
“proceedings” — 2015/7/27 — 18:40 — page 269 — #281

Smart Engineering for Smart

Factories: How OSLC Could Enable

Plug & Play Tool Integration

Christian Kaiser1, Beate Herbst2

Information & Process Management, Virtual Vehicle Research Center1

Electrics/Electronics & Software, Virtual Vehicle Research Center2

Abstract

In this paper OSLC (Open Services for Lifecycle Collaboration) is proposed as key element in an

approach for tool integration. OSLC enables data exchange and resource linking across tools within

smart engineering, assisting thereby factories in behaving smart. According to OSLC’s description, a

core specification and several domain specifications assist software developers in implementing

standardized interfaces for information exchange, which allow low-cost exchangeability of tools

providing the same type of data. Due to the resource linking approach of OSLC (instead of data

synchronization), the typical integration challenges of traceability, data consistency and data

interoperability across the whole lifecycle process are appropriately managed and therefore assist

collaboration, reuse and integration. Traceability across engineering tools can be a key enabler for

smart factories. However, applied to the whole engineering process of a smart production lifecycle,

which is in this approach based on the V-model, advantages and challenges yet to be solved of this

approach arise, which is why this paper focuses engineering to be able to assist smart factories in

future.

1 Introduction

In the production lifecycle process several tools are included, whereas in many cases

software tools need to integrate with other tools in order to support a productive workflow

(Wagner et al. 2014; Paschke & Softic 2014). A company might already use tools in their

tool chain, which support interoperability to relevant other tools of the tool chain. Tool

integration challenges can have its origin in merging two companies, as companies might use

different tool vendors for the same tasks, employees are used to their tools and long-term

contracts might exist. Another tool integration cause is the decision to buy a component from

a supplier. A supplier receives requirements and modelling information, has to integrate it

A. Weisbecker, M. Burmester & A. Schmidt (Hrsg.): Mensch und Computer 2015
Workshopband, Stuttgart: Oldenbourg Wissenschaftsverlag, 2015, S. 269-274.

“proceedings” — 2015/7/27 — 18:40 — page 270 — #282

 2

into their tools and finally provides software and hardware components. Again, the supplier

might use different tools in its tool chain. Tool integration is a noticeable topic in research

since the 1990’s (Brown et al. 1992). Tools available on the market employ their own

underlying metamodel. Those metamodels tend to vary greatly in size and complexity,

therefore confronting production companies with the challenge of tool integration (Wolvers

& Seceleanu 2013; Zhang et al. 2012). When tools are embedded in a tool chain of an

engineering lifecycle, then data input has to be made available in the tool, whereas data

output has to be provided in a standardized or proper format, e.g. using an export

functionality. The current shift from production to smart production and therefore from

factories to smart factories further pressures the development of smart tools and

environments. In smart factories ideally every object turns into a cyber-physical system and

is able to communicate with others and act in an intelligent way, e.g. the intelligent or so

called smart products are able to exchange information regarding their further processing

with robotic machines within a smart factory. Production factories can only be smart if the

engineering lifecycle provides the possibility for it. Two reasons are explained in the

following.

On the one hand, smart products in a smart factory environment enable for example

collaboration between humans and machines such as robotic arms. Therefore decisions by

smart products and the smart factory environment will have to be made in real time. This

causes plenty of new requirements regarding smart production and smart factory to be

considered and fulfilled by smart engineering, by facility planning, by designers, etc. This

new requirements have to be adopted by the product requirements management in the early

engineering phase, modelling, design and production have to consider them. As a result, the

engineering lifecycle is capable of the success of smart production by providing its basis. For

example in the automotive domain, the number of variants and derivates has multiplied.

Hence, due to configuration possibilities, the lot size in production converges towards one. A

lot size of one means that each product is probably just produced once in its specific

configuration, a realistic example in the automotive industry. Production lines producing

only one specific vehicle for a longer time range will no longer be needed. Thus, a

technology enabling a flexible production line is needed. Graph-based reasoning assists the

production to act in an intelligent way. This could be achieved by a resource linking

approach, creating a graph of linked data.

On the other hand, cyber physical systems, smart products being able to communicate with

other products and infrastructure, need access to relevant data to enable intelligent behavior,

such as data of the engineering lifecycle process. To be able to understand context and

dependencies of retrieved data, traceability across tools used in this engineering lifecycle

process is necessary, e.g. which requirements lead to a specific configuration and which

requirements are covered by a test scenario. Traceability can be achieved by linking data

artifacts, representing real artifacts like model elements that are maintained by tools (Zhang

& Moller-Pedersen 2013). Thus, today a convenient technology is needed to enable data

exchange and linking between tools with little effort for the user.

A promising technology used for such purposes is OSLC (OSLC 2015a), introduced by an

open community that provides a collection of web-service based specifications to ease

representation, access, and linking of resources between tools. All offered specifications are

based on the W3C Linked Data (W3C 2015) standard, which builds upon common web

270 Christian Kaiser, Beate Herbst

“proceedings” — 2015/7/27 — 18:40 — page 271 — #283

 3

technologies such as HTTP (Hypertext Transfer Protocol), the Representational State

Transfer (REST) technology, RDF (Resource Description Format), and URI (Uniform

Resource Identifier) (Elaasar & Conallen 2013; Paschke & Softic 2014). While several

integration approaches and frameworks are available on the market, ModelBus (Fraunhofer

FOKUS 2015) and OSLC are appropriate integration technologies which are not proprietary,

as they have an open specification and implementation. (Wagner et al. 2014)

Figure 1 depicts data integration with OSLC, which mainly consists of two players:

• A Provider, which uses a web service to store and provide data by implementing

CRUD (Create, Read, Update, Delete) functionality.

• A Consumer, which is able to request and manipulate provided data via HTTP

requests (HTTP GET, POST, PUT, and DELETE methods).

Figure 1: Overview of an OSLC Provider and Consumer concept.

Furthermore, this web-based technology supports the representation of data in form of RDF

graphs, consisting of so called triples (subject, predicate, and object). Each triple represents a

relationship between two specific artifacts, whereas a subject is linked to an object and the

predicate describes the link type. If plenty of artifacts are linked with each other, then one or

even more graphs emerge, because not all resulting graph parts necessarily need to be

connected. The resulting graphs of, e.g. an engineering lifecycle using OSLC, can then be

used for graph-based reasoning. Reasoning on graphs is scalable and most operations are

suitable for bigger amounts of data (Urbani et al. 2009). In this way, OSLC enables analysis

of multi tool workflow resources and therefore eases lifecycle traceability.

In the presented approach for the production lifecycle process, data artifacts of different tools

and therefore different domains, such as requirements management (RM) and architecture

management (AM), are linked. As mentioned above, for this connection, an OSLC Provider

and Consumer are needed. A mandatory requirement for their data exchange is that both

interfaces need to implement the OSLC core specification as well as a domain specification,

which defines permitted properties.

2 Smart Production Lifecycle Integration using OSLC

Figure 2 represents a production lifecycle process in form of a V-model workflow

management. The V-model usually starts the project definition with requirements

Smart Engineering for Smart Factories: How OSLC Could Enable Plug & Play... 271

“proceedings” — 2015/7/27 — 18:40 — page 272 — #284

 4

management, e.g. integrating requirements provided from customers, legal norms and

regulations, the own (smart) production (facility, etc.) and requirements based on know-how

into a requirements management tool. In the second step, in a model based engineering

process, models are designed based on specific requirements. In the third step, design and

prototype manufacturing is done based on the created models. In the fourth step, all

necessary (single) prototype components are tested against the requirements (the model was

based on) in the ramp-up phase. Therefore a back link to the model is needed. In the last step,

all components are combined into the final system and tested against all requirements to

ensure requirement fulfillment. In the following subsections, an example using OSLC is

provided.

Figure 2: A smart production process represented as V-model.

In the presented example the need for software integration in several consecutive steps is

shown. As OSLC still bears some unsolved challenges, the following realistic example is

chosen to show advantages as well as challenges of this technology simultaneously.

2.1 System models based on requirements

As shown in Figure 2, the presented approach uses different requirement sources to describe

the new product. These requirements are defined by different stakeholders and therefore are

managed in different tools in this fictive example:

272 Christian Kaiser, Beate Herbst

“proceedings” — 2015/7/27 — 18:40 — page 273 — #285

 5

• The costumer uses IBM Doors to manage its requirements (Tool A1). These

requirements are provided via the built-in IBM Doors OSLC RM provider.

• There are known legal norms and regulations, managed in HP Quality Center (Tool

A2). These requirements are provided via the built-in HP Quality Center OSLC RM

provider.

• The quality management department has formulated requirements out of production

know-how. However, they use PTC Integrity to manage them (Tool A3). These

requirements are provided as a ReqIF (Requirements Interchange Format) file

(OMG 2015), represented as asset management resource in OSLC.

To create system models of a product, the product is divided into several subcomponents.

Those subcomponents will be put together at a higher level and build a system model of the

smart product. These system models as well as its subcomponents are designed in a modeling

tool, whereas each component is based on one or more requirements. To reference these

requirements, OSLC linking can be used. To overcome consistency problems when

synchronizing requirements (possibly changing over time) between the tools, OSLC provides

the opportunity to retrieve requirements from all above mentioned requirements sources with

the same Consumer implementation as long as all OSLC Providers stick to the OSLC RM

specification (OSLC 2015b).

As OSLC tries to enable plug & play of tools of the same domain, e.g. tools providing

requirements. The specification is kept to a minimum, what bears a contradiction to enabling

plug & play at a closer look, as in some cases it is necessary to extend the provided OSLC

domain properties by using so called extended properties. For example, the OSLC RM

specification only defines the minimum set of properties needed (e.g. oslc_rm:validatedBy,

to describe a resource, such as a test case, which validates this requirement). However, most

requirement management sources use further properties in their tools, e.g. parameter values

to be able to provide the parameter values machine readable (Marko et al. 2015), therefore

information would be lost if those are not exposed. Thus, an OSLC Consumer of OSLC RM

sources has to map retrieved extended properties of a source to its internal data storage. As a

result, if different OSLC RM sources add different extended properties, plug & play is not

possible any more without an initial mapping.

Furthermore, even if no extended properties are in use, it might happen that properties of the

loosely defined domain specifications are misused or interpreted variously and therefore lead

to different OSLC resource representations, e.g. important information is provided in the

dcterms:description property. Hence, the development of plug & play OSLC adapters seems

to be hard to realize, as long as more precise specifications are missing.

2.2 Prototype development based on system models

Once system models in all granularities exist, development has to take place to realize a

prototype as next step in the smart production lifecycle. Considering the success of

companies like Apple, product design aspects should be in a leading part, comparable to

software systems where “design is more important than ever” (Elaasar & Conallen 2013,

165) However, the required functionality of the desired product, described in the above

Smart Engineering for Smart Factories: How OSLC Could Enable Plug & Play... 273

“proceedings” — 2015/7/27 — 18:40 — page 274 — #286

 6

mentioned system models, still has to be fulfilled. Hence an intensive negotiation or

calibration process between system model developers (using Tool B in Figure 2) and

prototype designers (Tool C in Figure 2) takes place. At the end of the design and

development process, a design and prototype description as well as a production process

description exists, which fulfils the system models and therefore is based on the requirements

indirectly. The design or prototype may consist of one single part or multiple components

representing the whole system if connected. For the purpose of testing, a prototype is

manufactured.

As OSLC is currently embossed by the automotive, aerospace and rail industries’

engineering communities, certain aspects, e.g. to assist smart series production, are not

covered yet. OSLC specifications exist for many domains, such as architecture management,

asset management and requirements management. However, as shown in subsection 2.1,

tools provided by different vendors may use different extended properties and therefore plug

& play seems hard to realize. In case of asset management, the intention of extended

properties even may be harder to guess without a context, as every data artifact can be an

asset. From an overview perspective, the challenge is to define, how precise a specification

should be. Should a new specification be created for the domain of design? Is one design

domain enough or is the gap between the design of, for instance, a car and a USB stick too

big, so that individual domains will be needed? Will every industry have to define its own set

of extended properties in each domain?

2.3 Integration and testing of components

A prototype is ready for testing and it is assumed that it consists of multiple components,

whereas some components are bought from a supplier. Each component is based on the

system models and therefore is based on a specific set of requirements. Aichernig et al.

explain in their paper how test cases can be generated based on formalized requirements

using OSLC (Aichernig et al. 2014). Tests are executed at component level. Tests may reveal

issues of system models or the design, which triggers redesign of models or redevelopment

of components. If tests have been successful, then components are connected and tested

again.

Typically multiple test cases are needed for each single component, for each combination of

components and for the whole system. Therefore every test case and its result will be linked

with components, design, requirements and so on. OSLC allows developers to use

unidirectional or bidirectional links. Bidirectional links may simplify graph-based reasoning

algorithms. However, it can lead to inconsistencies as shown in the following example. It is

assumed that resource X is a component and resource Y is a test case.

• The link between X and Y is bidirectional, as shown in Figure 3a.

• A component was redesigned and therefore the link should be changed to link the

new component X1 bidirectional with test case Y, as shown in Figure 3b.

• X deletes its link to Y and creates a new link from X1 to Y. In the next step Y is

triggered to change its link from X to X1 as well, however, Y is not available or a

problem occurs, as shown in Figure 3c.

274 Christian Kaiser, Beate Herbst

“proceedings” — 2015/7/27 — 18:40 — page 275 — #287

 7

• As a result, the back link from Y to X is still there and now points to the wrong

resource, as shown in Figure 3d. Now it is not defined which link is the right one

and where the back link is missing. As unidirectional links are suitable as well, the

problem might not even be recognized and may lead to inconsistency.

Figure 3: The occurrence of a back link problem causing inconsistency.

In terms of linking between different artifacts, OSLC provides so called delegated user

interfaces (UIs). Thereby OSLC enable web applications to provide a user interface for

creating and selecting resources and therefore enable traceability. However, another

challenge of these delegated UIs is the context-free access caused by the small amount of

information provided. For example, if a test case should be linked to a component, then the

delegated UI may provide plenty of available component versions to choose from. Without

additional context, it may be hard to identify the correct version. Packing a delegated UI with

lots of information about the component may not be the ideal solution as well, as then the

overview is lost. The remaining advantage is the simplified linking which enables

traceability throughout the whole production lifecycle. However, it will not replace

collaboration between developers.

OSLC advantages and challenges have been shown so far, instead of continuing the lifecycle

process describing verification and validation, traceability in the resulting graph of linked

data is the topic in the following subchapter 2.4.

2.4 Traceability

Traceability gains more and more importance in recent years, e.g. the automotive “safety

standard ISO 26262 (ISO 2015) requires traceability” (Baumgart & Ellen 2014, 300), as

“correctness evidence for designed systems must be presented to regulatory bodies”

(Aichernig et al. 2014, 117). Previous subchapters described the interconnection of data

artifacts (data artifacts are e.g. a requirement, a system component model, the design of a

component or the test case for a component) and how OSLC assists interlinking those

artifacts, while unsolved challenges are yet to be solved.

Smart Engineering for Smart Factories: How OSLC Could Enable Plug & Play... 275

“proceedings” — 2015/7/27 — 18:40 — page 276 — #288

 8

However, if OSLC is used to link artifacts in the whole lifecycle, then the advantage of

traceability is offered. Graph-based reasoning is able to calculate the degree of fulfilled

requirements (Tool A in the lifecycle in Figure 2) by positive test results (Tool E in the

lifecycle), as the trace of engineering is made explicit by links, e.g. it is clear which

component is tested, which system model the component is based on and again which

requirements the system model is based on. A significant reduction of test cases to fulfill all

requirements will be the outcome.

Visualizing all interconnections usually looks like a network of nodes and links. History

showed that network analysis may reveal hidden secrets and bear potential for development

shortcuts and innovations (Gloor et al. 2009; Mayer-Schönberger & Cukier 2013).

Visualizing links between artifacts across tools provides flexible data insights, created by

semantically driven customized views on the data. Hence, this assists data analysis, decision

taking and collaboration between participants (Softic et al. 2013).

3 Outlook and Conclusion

In this paper OSLC is presented as key technology to enable tool integration, applied to the

whole engineering process of a smart production lifecycle. Since there currently is a shift

from factories to smart factories, the development of smart tools and environments is

pressured. As a result, a new technology to even enable a smart engineering lifecycle, which

provides the possibility of graph-based reasoning in a scalable approach, is needed. In the

demonstrated example, OSLC is applied to a smart production lifecycle based on the V-

model. It is shown that OSLC enables smart engineering, by easily retrieving and linking

different lifecycle artifacts. Thereby traceability is made possible, to track the relation of

different artifacts e.g. requirements, system component models, or test cases. This easy tool

exchangeability and flexibility has an impact on tool market shares, as any innovation by any

vendors can be tested and adopted easily. Even though OSLC is a promising technology to

create a smart production lifecycle, this paper showed that this approach also involves

challenges. As an example, the hard to realize plug & play integration of OSLC adapters was

depicted, since the loosely defined specification might not be enough and the provided

domains will not fit perfectly in many cases. However, since OSLC is introduced by an open

community, adaptation and creation of domain specifications might easily be possible.

Acknowledgement

The research work of Christian Kaiser & Beate Herbst was partially funded by the European

Commission within the CRYSTAL project under the ARTEMIS Joint Undertaking funding

scheme, by the COMET K2 - Competence Centres for Excellent Technologies Programme of

the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the

Austrian Federal Ministry of Science, Research and Economy (BMWFW), the Austrian

Research Promotion Agency (FFG), the Province of Styria and the Styrian Business

Promotion Agency (SFG).

276 Christian Kaiser, Beate Herbst

“proceedings” — 2015/7/27 — 18:40 — page 277 — #289

 9

Literature

Aichernig, B.K., Hormaier, K., Lorber, F., Nickovic, D., Schlick, R., Simoneau, D. & Tiran, S. (2014).

Integration of Requirements Engineering and Test-Case Generation via OSLC. In Proceedings of

the 14th International Conference on Quality Software (QSIC), 117-126.

Baumgart, A. & Ellen, C. (2014). A recipe for tool interoperability. In Proceedings of the 2nd

International Conference on Model-Driven Engineering and Software Development

(MODELSWARD), 300-308.

Brown, A.W., Feiler, P.H. & Wallnau, K.C. (1992). Past and future models of CASE integration. In the

Proceedings of the Fifth International Workshop on Computer-Aided Software Engineering, 36-45.

Elaasar, M. & Conallen, J. (2013). Design management: a collaborative design solution. In Proceedings

of the 9th European conference on Modelling Foundations and Applications (ECMFA'13),

Springer-Verlag, Berlin, Heidelberg, 165-178.

Fraunhofer FOKUS (The Fraunhofer Institute for Open Communication Systems FOKUS) (2015).

ModelBus - Welcome To ModelBus.org. http://www.modelbus.org. Retrieved 2015-06-01.

OMG (Object Management Group) (2015). ReqIF. http://www.omg.org/spec/ReqIF/. Retrieved 2015-

06-01.

Gloor, P.A., Krauss, J., Nann, S., Fischbach, K. & Schoder, D. (2009). Web Science 2.0: Identifying

Trends through Semantic Social Network Analysis. In Proceedings of the International Conference

on Computational Science and Engineering (CSE '09), vol.4, 215-222.

ISO (International Organization for Standardization) (2015). ISO 26262-1:2011 - Road vehicles --

Functional safety -- Part 1: Vocabulary. http://www.iso.org/iso/catalogue_detail?csnumber=43464.

Retrieved 2015-06-01.

Marko, N., Leitner, A., Herbst, B. & Wallner, A. (2015). Combining Xtext and OLSC for integrated

model-based requirements engineering. In Proceedings of the 41th Euromicro Conference on

Software Engineering and Advanced Applications (SEAA 2015), page unknown as not published

yet.

Mayer-Schönberger, V. & Cukier, K. (2013). Big data: a revolution that will transform how we live,

work, and think. Boston: Houghton Mifflin Harcourt.

OSLC (2015a). Open Services for Lifecycle Collaboration. http://www.open-services.net. Retrieved

2015-06-01.

OSLC (2015b). RmSpecificationV2. http://open-services.net/bin/view/Main/RmSpecificationV2.

Retrieved 2015-06-01.

Urbani, J., Kotoulas, S., Oren, E. & Harmelen, F. (2009). Scalable Distributed Reasoning Using

MapReduce. In Proceedings of the 8th International Semantic Web Conference (ISWC '09),

Springer-Verlag, Berlin, Heidelberg, 634-649.

Paschke, S. & Softic, S. (2014). Open Services for Lifecycle Collaboration: Ein Ansatz zur

Unterstützung der Zusammenarbeit in der Produktentwicklung. In: Butz, A., Koch, M. &

Schlichter, J. (Hrsg.), Mensch & Computer 2014 - Workshopband. Berlin: De Gruyter Oldenbourg,

313-320.

Softic, S., Rosenberger, M., Denger, A., Fritz, J. & Stocker, A. (2013). Semantically based visual

tracking of engineering tasks in automotive product lifecycle. In Proceedings of the 13th

Smart Engineering for Smart Factories: How OSLC Could Enable Plug & Play... 277

“proceedings” — 2015/7/27 — 18:40 — page 278 — #290

 10

International Conference on Knowledge Management and Knowledge Technologies (i-Know '13),

ACM, New York, NY, USA, Article 36 , 4 pages.

Wagner, M., Dudeck, G., Hein, C., Tcholtchev, N., Gebhardt, C. & Korff, A. (2014). VARIES

framework to support tool integration in product line engineering. In Proceedings of the 18th

International Software Product Line Conference: Companion Volume for Workshops,

Demonstrations and Tools - Volume 2 (SPLC '14), Vol. 2. ACM, New York, NY, USA, 117-120.

Wolvers, R. & Seceleanu, T. (2013). Embedded Systems Design Flows: Integrating Requirements

Authoring and Design Tools. In Proceedings of the 39th EUROMICRO Conference on Software

Engineering and Advanced Applications (SEAA), 244-251.

World Wide Web Consortium (W3C) (2015). Data - W3C.

http://www.w3.org/standards/semanticweb/data. Retrieved 2015-06-01.

Zhang, W., Leilde, V., Moller-Pedersen, B., Champeau, J. & Guychard, C. (2012). Towards Tool

Integration through Artifacts and Roles. In Proceedings of the 19th Asia-Pacific Software

Engineering Conference (APSEC), 603-613.

Zhang, W. & Moller-Pedersen, B. (2013). Establishing Tool Chains Above the Service Cloud with

Integration Models. In Proceedings of the IEEE 20th International Conference on Web Services

(ICWS), 372-379.

Kontaktinformationen

Christian Kaiser

Virtual Vehicle Research Center

Department information- & process management

Inffeldgasse 21a

8010 Graz

christian.kaiser@v2c2.at

http://www.v2c2.at

278 Christian Kaiser, Beate Herbst

