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Abstract: Ontology matching has been widely studied. However, the resulting on-
tology mappings can be rather unstable when the participating ontologies or util-
ized secondary sources (e.g., instance sources, thesauri) evolve. We propose an
evolution-based approach for assessing ontology mappings by annotating their cor-
respondences by information about similarity values for past ontology versions.
These annotations allow us to assess the stability of correspondences over time and
they can thus be used to determine better and more robust ontology mappings. The
approach is generic in that it can be applied independently from the utilized match
technique. We define different stability measures and show results of a first
evaluation for the life science domain.

1 Introduction

Ontology matching aims at identifying semantic correspondences between concepts of
different ontologies. It has been recently studied in diverse scientific and commercial
application domains and various match approaches and prototypes (see e.g., [RB01,
KS03, Do06, ES07] for surveys) have been developed. The ontology mappings deter-
mined by ontology matching are used in many ways, such as for enhanced data analysis
or data integration. However, ontologies underlie continuous modifications because
domain knowledge or community agreements represented by ontologies often change
over time. Typical changes include additions of new elements, deletions of outdated
elements, modifications of element attributes, such as names and descriptions, and struc-
tural changes, such as element moves within an is-a hierarchy. Therefore new ontology
versions are released periodically and, thus, ontology mappings need to be re-created or
updated accordingly. This is also necessary when new versions of secondary sources
used for matching become available, such as instance sources, thesauri and their associa-
tions to ontologies.

As a result of evolving ontologies and secondary sources the generated ontology map-
pings can be rather unstable, i.e., the similarity between two given concepts may vary
significantly over several versions. As an example from the life science domain, Figure 1
shows the history of concept similarity for two selected correspondences over 21 map-
ping versions. The considered mapping relates two sub-ontologies of the Gene Ontology
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[Go04], Molecular Functions and Biological
Processes, and was determined by an in-
stance-based match technique which derives
the similarity of two concepts from their
associations to the same instances (see
[KTR07] for details). Both correspondences
have a relatively high similarity value of
0.95 in the last mapping version but signifi-
cantly differ in their history. The first corre-
spondence (GO:0051016-GO:0003779) is
more stable and at a higher level of similar-
ity than the second correspondence
(GO:0005978-GO:0004689). Since the simi-
larity value of the latter correspondence

jumps from 0.4 to 0.95 its correctness might be questionable and should be further veri-
fied. This observation of fluctuating concept similarities is mainly influenced by evolv-
ing ontologies, modifications on secondary sources as well as changes of associations
between them and was quantitatively evaluated in [HKR08].

In order to obtain ontology mappings of high quality, previous work (e.g., [ADMR05])
has shown that a combination of different match approaches can be helpful. However,
current ontology match approaches do not take into account that ontologies evolve. They
only utilize information about the specific ontology versions which are matched with
each other. Studying the correspondence history for past ontology versions is orthogonal
to a match technique or matcher combination. One aim is to utilize the stability of corre-
spondences to identify robust mappings, while unstable correspondences may be subject
to a focused manual validation. To that end we make the following contributions:

· We propose a generic approach to annotate generated ontology mappings independ-
ently from the used match approach, i.e., the computation of the similarity values. Be-
sides the similarity value, the mapping annotation shows the stability for each corre-
spondence of the mapping by taking its historic changes into account. Hence, the cor-
respondences can not only be ranked and evaluated using the similarity value but also
by considering the computed stability values.

· We define two stability measures quantifying the evolution of similarity values for a
given concept correspondence. While the average stability considers changes during
evolution steps, the weighted maximum stability inspects stability w.r.t. the current
similarity value.

· We show results of a first evaluation using the proposed approach in an example do-
main, the life sciences. In particular we use the stability measures to classify the corre-
spondences of a mapping into several groups, such as accepted, candidates, and ques-
tionable.

The rest of the paper is organized as follows. In Section 2, we introduce the approach
and define the stability measures. Section 3 shows the evaluation results for life science
applications. We discuss related work in Section 4 before we conclude in Section 5.

Figure 1: History of similarity values for
Gene Ontology correspondences

278



2 Evolution-aware ontology mappings

In this section we first introduce a versioning scheme that is used for the definition of
version-based correspondence similarity. We then motivate and define two stability
measures that characterize the correspondence similarity over several versions.

2.1 Versioning scheme and correspondence similarity

Since different ontologies as well as secondary data are typically developed independ-
ently, new versions of different ontologies A and B are usually not introduced at the
same time. Figure 2 schematically illustrates the evolution process for two ontologies A
and B and a secondary data source D over time. Each diamond represents a new ontol-
ogy version and each cylinder indicates changes in the (instance) data of D.

We start with two initial versions A1 and B1. After
a while a new version B2 comes up whereas A1 is
still the current valid version for A. We bridge this
gap by introducing a virtual version for A (A2) that
is, of course, equivalent to A1. By doing so we may
only consider matching ontologies of the same
virtual version, e.g., A2 and B2. Note from Figure 2
that new versions for A and B need not be intro-
duced alternately but an ontology version (A3) may
outlast several versions of the other ontology (B5
and B6). Since changes in the secondary data

source D may also affect the results of ontology matching, we additionally introduce
new virtual versions when such changes occur (see A4 and B4). In summary, during an
evolution step i#i+1 from a virtual version i to i+1 at least one of the participating
ontologies (A or B) or a secondary data source (D) used for matching has changed.

In the following, we consider concepts a and b from the ontologies Ai and Bi (of a virtual
version i), respectively, and a match technique m. We do not make any assumption about
the matcher to keep our approach generally applicable. For the similarity computation a
matcher may not only use the concepts a and b itself, e.g., the concept names, but may
also utilize other parts of the involved ontologies Ai and Bi, e.g., their structure or associ-
ated instances of a source Di.

We denote the similarity between a and b as sim(a,b,m | Ai,Bi) with a&Ai and b&Bi, i.e.,
the concept similarity determined by a matcher m between a and b is defined in consid-
eration of the ontologies in their versions Ai and Bi. Since ontology evolution may be
triggered by concept additions and deletions, it is not given that a concept a is always
contained in all versions Ai (i=1…n). Thus, we further define simi(a,b,m) as the corre-
spondence similarity between two concepts a and b w.r.t. a version i.
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Figure 2: Schematic illustration
of the versioning scheme
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If (at least) one of the two concepts does not appear in the considered versions the corre-
spondence similarity simi(a,b,m) is set to the minimal value of 0. This definition allows
for an easy similarity comparison between two concepts over different virtual versions.

2.2 Definition of stability measures

We aggregate the different similarity values of a given correspondence by calculating
stability measures which consider the similarity value of a current version n as well as
the k>0 previous versions. However, the maximum number kmax of available previous
versions is limited by both the correspondence (a,b) and the applied matcher m. Obvi-
ously we may only consider versions from the time when both concepts a and b have
been appeared together in the involved ontology versions for the first time. Moreover,
we further restrict kmax to the first version with simi(a,b,m)>0, i.e., we determine the
first version where matcher m calculates a positive similarity value for the correspon-
dence (a,b). Thereby the "initial jump" from 0 to a positive similarity value is not con-
sidered for any stability calculation because we do not want to penalize this as instabil-
ity. Hence, kmax which will be used in later stability definitions is defined as follows:
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Note that this definition is only well-defined if there is at least one correspondence with
simi(a,b,m)>0 within the previous k versions. However, this is not a relevant restriction
because correspondences with simi(a,b,m)=0 for all i<n do not carry evolutionary infor-
mation and, thus, can not be annotated with any stability values.

In the following, we define two stability measures average and weighted maximum. The
first stability captures the average fluctuation of the similarity values over the last k
evolution steps. For a correspondence (a,b) the average stability is defined as follows:
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The measure captures both small as well as big differences of the correspondence simi-
larity (as determined by m) as indicators for an unstable correspondence (a,b). Hence, we
interpret (a,b) as stable if only few and small similarity changes occur during the evolu-
tion process. To that end, the absolute differences of correspondence similarities of con-
secutive ontology versions are summarized for all evolution steps from version n-k to n.
This sum is normalized by the total number of evolution steps (k) giving a value in a 0 to
1 range because each of the k evolution steps contributes a similarity change between 0
and 1. Finally, we compute 1 minus this normalized sum to have an average stability
value of 1 (0) for perfect stability (complete instability).

For a correspondence (a,b), a current version n, and a matcher m we further define the
weighted maximum stability for the last k evolution steps as follows:
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The idea of weighted maximum stability for a correspondence (a,b) is to identify how
close similarity values are to the current similarity simn(a,b,m), i.e., we focus on version
n to assess the stability within the last k evolution steps. For a version n-i we therefore
consider the distance of simn-i(a,b) to the current similarity simn(a,b). This distance is
normalized (weighted) by the number of evolution steps (i) and, thus, differences in later
versions have a higher impact than in previous versions. This allows us to inspect trends,
i.e., to evaluate if the evolution of a correspondence similarity is constant, slightly in-
creasing (decreasing) or gamboling within the last versions. The maximum value over all
considered versions i defines the maximum deviation and indicates the stability. Again,
we compute 1 minus this max-value so that complete stability (instability) is equal to 1
(0). If and only if all previous similarities simi of the considered correspondence (a,b) are
equal to the current similarity simn, we calculate a perfect stability with stabWM=1.
Contrary, the minimal weighted maximum stability of 0, i.e., complete instability, is
obtained if and only if |simn(simn-1| = 1, i.e., the correspondence similarity has changed
from 0 to 1 (or vice versa) during the last evolution step n-1#n.

Example: Figure 3 (left) shows an example for the evolution of similarity values for
three correspondences. All correspondences have a similarity value of 0.9 in the current
version (n=6) but show a different behavior in the previous k=5 versions. Figure 3 (right)
also illustrates the computation of both stability measures, i.e., stabAvg6,5 and stabWM6,5.
The first correspondence is very stable over all considered versions and, thus, achieves
high stability values. By contrast, the second correspondence shows high fluctuations
which diminish in the last versions. Thereby the average stability is rather low but the
correspondence obtains a high weighted maximum stability. The similarity values of the
third correspondence are in a very similar range for the first five versions but we observe
a steep increase from version 5 to 6. This behavior is reflected by a high average stability
together with a low weighted maximum stability because the change in the last evolution
step primarily accounts for the computation of the weighted maximum stability.

The given example illustrates that the proposed stability measures quantify different
aspects of the stability over a period of versions. We will further demonstrate the useful-
ness of our stability measures in the following evaluation.
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Figure 3: Computation of stability values for three example correspondences
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3 Evaluation

In this section we show the results of a first evaluation of our approach in order to dem-
onstrate its benefit and practicability for assessing (available) ontology mappings. For
this initial work we utilize the life sciences as an example domain. In this domain a huge
amount of (meta-)data is generated and the very active research community often revises
data due to new (experimental) findings. Among others this process regularly triggers
new versions of ontologies and instance data sources that use ontology concepts for
semantic annotation of their molecular-biological objects, e.g., genes or proteins.

For this evaluation we consider the two sub-ontologies Biological Processes (BP) and
Molecular Functions (MF) from the popular Gene Ontology (GO) [Go04]. These two
ontologies consist of 15,131 and 8,827 concepts, respectively (as of Apr. 2008). Fur-
thermore, the evaluation takes into account associated instance data of Ensembl
[HAB+06], a data source containing proteins annotated with ontology concepts of the
GO. Particularly, Ensembl of July 2008 comprises 46,704 proteins which exhibit 80,705
(100,195) annotations to BP (MF). Referring to our versioning scheme we consider 26
different versions (from Feb. 2004 to July 2008) due to changes in the ontologies and
modifications in the associated instance data.

3.1 Quantitative statistics

We utilized an instance-based match approach that we have already applied in the life
sciences [KTR07] and in e-commerce [TKR07]. The similarity between two concepts is
thereby derived from the overlap of the instances that are associated to each of the two
concepts. More precisely, we used the similarity measure simmin-3 whereupon each corre-
spondence must have an overlap of at least three instances. Overall, our instance-based
match approach computed 3,280 match correspondences between MF and BP for the
latest version (26). All correspondences exhibit a minimum similarity value
(sim26(a,b,min-3)) of 0.8.

In a first analysis we inspect the presence of match correspondences in different ver-
sions, i.e., we determine how many correspondences of version 26 are also present in
previous versions (1-25). Figure 4 illustrates the cumulative frequency of correspon-
dences w.r.t. the minimal version number representing the first occurrence of a corre-
spondence. We observe an almost linear slope from version 1 to 22 (see Figure 4: linear
fit) followed by a considerably increasing number of correspondences that are only pre-
sent in the last five versions. Approx. 76% of all correspondences (2,497) have at least
five versions, i.e., they exist since version 22 or earlier. Since the significance of stability
information is limited for correspondences appearing in only a few versions, we consider
these 2,497 correspondences in the following investigation.

We utilize our stability measures in the following way. On the one hand, we set k=25
(i.e., the complete history) for average stability (stabAvg26,25) to reflect long-term stabil-
ity of a correspondence. Note that this does not imply that all correspondences must
appear in all previous 25 versions. The stability measure definitions make sure that
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stabAvg26,25 is well-defined for all 2,497 correspondences due to the use of kmax. On the
other hand, k=4 is used for weighted maximum stability (stabWM26,4) to assess a corre-
spondence short-term stability, e.g., trends in the recent history.

A further evaluation scenario deals with the statistical independence of the similarity
measure compared to our stability measures. We aim at establishing new measures
which provide additional benefit to annotate ontology match results. For this purpose, we
distinguish groups of similarities (each of size 0.01) between 0.8 and 1 for the latest
version and calculate the average stabAvg26,25 and stabWM26,4 stability in each group (see
Figure 5). The values for stabAvg26,25 (stabWM26,4) range from 0.89 to 0.93 (0.85 to 0.98)
having a mean value of 0.92 (0.9) without definite order or trend. Thus, we observed that
the stability measures are statistically independent from the similarity computed by the
match technique. This indicates that the proposed stability measures may be very helpful
for classification of match correspondences.

3.2 Classification of match correspondences

The stability measures may be used to assess computed match correspondences and to
classify them more reliably as match or non-match compared to the sole use of the simi-
larity measure. Note that the following evaluation exemplifies a possible procedure for
supporting a manual match decision based on separating correspondences into several
groups of quality. We leave the use of automatic matching rules for future work.

We use an upper (thigh) and a lower (tlow) threshold for each considered measure
(stabAvg26,25, stabWM26,4, sim26). Correspondences with a value higher than thigh are con-
sidered as the best correspondences w.r.t. the stability criterion, whereas others between
thigh and tlow or lower than tlow are considered as intermediate or insufficient, respectively.

In order to set the thresholds for the stability measures we firstly analyze both,
stabAvg26,25 and stabWM26,4. Figure 6 reveals the cumulative frequency of correspon-
dences w.r.t. the two stability measures in the range of 0.6 to 1. A comparatively small
number of correspondences possesses stability values of about 0.85 or lower in both
measures. Particularly, about 6% (20%) of all correspondences show values lower than

Figure 4: Cumulative frequency of corre-
spondences (w.r.t. their occurrence) in a

version

Figure 5: Average stability grouped by correspon-
dences with a certain similarity in the last version
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0.85 in stabAvg26,25 (stabWM26,4). This is supported by the fact that all cumulative fre-
quencies are nearly stable in the range of 0.6 to 0.85. However, the behavior for
stabAvg26,25 and stabWM26,4 differs for stability values higher than 0.85. While the curve
for stabAvg26,25 highly decreases between 0.85 and 0.95 (from 2,330 to 669), the cumula-
tive frequency of stabWM26,4 slightly decreases (from 1,985 to 1,528). Perfect stability
for stabAvg26,25 (stabWM26,4) is achieved by 377 (1,178) correspondences. As a result,
we set a threshold of 0.85 for both tstabAvg,low and tstabWM,low and thresholds for tstabAvg,high
and tstabWM,high are set to 0.95 (indicated as lines in Figure 6). Furthermore, based on ex-
periences from former match tasks utilizing simmin-3 we set the higher threshold for sim26
(tsim,high) to 0.9. Note that we implicitly adapted tsim,low to 0.8 before (see Section 3.1).

These threshold settings are specific to our match scenario and can differ for other match
tasks since other match data, match techniques and application purposes need to be con-
sidered. For instance, the frequency of ontology modifications depends on the domain
and therefore may influence stability thresholds. Moreover, the number of previous ver-
sions (k) that are respected for stability measuring may depend on the extent of ontology
changes, e.g., only versions after a major ontology release might be considered.

To exemplify our approach we discuss one result table using the described threshold
configuration. Table 1 represents a classification of the correspondences w.r.t. the two
stability measures and the last similarity value. In general, the reliability of the sets of
correspondences decreases from top left to down right. For a better understanding, we
distinguish the results into three groups: I (white), II (light-gray) and III (dark-gray). The
correspondences in group I represent 54.8% (1,368) of all correspondences. They pos-
sess the best quality as they exhibit high values for at least two criteria and no insuffi-
cient criterion. To our understanding they are classified as accepted. Group II covers
15.3% (382) and includes correspondences that mainly achieve intermediate and high
values in each measure. As these correspondences still obtain quite high stability and
similarity values we ranked them as candidates. Finally, group III contains a total of
29.9% (747). These correspondences predominantly possess insufficient values for at
least one of the stability criteria and, thus, are considered as questionable.

In summary, these first evaluation results show that the proposed stability measures can
be used to more precisely classify correspondences of an ontology mapping as match or
non-match. We thereby utilized upper and lower thresholds (see Table 1) in this study.

Figure 6: Cumulative frequency of
stabAvg26,25 and stabWM26,4.

Table 1: Number of correspondences classified
by stabAvg26,25, stabWM26,4 and sim26.
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4 Related Work

Overviews of approaches for ontology matching in general are given in [RB01, ES07].
Match techniques can be roughly categorized into the following groups: metadata-based,
instance-based, or hybrid. More precisely, match techniques consider available informa-
tion of ontologies (e.g., concepts names or descriptions, structure) or utilize associated
data (e.g., instances that are annotated with ontology concepts) to compute match corre-
spondences between different ontologies. However, none of these techniques incorpo-
rates historical information about match correspondences. Hence, our work complements
previous match techniques to enhance their match results by considering evolutionary
information of correspondences to produce more stable mappings.

The evolution of ontologies was primarily studied in the context of the Semantic Web.
Versioning of ontologies was investigated by Klein [KF01,Kle04]. Furthermore, [NK04]
defined change operations to describe the evolution between ontology versions. Supple-
mentary, [SMM+02, SM02] formulized the process of ontology evolution by proposing
strategies to unambiguously handle critical ontology changes. Whereas these approaches
focus on consistent evolution and versioning of ontologies, we look at the evolution of
correspondence similarities to produce more stable match results, i.e., we neither do
change ontologies themselves nor migrate dependent instances if ontologies evolve.

The combination of both matching and evolution is investigated within the model man-
agement framework of Bernstein et al [BM07]. The schema evolution problem described
in [Ber03] utilizes operators such as match, compose and diff to adapt views that would
break if a schema evolves to a new version. The approaches proposed in [VMP03,
YP05] can be seen as a part of this framework. Whereas [VMP03] presented a frame-
work for incremental adaptation of schema mappings as participating schemas evolve,
[YP05] studied the mapping adaptation by employing mapping composition and pruning
techniques. These approaches differ from ours in that they reuse match results to effi-
ciently compute new mappings (e.g., for views) if schemas change.

The evolution of association rules has been studied in data mining. Particularly, [AG95]
proposed to monitor rules in different time periods by considering changes in their sup-
port and confidence. An advanced approach presented in [LHM01] aims to find funda-
mental association rule changes. Similar to mapping correspondences, association rules
also relate (sets of) items to describe semantic relationships. However, data mining ap-
proaches attempt to detect rules that significantly differ in their evolution from others
whereas we focus on finding the most stable correspondences in an ontology mapping.

5 Conclusions and future work

We presented an evolution-based approach for assessing ontology mappings. The ap-
proach utilizes two stability measures taking the history of correspondences w.r.t. their
computed similarity values into account. While the average stability considers changes
between all consecutive ontology versions in the analyzed evolution history, the
weighted maximum stability inspects stability w.r.t. the computed similarity value of the
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current mapping. In addition to the similarity values, the proposed stability values can be
used to rank and evaluate the correspondences of an ontology mapping. Moreover, the
stability values are useful to classify correspondences into several groups such as ac-
cepted, candidate and questionable. The approach is complementary to existing match
approaches that do not consider historical information of correspondences. Furthermore,
it is generic in that it can be applied independently from the utilized match technique.
The defined stability measures offer the possibility for an individual (application-
specific) adjustment. The results of a first evaluation using ontologies of the life science
domain show the usability of our approach to classify mapping correspondences.

In future work, we will comparatively analyze and hence prove the applicability of our
approach in different domains, e.g., product catalogs in e-commerce or matching web
directories. Moreover, we will establish alternative stability measures by taking further
knowledge into account, e.g., the structure of ontologies that participate in an ontology
mapping. Finally, the management of versioned ontology mappings and the efficient
computation of stability measures will be investigated in more detail.
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