
“proceedings” — 2015/7/27 — 18:40 — page 269 — #281

 

 

 

Smart Engineering for Smart 

Factories: How OSLC Could Enable 

Plug & Play Tool Integration 

Christian Kaiser1, Beate Herbst2 

Information & Process Management, Virtual Vehicle Research Center1 

Electrics/Electronics & Software, Virtual Vehicle Research Center2 

Abstract 

In this paper OSLC (Open Services for Lifecycle Collaboration) is proposed as key element in an 

approach for tool integration. OSLC enables data exchange and resource linking across tools within 

smart engineering, assisting thereby factories in behaving smart. According to OSLC’s description, a 

core specification and several domain specifications assist software developers in implementing 

standardized interfaces for information exchange, which allow low-cost exchangeability of tools 

providing the same type of data. Due to the resource linking approach of OSLC (instead of data 

synchronization), the typical integration challenges of traceability, data consistency and data 

interoperability across the whole lifecycle process are appropriately managed and therefore assist 

collaboration, reuse and integration. Traceability across engineering tools can be a key enabler for 

smart factories. However, applied to the whole engineering process of a smart production lifecycle, 

which is in this approach based on the V-model, advantages and challenges yet to be solved of this 

approach arise, which is why this paper focuses engineering to be able to assist smart factories in 

future. 

1 Introduction 

In the production lifecycle process several tools are included, whereas in many cases 

software tools need to integrate with other tools in order to support a productive workflow 

(Wagner et al. 2014; Paschke & Softic 2014). A company might already use tools in their 

tool chain, which support interoperability to relevant other tools of the tool chain. Tool 

integration challenges can have its origin in merging two companies, as companies might use 

different tool vendors for the same tasks, employees are used to their tools and long-term 

contracts might exist. Another tool integration cause is the decision to buy a component from 

a supplier. A supplier receives requirements and modelling information, has to integrate it 
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into their tools and finally provides software and hardware components. Again, the supplier 

might use different tools in its tool chain. Tool integration is a noticeable topic in research 

since the 1990’s (Brown et al. 1992). Tools available on the market employ their own 

underlying metamodel. Those metamodels tend to vary greatly in size and complexity, 

therefore confronting production companies with the challenge of tool integration (Wolvers 

& Seceleanu 2013; Zhang et al. 2012). When tools are embedded in a tool chain of an 

engineering lifecycle, then data input has to be made available in the tool, whereas data 

output has to be provided in a standardized or proper format, e.g. using an export 

functionality. The current shift from production to smart production and therefore from 

factories to smart factories further pressures the development of smart tools and 

environments. In smart factories ideally every object turns into a cyber-physical system and 

is able to communicate with others and act in an intelligent way, e.g. the intelligent or so 

called smart products are able to exchange information regarding their further processing 

with robotic machines within a smart factory. Production factories can only be smart if the 

engineering lifecycle provides the possibility for it. Two reasons are explained in the 

following. 

On the one hand, smart products in a smart factory environment enable for example 

collaboration between humans and machines such as robotic arms. Therefore decisions by 

smart products and the smart factory environment will have to be made in real time. This 

causes plenty of new requirements regarding smart production and smart factory to be 

considered and fulfilled by smart engineering, by facility planning, by designers, etc. This 

new requirements have to be adopted by the product requirements management in the early 

engineering phase, modelling, design and production have to consider them. As a result, the 

engineering lifecycle is capable of the success of smart production by providing its basis. For 

example in the automotive domain, the number of variants and derivates has multiplied. 

Hence, due to configuration possibilities, the lot size in production converges towards one. A 

lot size of one means that each product is probably just produced once in its specific 

configuration, a realistic example in the automotive industry. Production lines producing 

only one specific vehicle for a longer time range will no longer be needed. Thus, a 

technology enabling a flexible production line is needed. Graph-based reasoning assists the 

production to act in an intelligent way. This could be achieved by a resource linking 

approach, creating a graph of linked data. 

On the other hand, cyber physical systems, smart products being able to communicate with 

other products and infrastructure, need access to relevant data to enable intelligent behavior, 

such as data of the engineering lifecycle process. To be able to understand context and 

dependencies of retrieved data, traceability across tools used in this engineering lifecycle 

process is necessary, e.g. which requirements lead to a specific configuration and which 

requirements are covered by a test scenario. Traceability can be achieved by linking data 

artifacts, representing real artifacts like model elements that are maintained by tools (Zhang 

& Moller-Pedersen 2013). Thus, today a convenient technology is needed to enable data 

exchange and linking between tools with little effort for the user.  

A promising technology used for such purposes is OSLC  (OSLC 2015a), introduced by an 

open community that provides a collection of web-service based specifications to ease 

representation, access, and linking of resources between tools. All offered specifications are 

based on the W3C Linked Data (W3C 2015) standard, which builds upon common web 
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technologies such as HTTP (Hypertext Transfer Protocol), the Representational State 

Transfer (REST) technology, RDF (Resource Description Format), and URI (Uniform 

Resource Identifier) (Elaasar & Conallen 2013; Paschke & Softic 2014). While several 

integration approaches and frameworks are available on the market, ModelBus (Fraunhofer 

FOKUS 2015) and OSLC are appropriate integration technologies which are not proprietary, 

as they have an open specification and implementation. (Wagner et al. 2014)  

Figure 1 depicts data integration with OSLC, which mainly consists of two players:  

• A Provider, which uses a web service to store and provide data by implementing 

CRUD (Create, Read, Update, Delete) functionality. 

• A Consumer, which is able to request and manipulate provided data via HTTP 

requests (HTTP GET, POST, PUT, and DELETE methods).  

 

Figure 1: Overview of an OSLC Provider and Consumer concept. 

Furthermore, this web-based technology supports the representation of data in form of RDF 

graphs, consisting of so called triples (subject, predicate, and object). Each triple represents a 

relationship between two specific artifacts, whereas a subject is linked to an object and the 

predicate describes the link type. If plenty of artifacts are linked with each other, then one or 

even more graphs emerge, because not all resulting graph parts necessarily need to be 

connected. The resulting graphs of, e.g. an engineering lifecycle using OSLC, can then be 

used for graph-based reasoning. Reasoning on graphs is scalable and most operations are 

suitable for bigger amounts of data (Urbani et al. 2009). In this way, OSLC enables analysis 

of multi tool workflow resources and therefore eases lifecycle traceability.  

In the presented approach for the production lifecycle process, data artifacts of different tools 

and therefore different domains, such as requirements management (RM) and architecture 

management (AM), are linked. As mentioned above, for this connection, an OSLC Provider 

and Consumer are needed. A mandatory requirement for their data exchange is that both 

interfaces need to implement the OSLC core specification as well as a domain specification, 

which defines permitted properties. 

2 Smart Production Lifecycle Integration using OSLC 

Figure 2 represents a production lifecycle process in form of a V-model workflow 

management. The V-model usually starts the project definition with requirements 
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management, e.g. integrating requirements provided from customers, legal norms and 

regulations, the own (smart) production (facility, etc.) and requirements based on know-how 

into a requirements management tool. In the second step, in a model based engineering 

process, models are designed based on specific requirements. In the third step, design and 

prototype manufacturing is done based on the created models. In the fourth step, all 

necessary (single) prototype components are tested against the requirements (the model was 

based on) in the ramp-up phase. Therefore a back link to the model is needed. In the last step, 

all components are combined into the final system and tested against all requirements to 

ensure requirement fulfillment. In the following subsections, an example using OSLC is 

provided. 

 

Figure 2: A smart production process represented as V-model. 

In the presented example the need for software integration in several consecutive steps is 

shown. As OSLC still bears some unsolved challenges, the following realistic example is 

chosen to show advantages as well as challenges of this technology simultaneously. 

2.1 System models based on requirements 

As shown in Figure 2, the presented approach uses different requirement sources to describe 

the new product. These requirements are defined by different stakeholders and therefore are 

managed in different tools in this fictive example:  
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• The costumer uses IBM Doors to manage its requirements (Tool A1). These 

requirements are provided via the built-in IBM Doors OSLC RM provider. 

• There are known legal norms and regulations, managed in HP Quality Center (Tool 

A2). These requirements are provided via the built-in HP Quality Center OSLC RM 

provider. 

• The quality management department has formulated requirements out of production 

know-how. However, they use PTC Integrity to manage them (Tool A3). These 

requirements are provided as a ReqIF (Requirements Interchange Format) file 

(OMG 2015), represented as asset management resource in OSLC. 

To create system models of a product, the product is divided into several subcomponents. 

Those subcomponents will be put together at a higher level and build a system model of the 

smart product. These system models as well as its subcomponents are designed in a modeling 

tool, whereas each component is based on one or more requirements. To reference these 

requirements, OSLC linking can be used. To overcome consistency problems when 

synchronizing requirements (possibly changing over time) between the tools, OSLC provides 

the opportunity to retrieve requirements from all above mentioned requirements sources with 

the same Consumer implementation as long as all OSLC Providers stick to the OSLC RM 

specification (OSLC 2015b). 

As OSLC tries to enable plug & play of tools of the same domain, e.g. tools providing 

requirements. The specification is kept to a minimum, what bears a contradiction to enabling 

plug & play at a closer look, as in some cases it is necessary to extend the provided OSLC 

domain properties by using so called extended properties. For example, the OSLC RM 

specification only defines the minimum set of properties needed (e.g. oslc_rm:validatedBy, 

to describe a resource, such as a test case, which validates this requirement). However, most 

requirement management sources use further properties in their tools, e.g. parameter values 

to be able to provide the parameter values machine readable (Marko et al. 2015), therefore 

information would be lost if those are not exposed. Thus, an OSLC Consumer of OSLC RM 

sources has to map retrieved extended properties of a source to its internal data storage. As a 

result, if different OSLC RM sources add different extended properties, plug & play is not 

possible any more without an initial mapping.  

Furthermore, even if no extended properties are in use, it might happen that properties of the 

loosely defined domain specifications are misused or interpreted variously and therefore lead 

to different OSLC resource representations, e.g. important information is provided in the 

dcterms:description property. Hence, the development of plug & play OSLC adapters seems 

to be hard to realize, as long as more precise specifications are missing.  

2.2 Prototype development based on system models 

Once system models in all granularities exist, development has to take place to realize a 

prototype as next step in the smart production lifecycle. Considering the success of 

companies like Apple, product design aspects should be in a leading part, comparable to 

software systems where “design is more important than ever” (Elaasar & Conallen 2013, 

165) However, the required functionality of the desired product, described in the above 
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mentioned system models, still has to be fulfilled. Hence an intensive negotiation or 

calibration process between system model developers (using Tool B in Figure 2) and 

prototype designers (Tool C in Figure 2) takes place. At the end of the design and 

development process, a design and prototype description as well as a production process 

description exists, which fulfils the system models and therefore is based on the requirements 

indirectly. The design or prototype may consist of one single part or multiple components 

representing the whole system if connected. For the purpose of testing, a prototype is 

manufactured. 

As OSLC is currently embossed by the automotive, aerospace and rail industries’ 

engineering communities, certain aspects, e.g. to assist smart series production, are not 

covered yet. OSLC specifications exist for many domains, such as architecture management, 

asset management and requirements management. However, as shown in subsection 2.1, 

tools provided by different vendors may use different extended properties and therefore plug 

& play seems hard to realize. In case of asset management, the intention of extended 

properties even may be harder to guess without a context, as every data artifact can be an 

asset. From an overview perspective, the challenge is to define, how precise a specification 

should be. Should a new specification be created for the domain of design? Is one design 

domain enough or is the gap between the design of, for instance, a car and a USB stick too 

big, so that individual domains will be needed? Will every industry have to define its own set 

of extended properties in each domain?  

2.3 Integration and testing of components 

A prototype is ready for testing and it is assumed that it consists of multiple components, 

whereas some components are bought from a supplier. Each component is based on the 

system models and therefore is based on a specific set of requirements. Aichernig et al. 

explain in their paper how test cases can be generated based on formalized requirements 

using OSLC (Aichernig et al. 2014). Tests are executed at component level. Tests may reveal 

issues of system models or the design, which triggers redesign of models or redevelopment 

of components. If tests have been successful, then components are connected and tested 

again.  

Typically multiple test cases are needed for each single component, for each combination of 

components and for the whole system. Therefore every test case and its result will be linked 

with components, design, requirements and so on. OSLC allows developers to use 

unidirectional or bidirectional links. Bidirectional links may simplify graph-based reasoning 

algorithms. However, it can lead to inconsistencies as shown in the following example. It is 

assumed that resource X is a component and resource Y is a test case.  

• The link between X and Y is bidirectional, as shown in Figure 3a.  

• A component was redesigned and therefore the link should be changed to link the 

new component X1 bidirectional with test case Y, as shown in Figure 3b.  

• X deletes its link to Y and creates a new link from X1 to Y. In the next step Y is 

triggered to change its link from X to X1 as well, however, Y is not available or a 

problem occurs, as shown in Figure 3c.  
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• As a result, the back link from Y to X is still there and now points to the wrong 

resource, as shown in Figure 3d. Now it is not defined which link is the right one 

and where the back link is missing. As unidirectional links are suitable as well, the 

problem might not even be recognized and may lead to inconsistency. 

 

 

Figure 3: The occurrence of a back link problem causing inconsistency. 

In terms of linking between different artifacts, OSLC provides so called delegated user 

interfaces (UIs). Thereby OSLC enable web applications to provide a user interface for 

creating and selecting resources and therefore enable traceability. However, another 

challenge of these delegated UIs is the context-free access caused by the small amount of 

information provided. For example, if a test case should be linked to a component, then the 

delegated UI may provide plenty of available component versions to choose from. Without 

additional context, it may be hard to identify the correct version. Packing a delegated UI with 

lots of information about the component may not be the ideal solution as well, as then the 

overview is lost. The remaining advantage is the simplified linking which enables 

traceability throughout the whole production lifecycle. However, it will not replace 

collaboration between developers. 

OSLC advantages and challenges have been shown so far, instead of continuing the lifecycle 

process describing verification and validation, traceability in the resulting graph of linked 

data is the topic in the following subchapter 2.4. 

2.4 Traceability 

Traceability gains more and more importance in recent years, e.g. the automotive “safety 

standard ISO 26262 (ISO 2015) requires traceability” (Baumgart & Ellen 2014, 300), as 

“correctness evidence for designed systems must be presented to regulatory bodies” 

(Aichernig et al. 2014, 117). Previous subchapters described the interconnection of data 

artifacts (data artifacts are e.g. a requirement, a system component model, the design of a 

component or the test case for a component) and how OSLC assists interlinking those 

artifacts, while unsolved challenges are yet to be solved.  
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However, if OSLC is used to link artifacts in the whole lifecycle, then the advantage of 

traceability is offered. Graph-based reasoning is able to calculate the degree of fulfilled 

requirements (Tool A in the lifecycle in Figure 2) by positive test results (Tool E in the 

lifecycle), as the trace of engineering is made explicit by links, e.g. it is clear which 

component is tested, which system model the component is based on and again which 

requirements the system model is based on. A significant reduction of test cases to fulfill all 

requirements will be the outcome.  

Visualizing all interconnections usually looks like a network of nodes and links. History 

showed that network analysis may reveal hidden secrets and bear potential for development 

shortcuts and innovations (Gloor et al. 2009; Mayer-Schönberger & Cukier 2013). 

Visualizing links between artifacts across tools provides flexible data insights, created by 

semantically driven customized views on the data. Hence, this assists data analysis, decision 

taking and collaboration between participants (Softic et al. 2013).  

3 Outlook and Conclusion 

In this paper OSLC is presented as key technology to enable tool integration, applied to the 

whole engineering process of a smart production lifecycle. Since there currently is a shift 

from factories to smart factories, the development of smart tools and environments is 

pressured. As a result, a new technology to even enable a smart engineering lifecycle, which 

provides the possibility of graph-based reasoning in a scalable approach, is needed. In the 

demonstrated example, OSLC is applied to a smart production lifecycle based on the V-

model. It is shown that OSLC enables smart engineering, by easily retrieving and linking 

different lifecycle artifacts. Thereby traceability is made possible, to track the relation of 

different artifacts e.g. requirements, system component models, or test cases. This easy tool 

exchangeability and flexibility has an impact on tool market shares, as any innovation by any 

vendors can be tested and adopted easily. Even though OSLC is a promising technology to 

create a smart production lifecycle, this paper showed that this approach also involves 

challenges. As an example, the hard to realize plug & play integration of OSLC adapters was 

depicted, since the loosely defined specification might not be enough and the provided 

domains will not fit perfectly in many cases. However, since OSLC is introduced by an open 

community, adaptation and creation of domain specifications might easily be possible.  
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