to be
ensured and verified at runtime. Concerning the application level, necessary monitors will
be generated from the unverified SPARK contracts during the design phase and executed by
the runtime architecture.

In principle, monitors may be associated with all critical parts of the system which may be
a source of uncertainty, like the application itself, the operating system and the hardware,
but also the environment, especially when considering embedded systems. If a monitor
assertion fails, an event is signalled to the runtime system (see Fig. 2).

elf-Adaptation

Events c IO
11— O @ =
T B Change
i i = Modes Minimal Mode statically
Application Rtinie et i

Action

Engine

8
Hardware

Target

.t ‘ Action

Environment

by

Mode Change
Fig. 2: Architecture for Runtime Verification
Thus, by extending the verification process to runtime, the methodology supports finding a
manageable approach to verification of complex systems also covering uncertainty. This is
especially important when static verification is based on pre-conditions, whose outcomes

998 Olga Thoss, Andreas Werner, Robert Kaiser, Reinhold Kroeger

can only be evaluated during runtime, e.g. if the pre-conditions are depending on user input
or environmental factors.

As a disadvantage, incomplete static verification of system properties may result in property
violations at runtime. Thus, provisions for events originating from failing runtime verification
may be required. This is considered in the following section.

2.3 Adaptation Architecture

In the runtime system, signalled events will be received by an Event Condition Action (ECA)
rule engine. Based on an application-dependent statically defined rule set, appropriate
actions can be taken for detected runtime violations. Such actions can lead to a simple
reconfiguration, like changing control parameters, or may require a more complex adaptation
of the system.

As a basis for adaptation, the well-known concept of operational modes will be used. At
each point in time, the system runs in a certain mode determining the provided functionality.
At design time, a mode change graph will be developed, defining the set of operational
modes and allowed changes. Also, the mode change algorithm must be statically verified
for correctness. At runtime, mode changes may take place in response to signalled events.
Thus, the system is guaranteed to be able to enter a well-defined state in case of a runtime
verification failure, thus supporting graceful degradation.

In case of safety-critical systems, not every mode must ensure safety. A so-called "Minimal
Mode"providing a safe state for the system is assumed to exist, whose functionality is
statically verified. Due to the verified mode change algorithm, the minimal element can be
reached in any case. Thus, a minimal level of service is ensured under all conditions.

2.4 Current Status

For initial evaluation, the functional part of the methodology was applied to the design and
implementation of a queueing system and its use inside the scheduler of our microkernel
Marron. Marron was developed by our group to serve as a template for a future verified
microkernel. Besides scheduling, it features strict separation between user and kernel space,
interrupt handling and inter-task communication. The queues where designed directly in
SysML and constraints were defined in OCL. An appropriate DSL will be specified later,
when more experience has been made. The use of SysML or OCL features was manually
restricted to fit SPARK 2014 capabilities, and the transformation was done manually for
now. The specification was verified based on the SPARK API. Necessary facts that have
to be verified by the implementation were indicated by the assume pragma. Finally, the
implementation was verified separately.

Based on the verified queueing system, a graduate student developed and verified the Marron
scheduler in SPARK. The student had no prior experience with Ada, SPARK or formal
verification in general. The goal of this experiment was also to evaluate the efficiency of our
approach by measuring the effort needed to develop a verified operating system component.

Unified Approach to Static and Runtime Verification 999

The student spent a total effort of 450h over a course of six months, including literature work,
project management, documentation, etc. He was able to verify 216 out of 224 verification
conditions (VCs). The measured efforts spent on implementation and verification, as well
as the relative effort in minutes per line of code are shown in Table 1.

hours | loc | ratio (min/loc)
implementation | 62.25 | 296 4.7
verification 95.25 | 330 19.31

Tab. 1: Effort analysis for implementation and verification of an OS scheduler in SPARK.
Regarding runtime verification of the remaining eight statically unverified VCs, the pragma
Assertion_Policy was simply used to execute all contracts as assertions during runtime,
but no exhaustive tests were yet carried out, nor have the predicates for runtime verification
been optimized. The adaptation architecture has not been implemented yet.

3 Non-Functional Verification

Non-functional properties in the context of this work refer to the timing behaviour of a
system. In order to reason about the timing of a system, a notion of time, a specification
of timing properties and constraints and also a verification environment are needed. To
formally verify timing behaviours means to find a mathematical proof showing that, under
all conditions, the system will behave temporally as specified.

3.1 Modelling and Verification of Timing Behaviour

There is a long history of formal languages that can be applied to specify diverse aspects of
timing behaviours [Wa04]. The classical event-oriented temporal logics such as Linear-Time
Propositional Temporal Logic (LPTL) or Computation Tree Logic (CTL) only model the
temporal order of events (e.g. before, after, always, never, eventually, ...), but do not provide
a notion of real, physical time, as is needed to model real-time systems. One possible
language to start with is called Timed CTL* (TCTL#*). It is the foundation of the UPPAAL
verification framework [20d], which is based on model checking techniques. However, such
an approach often leads to state explosion or undecidability problems, making it impractical
for complex real systems. Our method wants to avoid these limitations by keeping the
human in charge as director for the proof, aided by semi-automated theorem provers like
Coq [MT18].

3.2 WCET Estimation

In order to check whether a real-time program temporally behaves as specified in a model,
it is necessary to know the actual execution times of relevant program sections, and to
associate states in the model with program states.

The actual execution time of any piece of code can vary each time the code is executed. In
real-time systems, the Worst Case Execution Time (WCET) is a commonly used concept
to abstract from these variations. A good overview of the classification and techniques
for WCET calculation can be found in [Cal9]. The paper differentiates between static,
measurement-based or a combined approach to determine the WCET, each in a deterministic

1000 Olga Thoss, Andreas Werner, Robert Kaiser, Reinhold Kroeger

or probabilistic variant. The static deterministic approach, called Static Deterministic Timing
Analysis (SDTA), uses symbolic execution on an accurate model of the hardware. This
approach is only practical for systems which are amenable to modelling, but it is well
trusted and well established in industry. However, as today’s multicore hardware achitectures
frequently do not fulfil the assumptions made for their modelling, newer methods combine
these approaches with probabilistic ones such as Extreme Value Theory (EVT). These are
subject of ongoing research [Cal9].

3.3 Current Status

We evaluated the AbsInt tool for SDTA named aiT [20a] with a small application from
the AQUAS space usecase and compared the WCET bounds with real measurements. The
application cyclically receives a message from a serial communication interface, encrypts
the message and sends it out over another serial communication interface. This application
was executed on top of two different operating systems: (1) the library-based RTEMS kernel
[20c] designed for microcontrollers and mostly used in avionic and space systems, and
(2) our own microkernel Marron equipped with a small RTEMS adaptation layer which
currently only implements the interface subset needed by the application. As target hardware,
we use the TI TMS570 microcontroller with two ARM Cortex-R4 in lock-step mode. Marron
was originally designed to run on Cortex-A multicore processors, but these more complex
processors are not supported by aiT. The ARM Cortex-R4 was the smallest processor on
which our system runs without modification.

AIS2 Infeasible | Analysis aiT Max Exec.

code routines times WCET Time
RTEMS | 659 loc 36 40's 0.659 ms 0.321 ms
Marron | 476 loc 23 4s 0.580 ms 0.247 ms

Tab. 2: WCET and Measurement Results
The results of the WCET analysis are presented in Table 2. Annotations of the source code
using the AbsInt AIS2 language are instructions to the Abslnt tools directing the static
analysis. Declaring routines as infeasible means that the developer is sure they are never
executed by the analysed code (e.g. POSIX and kernel error handling) and thus, they do not
contribute to the estimated WCET.

We also compared the WCET estimations with real measurements of the execution times
of the application. The execution time measurement starts upon reception of the first byte
and ends when the last byte is sent out, thus being the same code sequence as for the
WCET analysis. Both versions were compiled for ARM Thumb Code and with optimisation
set to -Og (i.e. weak, “debug-friendly” optimisation). For the measurements we use the
ARM Performance Monitoring Unit which measures the number of elapsed CPU cycles.
All measured data was buffered in SRAM, as SRAM accesses are deterministic on the
used platform. The buffering overhead was determined in a separate measurement and
subtracted for compensation. For the static analysis, the buffering overhead was excluded
by appropriate annotations. The measurement overhead itself was measured to be 60 CPU
cycles based on 10 x 1000 single measurements. The aiT tool estimated the WCET for one

Unified Approach to Static and Runtime Verification 1001

measurement to be 77 CPU cycles. The density function of the measured execution times for

=

#occurence
=

0.308 0.309 0.31 0.311 0.312 0.313 0.314 0.315 0.316 0.317 0.318 0.319 0.32 0.321
time [ms]
Fig. 3: Measurement Results for RTEMS
the RTEMS version is shown in Fig. 3, for the Marron version in Fig. 4. RTEMS execution
times below 0.3131ms are caused by the communication through a software queue between
the application and the receiver interrupt. The execution times above 0.317ms are the result
of the same communication delayed by the system timer interrupt. This interference does not
appear in the WCET analysis, as the tools do not model task communication or processor
interrupts. The Marron RTEMS adaptation layer does not provide software queues for

#occurence

029 03 031 032 033 034 035 036 037 038 039 04 041 042 043
time [ms]
Fig. 4: Measurement Results for Marron

signalling, the only buffering mechanism used are the hardware FIFOs built into the serial
interfaces. If no new data is available, the layer waits for the interrupt through a system call
in user space. Execution times below 0.45ms result from rare cases of beneficial interference
between the application and the system timer interrupt: If the application is interrupted
before the hardware FIFO is checked, it is possible that the execution time will be shorter
because new data arrived while the system timer interrupt was being processed. In this case,
the data is ready upon exit from the timer interrupt and the receiving task does not need to
wait for a receive interrupt.

Comparing the measurement results for RTEMS and Marron with the correspnding WCETs
in Table 2 we can detect an overestimation of the WCET. This can be reduced up to a certain
degree with many more annotations. Up to this point there were 120 hours spent in WCET
analysis including a training period and meetings.

4 Conclusion and Outlook

In this paper, we presented the early stage of a method aiming at tool-supported verification
to complex embedded systems, considering both functional properties and timing as a
non-functional property. For functional properties, simple examples were used to evaluate
parts of the methodology with promising results. However, more complex, realistic problems
need to be considered and the methodology needs to be developed further. For timing
properties, static WCET estimations were compared against measured execution times. It

1002 Olga Thoss, Andreas Werner, Robert Kaiser, Reinhold Kroeger

turns out that static methods are difficult to apply to today’s increasingly complex multicore
hardware architectures, especially when these were not designed for determinism. In order
to model worst-case behaviour for such architectures, very pessimistic assumptions need to
be made, correspondingly leading to pessimistic WCET estimations.

To deal with these problems, monitors observing execution times could be generated from
the timing specification and serve as a basis for supplementing static WCET estimation with
runtime verification. This would lead to a similar approach as presented above for functional
verification. Such a method would belong to the class of measurement-based probabilistic
timing analysis methods in the sense of [Cal9]. A unified approach for the verification
of functional as well as timing properties, supplementing static verification with runtime
verification such that even complex systems remain controllable seems to be feasible.

Acknowledgements: This project has received funding from the Electronic Component Systems for
European Leadership Joint Undertaking under grant agreement No 737475. This Joint Undertaking
receives support from the European Union’s Horizon 2020 research and innovation programme and
Spain, France, United Kingdom, Austria, Italy, Czech Republic, Germany. This project has also
received funding from the Federal Ministry of Education and Research (BMBF) under agreement No
16ESEO0157. We would like to give special thanks to the people from AbsInt Angewandte Informatik
GmbH for their support and Thales Alenia Space for the usecase application.

References
[20a] AbslInt aiT, Apr. 2020, URL: https://www.absint.com/ait/.

[20b] AQUAS EU Project, 2020, URL: https://aquas-project.eu.
[20c] RTEMS Real Time Operating System, Feb. 2020, URL: https://rtems.org/.
[20d] UPPAAL, 2020, URL: http://www.uppaal.org/.

[Cal9] Cazorla, F.J.; Kosmidis, L.; Mezzetti, E.; Hernandez, C.; Abella, J.; Var-
danega, T.: Probabilistic Worst-Case Timing Analysis: Taxonomy and Compre-
hensive Survey. ACM Comput. Surv. 52/1, Feb. 2019.

[LNR80O] Levitt, K. N.; Neumann, P. G.; Robinson, L.: The SRI Hierarchical Development
Methodology (HDM) and its Application to the Development of Secure Software.
In: Report 500-67. SRI International, Menlo Park, NBS, 1980.

[LS09] Leucker, M.; Schallhart, C.: A Brief Account of Runtime Verification. Journal
of Logic and Algebraic Programming 78/5, pp. 293-303, May 2009.

[MT18] Mahboubi, A.; Tassi, E.: Mathematical Components, Creative Commons License,
2018, URL: https://math-comp.github.io/mcb/.

[Rul6] Rufino, J.: Towards integration of adaptability and non-intrusive runtime verifi-
cation in avionic systems. ACM SIGBED Review 13/, pp. 60-65, Mar. 2016.

[Wa04] Wang, F.: Formal verification of timed systems: a survey and perspective.
Proceedings of the IEEE 92/8, pp. 1283-1305, Aug. 2004.

https://www.absint.com/ait/
https://aquas-project.eu
https://rtems.org/
http://www.uppaal.org/
https://math-comp.github.io/mcb/

