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Abstract: Carbon Labeling Systems (CLS) are large equation systems that describe
the dynamics of labeled carbon atoms in a metabolic network. The rapid solution
of these systems is the algorithmic backbone of13C Metabolic Flux Analysis (MFA)
which has become one of the most widely used tools in Metabolic Engineering. A
new algorithm is presented for the solution of CLS which is not based on iteration
schemes or numerical linear algebra methods but on path tracing of labeled particles.
It is shown that the set of all paths from the system input to the internal network nodes
directly gives the clue to an explicit solution of CLS. The promising potential of this
new solution algorithm are outlined.

1 Metabolic Flux Analysis

In recent years Metabolic Flux Analysis (MFA) by using13C isotopes has become one
of the most widely used tools in Metabolic Engineering [Wi01, W02]. MFA allows to
determine quantitatively all fluxes in the central metabolism of a micro organism or higher
cell. The metabolic flux maps resulting from this analysis serve to compare different
strains of a micro organism to diagnose the effects of a genetic manipulation or even give
hints to further improve the production capabilities of a given organism.

MFA is based on a carbon labeling experiment where13C labeled substrates are fed to
the cells. The13C isotopes are then distributed all over the metabolic network due to the
metabolic activity. Finally, the enrichment of13C isotopes in the intra-cellular metabo-
lite pools tends to an isotopically stationary state, which means that constant fractions of
unlabeled and labeled carbon atoms are encountered in all pools. In this state the isotope
enrichment is measured by NMR or MS instruments [Sz98]. From this measurement data
the metabolic fluxes are estimated based on a mathematical model of the carbon labeling
dynamics in the system.

The sole biological knowledge that is required for this procedure is the biochemical struc-
ture of the metabolic network, and the carbon atom transitions in each single reaction step.
This knowledge is rather well established for central metabolism, but the method can also
be used to distinguish between network variances.
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1.1 Modelling Carbon Atom Flow

The central concept for the modeling of carbon labeling systems (CLS) is that of an iso-
topomer of a metabolite. If a certain metabolite hasn carbon atoms then there are2n

differently labeled types of this metabolite, depending on whether each single carbon
atom position is a12C or 13C isotope. These different types are called the isotopomers
of a metabolite. Isotopomers are quantified by isotopomer fractions which must neces-
sarily sum up to one, that is 100%, for each metabolite pool. The number of different
isotopomers of all metabolites in the central metabolic pathways can be quite high, be-
cause metabolites with up to 12 carbon atoms occur. This gives rise to high dimensional
equation systems that must be solved in MFA.

The mathematical centerpiece of MFA is given by the stoichiometric balance equations for
the metabolic fluxes (N stoichiometric matrix;v flux vector)

N · v = 0 (1)

together with the isotopomer labeling balance system [WMI+99, SCNV97].

f(v,xinp,x) = 0 (2)

In this generally non-linear equation system the vectorx combines all isotopomer fractions
of all metabolites in the networks. It can havedim f = dim x > 5000. The labeling
statexinp of the substrates fed into the system is known while the flux vectorv is to be
determined from the experiment. Assumingv to be unknown the equations (1) and (2)
allow to compute the labeling statex of the system as a function ofv (cf. Sec. 1.3).

1.2 Solution of Carbon Labeling Systems

For various reasons the solution of the high dimensional non-linear labeling balances with
respect tox must be achieved with a high computational efficiency:

1. The computation of the functionx = x(v) can be considered as a simulation of
the labeling experiment where the metabolic fluxesv are known. Flux analysis
essentially is the inverse problem to this simulation step, which means that a large
number of simulation steps for different values ofv must be done in a parameter
fitting algorithm to match the measured data [WSGM97, WMPG01].

2. The statistical analysis of the estimated fluxes requires the computation of the flux
sensitivities∂x /∂v [WMI +99]. If this is done with high order finite difference
methods a large number of simulation steps is required.

3. The determination of confidence regions for the estimated fluxes is absolutely nec-
essary because biological measurement values are typically rather noisy. In the case
of non-linear systems and non-normal error distributions it is possible to calculate
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confidence regions by aMonte-Carlo-Markov-ChainMethod which requires a large
number of simulation steps [LW04].

4. MFA is applied to more and more complex systems in recent years. This leads to a
growing dimension of the systems and the computational effort becomes critical.

1.3 Existing Solution Algorithms

Several numerical algorithms have been developed to solve the equation system (1) and
(2). They can be classified into the following three approaches:

1. Iterative methods based on standard numerical iteration schemes generally produce
the wanted results but their convergence can be slow and depends on the flux vec-
tor v [SCNV97, YWH04].

2. It could be shown in [WW01] that the state vectorsx andxinp can be linearly trans-
formed in another pair of state vectorsx andxinp of the same dimension, in such
a way that the transformed equations system has basically the same mathematical
structure as Eq. (2).

f(v,xinp,x) = 0 (3)

The new state variables are called cumomer fractions and can be interpreted as la-
beled carbon atoms, pairs of carbon atoms, triples of carbon atoms and so on – that
are traced through the network. Basically, the cumomer network has the same struc-
ture as the isotopomer network except for some differences described in [IW03].
However, these differences lead to a powerful mathematical reformulation of the
balance equations. Precisely, the cumomer fraction vector can be partitioned into
a sequence of vectorsx =

(
0x,1x,2x, . . .

)
in such a way that Eq. (3) becomes a

cascade of linear equation systems with non-linear inhomogeneous termsib:

0x = 1
0 = iA(v) · ix +ib

(
v,xinp,0x,1x, . . . ,i−1x

)
i = 1, 2, . . . (4)

This cascade directly suggests a non-iterative successive solution algorithm that
solves one stage of the cascade after the other by e.g. the Gaussian algorithm. How-
ever, linear equation solving algorithms generally are of complexity O(n3), so that
this method becomes more and more time consuming with growing system dimen-
sions [WMI+99].

3. Several authors tried to derive explicit formulas for the solution of the equation sys-
tem which is possible from the cascade (4) [KPSS99]. It turns out that the explicit
solutions are always rational functions of the fluxes [IW03]. However, since com-
puter algebra systems were applied to find explicit solutions this was only possible
for small or strongly reduced metabolic networks whereas complex networks lead
to a tremendous computational effort.
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Figure 1: left: an example linear flux network; right: transformation of fluxes intoinflux probabilities

This contribution presents a new algorithm for solving the balance equations which is of
type 3, but is able to produce a complete explicit solution in a recursive form without any
restrictions on the network size. The new algorithm is based on a complete path tracing
of labeled particles through the metabolic network. This is also the way a biologist deals
with CLS and thus is close to the way of thinking in biochemistry. However, the attempt
to derive a solution algorithm from this path tracing intuition has not been successful up
to now. The reason is that many cycles occur in the metabolic network and path tracing
involves an infinite number of possible paths that connect the input substrates of the system
with any other pool. A solution can only be successful if this infinite set of paths can be
represented in a finite way. It will turn out in the following, that this finite representation
is directly being achieved by the application of KLEENE’s theorem using the classical
algorithm for the derivation of the regular expression from a finite automaton.

2 An illustrative Example

2.1 Balance Equations

Figure 1 shows the graph of a simple linear flux network. All metabolites have just one
carbon atom and therefore all reactions between metabolites are mono-molecular, which
reduces cascade (4) to a single stage – nevertheless a representative example, because
the stages of the real cascade are made up likewise. Each node corresponds to a set of
carbon atoms, called apool, in which each atom can be characterized as being labeled
(13C) or unlabeled (12C). Each carbon atom pool can be described by the percentage of
labeled carbon atoms. The directed edges in the graph correspond to chemical reactions
between the different metabolite pools. In the following, a sans-serif upper case letter (e.g.
A) stands for a node, and a lower case letter (e.g.a) denotes the corresponding labeling
fraction. Edgesi are labeled with aVi whereas the reaction’s flux value is denoted byvi.

Based on the graph in Fig. 1, the stoichiometric equations (5, left) are formulated first.
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They describe the underlying system in a metabolic stationary state. Their predication
is that the overall in- and out-flux of every single metabolite pool, excluding input- and
output pools, have to compensate.

B : v1 + v3 + v5 = v4 + v6
E : v2 + v4 = v5 + v7

⇒ v1a+ v3d+ v5e = (v4 + v6) b
v2d+ v4b = (v5 + v7) e

(5)

Given the labeling fractions in the input-poolsA and C it is now possible to quantify
the stationary13C labeling fractions of the inner pools. Because of the linearity of the
example network every labeling in- and outflux can be described as a product of a labeling
fraction and a flux value. The flux value describes the total transported material (12C and
13C) and the labeling fraction the percentage of the involved13C atoms. With help of the
stoichiometry this leads to the labeling balance equations (5, right). With knowledge of the
flux values, which have to satisfy the stoichiometry (5, left), a linear system of equations
(6) can be obtained from which the unknown fractionsb, e in the nodesB andE can be
computed (note thatc = b andf = e):(

v4 + v6 −v5
−v4 v5 + v7

)
·
(
b
e

)
=

(
v1a+ v3d

v2d

)
(6)

This linear system can be solved by any common method like the GAUSSalgorithm. How-
ever, we here introduce a new approach and compare both approaches in section 4.

2.2 From Flux to Flux Probability

The basis for path tracing is a change of viewpoint from fluxes toflux probabilities. The
idea comes from Eq. (5, right) by solving the equations for the balanced labeling fraction.
PoolB for example yields:

b =
v1

v4 + v6
a+

v3
v4 + v6

d+
v5

v4 + v6
e =

1
v1 + v3 + v5

(v1 a+ v3 d+ v5 e) (7)

If the common denominatorv4+v6 is replaced with the equivalent expressionv1+v3+v5
from Eq. (5), the labeling fractionb of nodeB is solely described by the incoming flux
values and the labeling fractions carried along. A physical interpretation for the occurring
quotients are the probabilities that a labeled carbon atom in poolB originates from one
of the poolsA, D or E. Theseinflux probabilitiescan also be understood as conditional
probabilities. Under this perspective it is convenient to interpret the labeling fractions
a, b, d, e ∈ [0, 1] as probabilitiesP (A), P (B), P (D), P (E), as well. This leads to an
alternative formulation for Eq. (7):

P (B) = P (A) · P (A|B) + P (D) · P (D|B) + P (E) · P (E|B) (8)

By using this simple procedure, every balance equation can be converted into an equation
of probabilities. Equation (8) resembles the equations customary in context of theMarkov
Chainmethods and is known as the law of complete probability.
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2.3 Regular Expressions describe Paths

In preparation for path tracing all fluxes need to be transformed intoinflux probabilities, as
shown in Fig. 1. From now on, paths will be described asedge-words– i.e. words, whose
symbols are edges of the network graph (e.g.V1V4V5V6). Interpreting the discussed
graphs as state transition graphs of finite state machines, certain sets (regular languages
over the alphabet given by the set of edges) of these paths can be compactly represented as
regular expressions. An example is the infinite set of the paths fromA to C, which can be
represented by the regular expressionV1(V4V5)?V6. If R is such a regular expression then
L(R) is the set of paths generated byR. By abuse of notations, theLwill be omitted in the
following so that the regular expressionR directly represents the set of paths it generates.

To determine a labeling fraction of a yet indeterminate pool all arriving reaction paths
(including their probabilities), coming from the input pools (A andD in the running ex-
ample), must be known. For instance, to determine the labeling fractione of pool E the
following paths have to be considered (amongst others):

A → E : V1V4

D → E : V2, V3V4
(9)

The probability to walk through the graph along a certain path (e.g.V1V4) equals the
product of the single step probabilities. Correspondingly, a probability can be assigned to
each path:

P (V1V4) = P (V1) · P (V4) = P (A|B) · P (B|E)
P (V2) = P (D|E)
P (V3V4) = P (V3) · P (V4) = P (D|B) · P (B|E)

(10)

The pathsV2 andV3V4 areparallel, since they describe different ways to reach nodeE,
starting at nodeD (cf. Fig. 1). Therefore, the joint probability to reach nodeE via one or
the other path equals the sum of probabilities of both paths:

P (V2 + V3V4) = P (V2) + P (V3V4) (11)

Here, the different meanings of the ’+’-operator must not be confused: on the left is signi-
fies a set union of regular languages, while on the right it really means the addition of two
probability values.

In this example the complete set of paths not only consists of the three mentioned paths,
but is in fact infinite. This is due to of the cycle through nodesB andE, i.e. paths can
loop arbitrary often before they finally end in nodeE. Exactly as in the context of the
traditional regular expressions this infinite set of paths can be described compactly by help
of the KLEENE-operator(?). The complete set of paths arriving in nodeE are:

pathsD → E :
{V2, V2V5V4, V2V5V4V5V4, . . .} ∪ {V3V4, V3V4V5V4,V3V4V5V4V5V4, . . .}

≡ V2(V5V4)? + V3(V4V5)?V4 ≡ (V2 + V3V4)(V5V4)?

pathsA → E :
{V1V4, V1V4V5V4, · · ·} ≡ V1(V4V5)?V4

(12)
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As mentioned before, the probability values of parallel paths have to be added. Therefore
the infinite set of edge-words described by a regular expression over the set of edges (from
now on calledregular pathfor short) containing the KLEENE-operator generates an infinite
sum of probabilities. Example:

P (V2(V5V4)?) =
∑

ϕ∈V2(V5V4)?

P (ϕ) = P (V2) ·
∑

ϕ∈(V5V4)?

P (ϕ)

= P (V2) ·
∞∑

i=0

[P (V5)P (V4)]
i =

P (V2)
1− P (V5)P (V4)

(13)

Here, the cycle denoted by the KLEENE-operator generates an infinite geometric series of
which probability value can be expressed compactly by the corresponding series value.

3 General Path Tracing Algorithm

3.1 Path Evaluation Rules

Summarizing, letG = (V,E, P ) be a graph of a flux network labeled with probabilities.
Let V be a set of nodes (=pools),E ⊆ V × V a set of directed edges,X,Y ∈ V and
Q,R regular expressions over an alphabetE. LetP : E 7→ [0, 1] be the probability value
assigned to every edge. Then the ability to evaluate an arbitrary regular path into a prob-
ability value follows by the recursive rules given in Tab. 1. In particular, the definitions

Table 1: recursive rules for evaluation of regular paths

regular path type evaluation rule

reg. paths of length one (edges) P (Vi) := P (X|Y) with Vi = (X,Y) ∈ E
concatenated regular paths P (QR) := P (Q) · P (R)
parallel regular paths P (Q+R) := P (Q) + P (R)
cyclic regular paths P (R?) := 1 /[1− P (R)]

give a finite, recursive method to evaluate any regular pathR by P (R) =
∑

ϕ∈R P (ϕ).
For example, the evaluation of the regular paths in (12) yields in an explicit solution for
the labeling fraction of nodeE with a clear discrimination of the labeling proportions
contributed from the input poolsA andD:

P (E) = P (A) · P (V1)P (V4)
1− P (V5)P (V4)

+ P (D) · P (V2) + P (V3)P (V4)
1− P (V5)P (V4)

(14)
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3.2 An Implementation based on the Kleene Algorithm

An implementation of the sketched method has to compute regular expressions for all paths
between nodes with known labeling fraction and nodes with unknown labeling fraction.
A priori, the only known labeling fractions belong to the input nodes. The straight forward
method to determine a node’s yet unknown labeling fraction is to evaluate the regular
expressions representing the sets of paths coming from the different input nodes.

The problem of determining a regular expression representing a set of paths between two
nodes can solved by the KLEENE algorithm, which was presented in 1956 within S.C.
KLEENE’ S famous proof on the equivalence of regular languages and finite state machines.
The algorithm was generalized by MCNAUGHTON and YAMADA in 1960. The concept
of an algebraic structure calledclosed semiringwas formulated, which can be seen not
only as the underlying principle for the KLEENE algorithm, but also for the widely known
graph algorithms by WARSHALL (reflexive and transitive hull, 1960) and FLOYD (all-pair
shortest path, 1960) [AHU74].

1 −− initialization of the adjacency matrixV0, N = |V |

2 ∀i, j ∈ {1, . . . , N} : V0
ij ←

{
P (Vk) iff Vk = (i, j) ∈ E
0 otherwise

3 −− tracing of all paths / calculation of a transitive, reflexive hull
4 f o r k i n 1 . .N loop
5 f o r i, j i n 1 . .N loop
6 Vk

ij ← P
(
Vk−1

ij + Vk−1
ik

(
Vk−1

kk

)?
Vk−1

kj

)
7 end loop
8 Vk

kk ← Vk
kk + 1

9 end loop

10 −− Evaluation of labeling fractions
11 f o r j ∈ (V − inputnodes) loop
12 P (j)← 0
13 f o r i ∈ inputnodes loop
14 P (j)← P (j) + P (i) · VN

ij

15 end loop
16 end loop

The variant of the algorithm presented here uses an important modification for non-idem-
potent closed semirings1, suggested in [Fl80]. This modification includes a simplified
initialization as adjacency matrix in line 2 and the update step in line 8. Line 6 performs
aneager evaluationof the probability value, so that there is no need to store the regular
path expression itself. In lines 11–16 all unknown labeling fractions are evaluated by using
the law of complete probability.

1i.e. closed semirings with non-idempotent addition operator; used for theadditionof probability values of
parallel paths in this context
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4 Discussion and Future Work

A prototypical implementation of the modified KLEENE algorithm gives correct results for
example networks of realistic size. Moreover a formal proof (not presented here) guaran-
tees the convergence of the generated series expansions. The following points emphasize
the properties of the new approach:

A “natural” approach Solving a CLS by path tracing is a very natural approach
compared to the task of interpretation of the GAUSS algorithm’s abstract results. The
presented method describes the formation of labeling fractions by the superposition of
regular paths between pools which corresponds better with the biologist’s association.

Comparison of path tracing and Gauss algorithm The drawback of the usage of
a conventional, matrix based solving algorithm is usually running time. In case of the
GAUSS algorithm the running time is of orderO(n3), wheren is the number of unknown
quantities. In real networksn can be> 5000. Clearly, the algorithm presented in the last
section has an asymptotic lower bound of running timeΩ(n3 +n), which is slightly worse
than a common implementation of the GAUSS algorithm using thefull pivoting scheme:
Ω(n3/3 + 3n2/2 + n/6). However, in the discussed application the KLEENE-algorithm
does some superfluous work because it constructs regular path expressions betweenall
pairs of nodes in the graph – also between inner nodes, and inner & output nodes – which
are needed during the processing in lines 4–9 but not for the evaluation step in lines 11–16.

Exploiting network topology The application of the KLEENE algorithm can be con-
sidered as prototypical. In fact, we can expect that any algorithm that converts sets of
paths into regular expressions can be used – as long as no redundant paths are added to the
expressions. The computation steps performed by the KLEENE algorithm are independent
from the underlying graph’s topology. Metabolic networks are rather loosely connected
and pools are usually fed by a small number of fluxes. This gives the hint that an algorithm
that starts at the input pools, visiting pools in a breadth-first-search order should be much
faster. It can easily be shown that cycle-free parts in networks, where each pool is fed by
a small number other pools, can be processed in linear time – whereas network parts with
the maximum number of cycles, where each pool is fed by every other pool, lead to at
mostO(n3) computation steps.O(n3) can be seen as a worst case upper bound and we
are hopeful much more efficient algorithms can be formulated.

Code Generation An interesting application of the KLEENE algorithm is code gener-
ation: the above algorithm can be used to generate sequential code which can be compiled
on-the-fly. The compiled code can be used as a plug-in for the parameter fitting algo-
rithm. The resulting speed-up should be significant, since the compiled code is free of
branches and consists solely of floating point instructions. This method takes advantage
from modern superscalar processor architecture and speculative execution.

Numerical robustness Solving a CLS using the GAUSS algorithm involves a large
number of row transformation steps to obtain a triangular matrix suitable for back-substi-
tution. Especially for large systems this procedure leads to an accumulation of numerical
errors in the lower-right matrix elements. In the following back-substitution steps the ac-
cumulated errors are distributed over the results. The KLEENE algorithm does not involve
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any pre-structuring of the system. Thus, it prevents the primary source of numerical er-
rors of the GAUSS algorithm. Solutions are obtained by successive insertion of known
quantities coming from topological predecessors. First experimental results confirm this
intuition but detailed analysis has to done on this topic.
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