
Code Attestation with Compressed Instruction Code

Benjamin Vetter and Dirk Westhoff

Department of Computer Science, Hamburg University of Applied Sciences (HAW)

Berliner Tor 7, 20099, Hamburg

{benjamin.vetter, dirk.westhoff}@haw-hamburg.de

Abstract: Available purely software based code attestation protocols have recently
been shown to be cheatable. In this work we propose to upload compressed instruction
code to make the code attestation protocol robust against a so called compresssion
attack. The described secure code attestation protocol makes use of proposed micro-
controller architectures for reading out compressed instruction code.

1 Introduction1

The evolution of the ubiquitous computing vision towards full-fledged real world appli-

cations faces a diversity of new problems. Due to the fact that for many applications

cost-efficient hardware is an issue, one can not guarantee that a code image that has been

uploaded on a non-tamper resistant device will always run in a correct and un-manipulated

way. Even worse, it may behave in a Byzantine manner such that the device sometimes

behaves correctly and sometimes behaves incorrectly. One strategy to detect such misbe-

having nodes in a sensor network is to run from time to time a challenge-response protocol

between the restricted device and a master device - the verifier - that is sending the chal-

lenge. However, recently it has been shown that purely software based code attestation

[SLP+06], [SPD+04], [SMK+05] is vulnerable against a set of attacks. The rest of the

paper is organized as follows: Section 2 introduces related work. Section 3 presents the

adversary model and describes the so called compression attack the attacker can perform

to break recently proposed code attestation protocols. In Section 4 we propose our coun-

termeasure to deal with compression attacks and in Section 5 we give insights on how

to execute compressed instruction code as necessary requirement for this approach. Sec-

tion 6 discusses suitable compression algorithms and in Section 7 we provide the security

analysis of the proposed solution. Conclusions and open issues are presented in Section 8.

1An extended version of this work has been uploaded to the Computing Research Repository (CoRR).

170

2 Related Work

One can subdivide code attestation techniques into two subsets: the first class of ap-

proaches is using challenge-response protocols in conjunction with harsh timing restric-

tions for the restricted device’s response. E.g., SWATT [SPD+04], proposed by Seshadri

et al., belongs to this group. In SWATT, the verifier measures the time a node needs to

calculate a checksum of its memory contents, i.e. how long the node needs to respond to a

challenge. As compromised nodes are supposed to require more time to reply, because they

have to hide their code injections from the checksum, compromised nodes are supposed

to be detectable. The second proposed class of countermeasures tries to prevent attackers

from getting space to inject their bogus code in an undetected manner. E.g., Yang et al.

propose to fill empty program memory with pseudorandomly generated noise that is also

fed into the response [YWZ+07]. Therefore, an attacker can not inject his bogus code into

the noise in an undetected manner. However, as we will see, Castelluccia et al. [CFP+09]

have shown that both types of aformentioned countermeasures can be circumvented. Later

we provide more details on this.

3 Adversary Model and Compression Attack

After node deployment and before the first round of the attestation protocol starts, the

attacker has full control over all device memories such that he can modify program mem-

ory or any other memories like e.g. the external memory. At attestation time, when the

challenge-response based attestation protocol is running, the attacker has no physical con-

trol over the restricted device anymore. However, the device may yet run malicious code.

It is up to the code attestation protocol to detect this independently of the fact that the

attacker may find ways to store the original uploaded code image at a different memory

than the program memory. Note that we do not consider fluctual data memory. Control

Flow Integrity could prevent attacks that use techniques like Return-Oriented Program-

ming [CFP+09], [ABE+05], [FGS09]. Obviously, during the phase in which the attacker

has full control over the restricted device, the attacker is also able to either modify the code

for the code-attestation protocol itself or to read out any sensitive data, like pre-shared

keys, in case the protocol is based on this.

One major challenge for a purely software-based code attestation for embedded devices

is the so called compression attack. This attack cheats a basic challenge-response based

code attestation as follows: the originally uploaded program, which shall temporarily be

checked by the attestation protocol to be exclusively stored in the program memory, is

subsequently compressed by the attacker. Depending on the concrete compression algo-

rithm and the actual uploaded code image, the compression gain ranges from 12% up to

47% [CFP+09]. An attacker can use such free program memory to store and run bogus

code on the node’s program memory. Current solutions for secure code-attestation pre-

vent an attacker from using the free program memory by filling it with pseudorandomly

generated words instead of the default entry 0FF [YWZ+07]. Since the aforementioned

pseudorandomly generated words are required to be part of the response of a code at-

171

testation protocol, the verifier needs to know respectively may be able to compute such

pseudorandomly generated words.

However, Castelluccia et al. have shown that cheating such kinds of attestation protocols

is still possible: whenever the restricted device (prover) receives a nonce from the master

device (verifier), it decompresses the earlier compressed original program on-the-fly and

subsequently computes the hash value x = h(nonce||CI||PRW) by applying the hash

function h(). The x is the response of the challenge-response protocol. The CI denotes

the originally uploaded code image, and the PRW is the pseudo-randomly filled content

within the remaining free program memory at load-time. Obviously this simple challenge-

response based code attestation fails: whenever the prover receives a fresh nonce, the

attacker decompresses the compressed CI . This provides all the relevant input parameters

for the computation of the hash function, namely the CI , the nonce and the PRW such

that the master device subsequently receives the response x within a given time interval

which it verifies to be correct. Finally note that, to save his own bogusly uploaded code

image C̃I , the attacker could have stored C̃I also within the external memory. Subse-

quently to the time-critical code attestation phase, he has enough time to again compress

the CI and read C̃I from external memory to program memory.

4 Attestation of Compressed Instruction Code

Our countermeasure against uploading malicious code into the program memory and sub-

sequently not being able to detect this, uses i) a hardware extension at the micro-controller,

and ii) a strict policy for uploading CIs into the program memory. This policy is to only

upload a yet compressed code image C(CI) into the program memory and to fill the re-

maining part with PRW 2. Consequently, the attacker cannot allocate such easily free

program memory anymore to tracelessly upload malicious code by applying the above

described compression attack. Note that the challenge (a fresh nonce), which goes into

the hash computation for every run of the code-attestation anew, enforces the prover to

always compute the hash value (response) with a compressed CI and PRW anew. In our

proposed setting the response x thus is computed as h(nonce||C(CI)||PRW) where the

C is a properly chosen lossless data compression algorithm. More details on the C and

other refinements on C(CI) will be provided later. The adapted code attestation protocol

is shown in Figure 1 (Option 1).

Please note that our protocol’s intention is to raise the attacker’s overhead for passing the

attestation by orders of magnitude. Therefore, it is still essential for our protocol to enforce

a runtime restriction to detect the attacker. We term ε as the duration of the time interval

[t0, t1] measured by the local clock of the verifier. The t0 denotes the sending time of the

challenge nonce and the t1 denotes the receiving time of the response x. We emphasize

that a proper choice of the threshold Tem with ε < Tem is prover device-dependent.

2The PRW can not be compressed [YWZ+07]. In fact C(PRW) would result in |C(PRW)| ≥ |PRW |
eventually providing another attack vector to save memory by computing C−1(C(PRW)).

172

Figure 1: Derivates of the secure code attestation protocol with lossless data compression algorithm.

5 Execution of Compressed Instruction Code

One remaining problem with this approach is how to run compressed code? To solve this

issue one needs to incorporate a hardware extension at the micro-controller. Please note

that the approach to upload a compressed code image into the program memory is not

new. It has recently been proposed by Yamada et al. [YFN+06]. Early work on this can

be found in [WC92]. However, originally it has been proposed with the objective to offer

a high compression ratio and a fast instruction expendability - and not as a building block

to protect against a bogus code image in the program memory, like we are proposing.

Figure 2: Micro-controller architecture with a compressed code memory, a LAT and a cache3.

Figure 2 illustrates the architecture that can be used to decompress compressed code blocks

on-the-fly, as proposed by Wolfe et al. [WC92]. Xu et al. proposed to store the cache

within the RAM [XJ03]. The code image CI is partitioned into blocks of equal length,

3Please note that a similar design was first proposed by Yamada et al. [YFN+06] with a dictionary memory

instead of a LAT and without a cache.

173

each individually compressed. The compressed code blocks together build the compressed

code image C(CI), which is stored within the compressed code memory. As the code

blocks are compressed, they are no longer of equal length. Therefore, a data structure, the

Line Address Table (LAT), is used to store the block’s offsets. The block size s has to be

equal to the available cache size (s = |cache|). The cache is used to temporarily store the

code block that is currently executed. A cache flush occurs when code of the CI has to

be executed that is currently not present within the cache. E.g., a jmp instruction to an

address outside of the cache’s current scope causes a cache-flush. The micro-controller

then uses the LAT to decompress the compressed code block that is part of the C(CI) and

specified by the jmp instruction, and subsequently stores the decompressed code block in

the cache.

So we propose to only allow to load yet compressed code into the program memory and

to decompress the code at runtime. This architecture can be used to defend against at-

tacks where free program memory space can be generated by compressing the originally

uploaded code image and filling this gap with malicious code (including the compres-

sion/decompression function). A code attestation protocol based on simply hashing the

original code image plus the remaining free program memory space would not detect this.

Some Remarks: To be able to subsequently decompress the CI at runtime we are not

allowed to compress the LAT itself. However, in section 7 we show that the attacker does

not succeed in sufficiently compressing the LAT. The LAT as well as the compressed code

memory are regions within the program memory. Consequently, an attacker could either

fully overwrite or partially modify the LAT. To detect modifications of the LAT we refine

the computation of the response x such that (Option 2 in Figure 1):

x = h(nonce||C(CI)||LAT ||PRW) (1)

6 Choice of the Data Compression Algorithm

6.1 Envisioned Properties

The proper choice of a suitable lossless data compression algorithm C is essential with

respect to the proposed security architecture. We need to find a lossless data compression

algorithm which shall provide the following properties: i) a high compression ratio for a

typical CI , and ii) fast decompression.

With respect to property number one we state that it is one of the properties of any lossless

data compression algorithm that for typical input files, which contain frequently used data

chunks, the compression rate is rather high. However, vice versa, if the input file contains

many seldomly used data chunks, the resulting compression ratio is rather poor. Moreover,

the compression algorithm Ch chosen by the honest party should ideally provide the high-

est compression rate compared to other compression candidates, e.g. Ca chosen by the

attacker. However, our proposed code attestation protocol does not rely on the availability

of the best possible compression algorithm, as we will show.

174

64 128 256 512 1024 2048 4096
0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

PZIP

ZPAQ

Deflate

PPMZ

Block size (Bytes)

C
o
m
p
re
s
s
io
n
ra
ti
o

Figure 3: Compression ratios of typical com-
pression algorithms for the multi-hop oscillo-
scope program image.

64 128 256 512 1024 2048 4096
0

20

40

60

80

100

120

Block size (Bytes)

A
m
o
u
n
t
o
f
d
a
ta
(M
B
)

Figure 4: Amount of decompressed data for
varying block sizes during the attestation.

The second property is required since decompression of a code image instruction should

ideally not delay the execution of the originally loaded program. On the contrary, there is

no technical requirement that restricts the compression time before uploading the CI .

6.2 Candidates

Initially we considered Canonical Huffman Encoding (CHE) [Hu52] as lossless data com-

pression algorithm C. However, the disadvantage of the CHE for our purposes is its

relatively small gain of compression results on MicaZ with on average 12.19% for var-

ious typical WSN programs [CFP+09]. For comparison, the lossless data compression

algorithm Prediction by Partial Matching (PPM) provides an average gain of 47.45% for

typical WSN applications. Unfortunately, such a significant gain difference of the com-

pression algorithms CHE and PPM again opens the door for an attack to make use

of this gain difference of approximately 35%. The attacker can apply PPM on the com-

pressed code image CCHE(CI) and again generate free space for his own bogus malicious

code in either of the two ways: i) Ca(Ch(CI)) := CPPM (CCHE(CI)), respectively ii)

Ca(C
−1
h (Ch(CI))) := CPPM (C−1

CHE(CCHE(CI))). C−1 denotes the decompression

operation. Due to the aforementioned reason we also analyzed Deflate, ZPAQ and further

derivates of PPM, namely PZIP and PPMZ.

Figure 3 shows that the chosen algorithms provide varying compression ratios depending

on the block size sh. This is illustrated for our benchmark code image multi-hop oscil-

loscope (|CI| = 25.9KB) which ships with TinyOS. Large block sizes provide better

compression ratios than small block sizes. If we choose and apply a tuple (Ch, sh) the

attacker can only gain additional free memory |Ca(Ch(CI))| − |Ch(CI)| = |C̃I| us-

ing block based compression schemes by choosing sa > sh if Ca = Ch, or otherwise:

sa ≤ sh (for some (Ca, sa)). Nevertheless, if the attacker chooses a much smaller block

size the compression ratio will suffer. Therefore, when we compress the CI with a larger

175

block size the attacker is forced to use a larger block size as well. Since the decompression

of larger blocks increases the overhead, the time necessary for decompression is increased

as well, especially on low-performance platforms like sensor nodes. This fact becomes

significant if we take into account that the memory traversal during the attestation runs

in a pseudorandomly manner with nonce as the seed for a PRNG, which forces a strict

ordering of the CI’s words when calculating the response x [ANN09]. It forces the at-

tacker to decompress each block approximately sa times, where sa denotes the block size

chosen by the attacker. Moreover, this disables the attacker to apply a compression al-

gorithm Ca that sacrifices performance for higher compression ratios since the overhead

increases for larger block sizes sa recognizably. Therefore, the use of such algorithms

is easily detectable with the choice of a large block size sh and a threshold Tpm as the

upper duration for performing compression attacks on the program memory. Obviously,

ε < min{Tem, Tpm} with Tpm > Tem as we will see.

Figure 4 shows the amount of temporarily decompressed data during the attestation, which

increases for larger block sizes. The attacker has to read about sa · |Ca(CI)| bytes from

the program memory during the attestation if he compressed the full CI previously. If

the attacker chooses the block size to be sa = 2048 bytes and Ca to be PZIP, he will

have to read up to 37MB from program memory to decompress all blocks sa times and

subsequently be able to calculate x. This is a huge overhead compared to |CI| = 25.9KB.

Obviously, this huge amount of data is an immense burden for an attacker, in particular

on platforms with low bandwidth for reading from program memory. While platforms

capable of reading 50MB/s result in less than 1 second timing overhead for 2048 byte

blocks, platforms capable of reading only 1MB/s require up to 40 seconds and thus are

easily detectable by the proposed attestation protocol.

Obviously, the overhead to decompress every block sa times impacts the time necessary

for the attacker to calculate the valid response x significantly on restricted platforms. As

an uncompromised node doesn’t have to calculate C−1
h (Ch(CI)) at attestation time, i.e.

decompress the compressed program image, the block size enables us to raise and adjust

the overhead for the attacker by orders of magnitude. Therefore, we can discover the

existence of the attacker reliably through a proper choice for the device-dependent value of

ε. However, a larger cache size respectively sh slows down the on-the-fly decompression

routine during normal operation of the restricted device. On the other hand, a larger cache

decreases the number of cache misses. Therefore, a necessary decompression is more

seldom for a larger cache size, but takes more time to complete.

7 Security Analysis

Our security analysis considers four attack vectors, namely decompressing the code image,

attacks on the LAT, attacks by using the external memory and DoS attacks.

Decompressing the Code Image. The attacker is able to decrease the timing overhead by

exploiting the fact that different blocks can be compressed with different compression ra-

tios. Therefore, the attacker could pick only those blocks which provide the best compres-

176

sion ratios out of all blocks until he gains sufficient memory to store his bogus code. Since

the blocks are yet compressed with a properly chosen lossless compression algorithm,

each of them provides a similar compression ratio. To overcome this issue, the attacker

could first decompress the compressed CI and compress it for his own afterwards. I.e.,

the attacker could calculate C−1
h (Ch(CI)) and Ca(C

−1
h (Ch(CI))) afterwards. During

the attestation he then has to calculate Ch(C
−1
a (Ca(CI))) to pass the attestation. There-

fore, this method further increases the overhead for the attacker, especially if we choose a

(Ch, sh) that compresses rather slowly. Moreover, the attacker’s possible gain is expected

to be low, because blocks which provide a good compression ratio to the attacker will

provide a good compression ratio to us as well.

However, even without calculating C−1
h (Ch(CI)) the attacker still requires to compress

only as much blocks as he needs to gain enough free memory for the C̃I . The exact number

of blocks an attacker has to use depends on our choice of (Ch, sh) as well as the attacker’s

choice of (Ca, sa) and |C̃I| itself. Please note that besides the C̃I the attacker has to

also store the code of the decompression routine C−1
a and the LATa within the program

memory. As Castelluccia et al. have to spend 1707 bytes for a huffman decompression

routine [CFP+09] used in their compression attack, which is a relatively simple algorithm

compared to the compression algorithms proposed in this paper, we force the attacker to

compress at least multiple blocks to get a chance to gain enough space for his needs. In

general, the attacker has to compress

#Blocks =
|C̃I|+ |C−1

a |+ |LATa|
GainPerBlock

(2)

where

GainPerBlock =
TotalGain

#Blockstotal
(3)

on average with

TotalGain = |Ch(CI)| − |Ca(CI)| (4)

and

#Blockstotal =
|CI|
sa

. (5)

The memory overhead then is about #Blocks·sa · |Ca(CI)|
|CI| ·sa. We assume the attacker has

to store at least 1KB of data4, i.e. |C̃I|+ |C−1
a |+ |LATa| = 1KB and he will calculate

C−1
h (Ch(CI)) before compressing the CI for his own. For example, if we choose (Ch =

PZIP, sh = 512 bytes) and the attacker chooses (Ca = PPMZ, sa = 2048 bytes) the

attacker’s memory overhead is about 17.3MB.

Figure 5 shows the attacker’s possible choices for (Ca, sa) to gain sufficient memory

whereas Ch = PZIP with varying sh is our choice of a compression algorithm. For

the attacker’s choices we focus on compression algorithms mentioned in this paper only,

namely PZIP, PPMZ, ZPAQ and Deflate for block sizes ranging from 64 bytes to 2048
bytes. On platforms capable of reading 1MB/s of data from program memory, we argue

4Please note that this is a very optimistic value from the attacker’s point of view.

177

Block size (Bytes)

A
tt
a
c
k
e
r'
s
o
v
e
rh
e
a
d
a
t
a
tt
e
s
ta
ti
o
n
ti
m
e
(s
e
c
o
n
d
s
)

0

5

10

15

20

25

30

35

40

64 128 256 512 1024

Detectable

T

15

10

20

25

30

35

pm

40

Undetectable
(ZPAQ,512)
(ZPAQ,2048)

(DEFLATE,512)

(ZPAQ,1024)

...

(DEFLATE,1024)

(ZPAQ,2048)
(DEFLATE,2048)

(PPMZ,2048)
(PZIP,2048)

...

(ZPAQ,2048)
(DEFLATE,2048)

(PPMZ,2048)

(PZIP,2048)
(PZIP,1024)

(PZIP,2048)

...

(PZIP,128)

(PPMZ,512)
(PZIP,512)
(PZIP,256)

(PZIP,512)

0

s
h

A
tt
a
c
k
e
r '
s
m
e
m
o
ry
o
v
e
r h
e
a
d
(M
B
)

Figure 5: The attacker’s possible compression choices for Ch = PZIP , a varying sh and a platform
capable of reading 1MB/s from program memory.

that memory overhead above 5MB is easily detectable since it slows down the attestation

for about 5 seconds. Therefore, even if we choose rather small block sizes of sh ≥ 256
bytes the attack is still detectable. Please note that we do not even take the CPU overhead

into account here. From a security point of view we argue to always use the largest pos-

sible block size sh. In practice cache sizes above 1KB are hardly feasible, especially on

embedded devices with less than 4KB of data memory. Therefore, we propose to choose

(Ch, sh ≥ 512 bytes). Please note that other combinations will be feasible as well, but

one has to choose sh for other compression algorithms more carefully.

Attacks on the LAT. The countermeasure to the compression attack is the compression

of the CI with a suitable data compression algorithm. Thus, the only remaining non-

compressed data besides the PRW which has been argued to be not effectively compress-

able is the LATh. Consequently, if the (Ch, sh) for compressing the CI has been chosen

properly, the only remaining compression attack is to compress the LATh itself to save

program memory (Ca(LATh)). If the attacker succeeds in saving enough program mem-

ory out of this to additionally store a bogus code image C̃I , and at the same time requires

ε < min{Tem, Tpm}, the attack is successful and not detectable by our code attestation

protocol. However, recall that a lossless data compression algorithm does not provide the

same compression ratio for every ingoing uncompressed data; in particular a LAT due to

its condensed form can not significantly be compressed as we will see. Moreover, we state

that typically it holds |LATh| << |CI| and |CI| ≤ |PRW |5. In general, the number of

5Typical CI sizes for WSN applications are between 10 to 60KBytes such that the |PRW | occupies between

63 Kbytes to 113 Kbytes [CFP+09].

178

entries of a LAT can be computed as

#Entries(LAT) =
|CI|
s

(6)

So, even if Ca(LATh) and Ca(CI) with (Ca, sa) would provide the same compression

ratio, which obviously is not the case, the absolute gain of program memory for an at-

tacker who purely can compress the remaining uncompressed LATh would be signifi-

cantly smaller. E.g., we assume an embedded device with 128KB of program memory

where |CI| = 25.9KB (multi-hop oscilloscope). We further assume single LAT entries

to be coded using 24 bits, i.e. |LATh| = #Entries(LATh) · 3 bytes for the proposed

block size sh = 512 bytes. The LATh then occupies 153 bytes. Compression results for

the LATh of our benchmark applications are listed in Table I. For this setting and by ap-

Table 1: Maximum sizes of bogus code images |C̃I| for sh = 512 bytes and various applications.

Multi-hop os- BaseStation Sense

cilloscope [byte] [byte] [byte]

|CI| 25906 15240 2860

|LATh| 153 90 18

|PZIP (LATh)| 148 92 30

|PPMZ(LATh)| 163 109 48

|Deflate(LATh)| 181 123 48

|ZPAQ(LATh)| 242 188 131

max. |C̃I| :
1. our approach 5 0 0

2. Refs. [YWZ+07], [SMK+05] 16948 7029 1124

plying our countermeasure an attacker’s absolute gain of free program memory to upload

a bogus code image C̃I would shrink below 5 bytes approximately6.

Again, with a larger choice of the block size sh one could reduce the free memory space

for an attacker even more. Furthermore, in case the CI is smaller also the LATh shrinks.

E.g., if CI is the BaseStation respectively Sense application and the block size again is

sh = 512 bytes, the attacker will not gain free memory by compressing the LATh of

size 90 respectively 18 bytes using the compression algorithms mentioned in this paper.

Finally, the attacker could overwrite the LATh within the program memory for his own

bogus code. In equivalence to the other program memory containing compressed code

and PRW this attack is detected by the computation and subsequent verification of x =
h(nonce||Ch(CI)||LATh||PRW).

Attacks using External Memory. As shown, our proposed attestation protocol raises

the attacker’s overhead for generating free space within the program memory by orders

of magnitude. Therefore, the attacker can not simply use the program memory to store

his bogus code image C̃I in an undetected manner. A sensor node’s external memory is

usually multiple times slower than its program memory. Nevertheless, we have to choose

6The attacker can choose other compression algorithms not mentioned in this paper as well. Although un-

likely, other algorithms could provide slightly better compression ratios.

179

the device-dependent threshold Tem sufficiently harsh to defend against attacks that make

additional use of the external memory. Therefore, there may be cases in which a false

negative will be the result of a single code attestation run. As a consequence, in case of

a false negative one should repeat the code attestation protocol n times, where n is factor

two the number of protocol runs in which the received x does not match the computation

at the verifier. To restrict the number of iterations for the code attestation protocol we

recommend to stop the protocol in case the received response x (each time with a different

nonce) has been presented two times.

Other Attacks: DoS. The protocol is not resistant against DoS attacks. An attacker can

always enforce the code attestation protocol to stop. In such situations the master device

considers the code image running on the prover device as bogus.

8 Conclusions and Open Issues

The work at hand presents a code attestation protocol which in particular detects compres-

sion attacks aiming to run bogus code in an undetected manner. The code image is loaded

in a compressed manner. Only LAT and PRW are loaded uncompressed. The presented

approach is work in progress. Surely, more elaborated analysis are required on a proper

choice of parameters like sh, Tpm, n and whether or not an attacker is able to effectively

compress Ch(CI) without using block based compression schemes. Also the role of the

cache needs to be evaluated more in depth with respect to potential security weaknesses.

9 Acknowledgments

The authors are most grateful to Aurelien Francillon and Claude Castelluccia who gave

insightful comments on their related work. The work presented in this paper was sup-

ported in part by the European Commission within the STREP WSAN4CIP of the EU

Framework Programme 7 for Research and Development as well as the German BMB+F

SKIMS project. The views and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the official policies or endorsements,

either expressed or implied, of the WSAN4CIP project, the SKIMS project or the Euro-

pean Commission.

Bibliography

[ABE+05] Abadi, M.; Budiu, M.; Erlingsson, Ú.; Ligatti, J.: Control-flow integrity. In Proceed-
ings of the 12th ACM conference on Computer and communications security, CCS ’05,
pages 340–353, New York, NY, USA, ACM, 2005.

[ANN09] AbuHmed, T.; Nyamaa, N.; Nyang, D.: Software-based remote code attestation in

180

wireless sensor network. In Proceedings of the 28th IEEE conference on Global
telecommunications, GLOBECOM’09, pages 4680–4687, Piscataway, NJ, USA, IEEE
Press, 2009.

[CFP+09] Castelluccia, C.; Francillon, A.; Perito, D.; Soriente, C.: On the difficulty of software-
based attestation of embedded devices. In Proceedings of the 16th ACM conference
on Computer and communications security, CCS ’09, pages 400–409, New York, NY,
USA, ACM, 2009.

[FGS09] Ferguson, C.; Gu, Q.; Shi, H.: Self-healing control flow protection in sensor appli-
cations. In Proceedings of the second ACM conference on Wireless network security,
WiSec ’09, pages 213–224, New York, NY, USA, ACM, 2009.

[Hu52] Huffman, D. A.: A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the IRE, 40(9):1098 –1101, 1952.

[SLP+06] Seshadri, A.; Luk, M.; Perrig, A.; Doorn, L. v.; Khosla, P.: SCUBA: Secure Code
Update By Attestation in sensor networks. In Proceedings of the 5th ACM workshop
on Wireless security, WiSe ’06, pages 85–94, New York, NY, USA, ACM, 2006.

[SMK+05] Shaneck, M.; Mahadevan, K.; Kher, V.; Kim, Y.: Remote Software-Based Attestation
for Wireless Sensors. In Refik Molva, Gene Tsudik, and Dirk Westhoff, editors, Se-
curity and Privacy in Ad-hoc and Sensor Networks, volume 3813 of Lecture Notes in
Computer Science, pages 27–41. 10.1007/11601494 3. Springer Berlin / Heidelberg,
2005.

[SPD+04] Seshadri, A.; Perrig, A.; Doorn, L. v.; Khosla, P.: SWATT: softWare-based attesta-
tion for embedded devices. In Security and Privacy, 2004. Proceedings. 2004 IEEE
Symposium on, pages 272 – 282, May 2004.

[WC92] Wolfe, A.; Chanin, A.: Executing compressed programs on an embedded RISC archi-
tecture. SIGMICRO Newsl., 23:81–91, December 1992.

[XJ03] Xu, X.; Jones, S.: Code compression for the embedded ARM/THUMB processor.
In Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications, 2003. Proceedings of the Second IEEE International Workshop on, pages
31 –35, 2003.

[YFN+06] Yamada, H.; Fuji, D.; Nakatsuka, Y.; Hotta, T.; Shimamura, K.; Inuduka, T.; Yamazaki,
T.: Micro-controller for reading out compressed instruction code and program memory
for compressing instruction code and storing therein, January 2006.

[YWZ+07] Yang, Y.; Wang, X.; Zhu, S.; Cao, G.: Distributed Software-based Attestation for
Node Compromise Detection in Sensor Networks. In Proceedings of the 26th IEEE
International Symposium on Reliable Distributed Systems, SRDS ’07, pages 219–230,
Washington, DC, USA, IEEE Computer Society, 2007.

181

