T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 377

Understanding Trolls with Efficient Analytics of Large
Graphs in Neodj

David Allen! Amy E. Hodler? Michael Hunger,3 Martin Knobloch? William Lyon;5 Mark
Needham® Hannes Voigt’

Abstract: Analytics of large graph data set has become an important means of understanding
and influencing the world. The use of graph database technology in the International Consortium
of Investigative Journalists’ (IC1J) investigation of the Panama Papers and Paradise Papers or in
cancer research illustrates how analysing graph-structured data helps to uncover important but hidden
relationships. A very current example in that regards shows how graph analytics can help shed light
on the operations of social media troll-networks, e.g. on Twitter. In similar fashion, graph analytics
can help enterprises to unearth hidden patterns and structures within connected data, to make more
accurate predictions and faster decisions. All this requires efficient graph analytics well-integrated
with management of graph data.

The Neo4j Graph Platform provides such an environment. It provides transactional processing and
analytical processing of graph data including data management and analytics tooling. A central
element for graph analytics in the Graph Platform are the Neo4j graph algorithms. Neo4j graph
algorithms provide efficiently implemented, parallel versions of common graph algorithms, integrated
and optimized for the Neo4j transactional database. In this paper, we will describe the design and
integration Neo4j Graph Algorithms, demonstrate its utility of our approach with a Twitter Troll
analysis, and show case its performance with a few experiments on large graphs.

Keywords: Graph databases, graph analytics, graph algorithms, property graphs

1 Introduction

While we perceive ourselves as individuals, it is undeniable, that we are also highly-
connected to everything around us. This contrast of individuals and connections give rise to
two approaches of perceiving and understanding the world. The entity-centered approach
focuses on the individual, it describes the world by primarily characterizing and specifying
individual entities. A classical example of entity-centered is Aristotle’s descriptions of

1 Neo4j, San Mateo, US david.allen @neo4j.com

2 Neo4j, San Mateo, US amy.hodler@neo4j.com

3 Neo4j, Dresden, Germany michael.hunger @neo4j.com

4 Avantgarde Labs, Dresden, Germany mknobloch@avantgarde-labs.de
3 Neo4j, San Mateo, US william.lyon @neo4j.com

6 Neo4j, London, UK mark.needham @neo4j.com

7 Neodj, Leipzig, Germany hannes.voigt @neo4j.com

@Q®® doi:10.18420/btw2019-23

378 David Allen et al.

species by their parts such as live birth, number of legs, etc. during his stay on the Island
of Lesbos. The relationship-centered approach, in contrast, focuses on relationships, it
describes the world by primarily characterizing and specifying the relationships between
individual entities. For instance, the world of the living can be further understood by looking
at relationships among living such as prey—predator and evolutionary relationships.

We are connected to many other individuals, events and things that populate the world around
us, near and far. Connectedness manifests in many different ways, facets, values, scopes,
and scales. To understand reality or parts of it, we have to understand the connectedness that
pervades it, the connectedness that forms its fabric. Because of the multifacet, multiscale
nature of connectedness, the precise connections that help our understanding are not
necessarily apparent, though. Often the interesting connections are intricately hidden in
between many other, different layers of connectedness, or only apparent in transitive paths
spanning many intermediate steps. A classical example of this is a conflict-of-interest
connection of a person with a process the person has a decision power over. A conflict-of-
interest can easily behind an intricate path of affiliation, proximity, relationship, ownership,
coercion, bribery, etc. connections. Other examples are understanding drug-target efficacy
in drug design and environmental impact of genetically modified organisms.

Today’s ubiquity of information technology makes increasing amounts of connected data
from many different sources accessible within an organization and outside of it. Such
data becomes available in various data models. Conceptually the simplest data model of
expressing and describing connected information is the property graph model [RN10]. A
property graph is relationship-centered, it has relationships a first-class citizens. Entities
carry, per instance, arbitrary properties and optional labels to describe their roles. Next to
all the entities of consideration, a property graph explicitly supports the connections these
entities have and — what sets it apart from other common graph data models — describes
connections as rich relationships, with a type and arbitrary properties. A single property
graph can capture whole variety of the connectedness existing in the world and makes it
easy for humans to reason about very big complicated phenomena and their combined
interactions.

Pulling multiple different data source of connections together in a property graph and
analysing patterns of connection by means of graph theory and network analysis often reveals
hidden relationships and structures, characterizes and quantifies them, and provides new
understanding. Two main ingredients to make such an analysis happening are capabilities
for managing graph data and run graph analysis algorithms efficiently even on very large
graphs. Neo4j’s graph platform provides these capabilities, among others. In particular, (1)
the graph platform offers ETL and data integration functionality to extract data connections
from various data formats and moving them into a single graph database. (2) The graph
platform provides high-performance graph algorithms for analysis, that are well integrated
with management capabilities of graph database.

In this paper we provide an overview of the graph platform (Sect. 2) and give a detailed

Understanding Trolls with Efficient Analytics of Large Graphs in Neo4j 379

presentation of the capabilities, design, and architecture of the graph algorithms (Sect. 3).
We demonstrate its utility of our approach with a Twitter Troll analysis (Sect. 4), and show
case its performance with a few experiments on large graphs (Sect. 5). Finally, we discuss
related approaches (Sect. 6) and conclude the paper (Sect. 7).

2 Graph Platform

The graph platform is a well integrated set of tools, surfaces and infrastructure for storing,
managing and querying connected data. At the frontend, the graph platform offers a variety
of skill-specific, user-facing tools and APIs for solution developers, data scientists, and
business users. Each user group has different needs to extract data from various sources,
execute statements, explore query results, update information, perform analytical steps, and
visualize connections. The comprehensive set of well-integrated tools on top of a common
protocol, API, and query language provides efficient means for data scientists and solutions
teams to move through the stages of discovery and design.

To make graph data equally accessible to tabular information, a query language that is able
to express the richness of graph patterns in an comprehensive way is a powerful tool for
developer and end-users alike. With Neo4j’s declarative query language Cypher [Fr18],
which uses graph pattern represented in ascii-art-symbols for pattern matching, creation,
predicates and more, even complex conceptual connections can be expressed. With additional
full support for list and map data structures and means processing those, many round trips
of traditional query languages can be avoided. Built in data-flow paradigms allow users to
clearly express more involved processing pipelines.

The graph platform is extensible with user defined procedures and functions, which are
able to access the full scope of the underlying API and machine infrastructure, while being
exposed as Cypher clauses or expressions. This extension mechanism was also used in our
subsequently described work.

At the backend, the graph platform provides for both analytic and transactional operations.
All operations leverage the efficient traversal of connections provided by the graph store
and embedded in a scalable architecture. The graph platform can scale up to 32 TB of
memory space enabling in-memory and near-memory graph processing on an ultra-large
scale in a single machine. The graph platform can also scale out to multiple machines with
Raft protocol-based [OO14] causal clustering architecture [HA90, Ah95] that supports
ultra-large clusters and a wider range of cluster topologies for distributed data centers and
cloud.

3 Graph Algorithms

Neo4j graph algorithms is a library of user-defined procedures that can be executed on
a Neo4j database. The analysis procedures provide efficient parallel implementation of

380 David Allen et al.

common graph analysis algorithms. The library covers algorithms for path finding (e.g. all
pair shortest path and minimum weight spanning tree), centrality analysis (e.g. parge rank
and betweenness centrality), and community detection (e.g. label propagation and louvain
modularity), as of now. The procedures can be called directly using Cypher in the Neo4;j
Browser, from the cypher shell, from Jupyter notebooks or any other client code. For running
these algorithms a (projected) (sub-)graph of data is concurrently extracted from Neo4;j
into a separate, in-memory graph-storage to provide isolation and high read-only operations
performance. Then the appropriate algorithm is executed concurrently on that graph storage,
taking graph structure and additional information such as node- or relationship-weights into
account. After the computation finished, the results can either be streamed to the client
or optionally written back efficiently in a concurrent manner, e.g. to node-properties or
relationships.

The general call syntax to call a analysis procedure is:

CALL algo.<name>(<nodeSelector>, <relSelector>, {<config>})
YIELD <columnList>

Here, <name> specifies the procedure to call, <nodeSelector> and <relSelector> specify
the graph of interest, <config> provide additional parameters of the procedure, and
<columnList> specifies, which column of output of the procedures should be returned. Most
algorithms provide graph processing statistics and time measurements as well as statistical
summaries of the computed graph metrics (e.g. min, max, avg, stdev, and percentiles of a
centrality). An alternative variant of each algorithm is available as algo.<name>.stream
which instead streams back the algorithm results in multiple columns of data. That volume
would be equivalent to the size of the graph of interest, potentially billions of rows.

Process: All analysis procedure follow the same three-step process. (1) Load the graph of
interest in parallel from the database into a succinct in-memory data structures. (2) Run
graph algorithm in parallel. (3) Consume results. If multiple procedures should be executed,
the graph of interest can be pre-loaded once and then referred to by name.

3.1 Graph Loading

Typically, the property graph managed in the database contains much more information than
relevant for a certain analysis step. In such case, the (sub)graph of interest is a projection of
the managed property graph. The projected graph is either a directed graph or undirected
graph with the possibility of node and relationship weights. The projected graph is not
multigraph (like a property graph) and allows only a single edge between a pair of nodes in
each direction.

Projection: The graph algorithms library provides two kinds of projection: (1) label-based
projection and (2) Cypher-based projection. Label-based projection extracts all nodes with
a label given as <nodeSelector> and all relationships of a type given as <relSelector>.
For instance,

Understanding Trolls with Efficient Analytics of Large Graphs in Neo4j 381

CALL algo.pageRank('Page', 'LINKS')

calls the procedure pageRank on nodes with label Page and relationships of type LINKS.
If either or both are left off then the algorithm will run on all entities of the respective,
connected type.

In contrast, Cypher-based projection extracts a subgraph based on two Cypher queries. The
first query given as <nodeSelector> specifies the nodes of interest as a node-id-list and
the second query given as <relSelector> specifies the relationship of interest as a list of
start-end-node-ids. For instance,

CALL algo.pageRank(
"MATCH (u:User) WHERE exists((u)-[:FRIENDS]-()) RETURN id(u) AS id",
"MATCH (ul:User)-[:FRIENDS]-(u2:User)
RETURN id(ul) AS source, id(u2) AS target",
{graph:"cypher"}
)

calls the procedure pageRank on a graph containing (1) nodes that match the pattern
(u:User) and have at least one FRIENDS relationship and (2) relationships of type FRIENDS
between two nodes with label User. Note that relationships that do not have both source and
target nodes described by the <nodeSelector> will be ignored. This projection is presenting
a graph view over the existing data and can be used to contract or aggregate the graph or
collapse intermediate paths. For instance, it can be used to render a user-to-user graph from a
social network via intermediate mentions, jointly used tags or replies on messages. Or it can
provide category or product similarity graphs based on joint reviews or purchases by users.
With the Cypher-based projection, any n-partite graph can be projected to a mono-partite
graph for the means of running graph analysis.

Efficient Loading: To quickly load the relevant sub-graphs from Neo4;j into the dedicated
data structures, the library uses low level APIs of the graph database to avoid memory
churn and preferably only use primitive numeric types. During the loading the id-space of
the original graph is remapped to a consecutive id-space in the algorithm space to allow
for gap free operations and iteration. The load operations are executed in parallel with
the given concurrency, each thread operating on a batch of graph records at a time. For
graph projections via Cypher we utilize the compiled runtime that turns Cypher queries
into efficient Java bytecode. There we use Cypher’s pagination capabilities to distribute the
loading across concurrent threads.

Graph representation: The graph algorithm library uses a dedicated in-memory represen-
tation of the projected graph data. This allows for isolation from the transactional graph, for
holding arbitrary graph projections and for high-performance random access. These data
structures are presented with a thin, numeric-id based API to each algorithm, which allows
for different implementations. Different aspects of the graph API are separated and can
be passed individually to an algorithm according to its needs. The projected, potentially
huge graph is stored in-memory in a succinct way. Particularly, all nodes are mapped to a

382 David Allen et al.

compressed, dense integer domain. The mapping is stored (1) in a dense array used to map
the dense integer domain back to the original node ids and (2) in a sparse array to map the
original node ids forward to the dense integer domain.

Relationships without weights are stored in a CSR-like structure [Bu09]. A source node
id-indexed, paged array holds the position of each node’s adjacency in a second array.
Target node ids are delta and variable length encoded per adjacency. For relationships with
weights the adjacency of a node is represented with two arrays, one for the target nodes
and one for the weights. Depending on the algorithm’s needs, the only incoming edge are
presented or the adjacency is additionally replicated as outgoing edges. The representation
is designed to scale to very large graphs of billions of edges. The loader allocates only the
structures needed, e.g. weight entries are not created for default values or not at all if node
or relationship weights are not needed.

After an algorithm is finished using the graph structure it is able to release that memory to
make it available for further processing.

3.2 Algorithm Execution

Tab. 1 lists all algorithms currently available as procedure in Neo4j graph algorithms. There
are algorithms for centrality measuring, path finding, and community detection. For each
algorithm, we reference work on which its implementation is based on.

All-Pair Shortest Path [Di59, KS91]
K Shortest Path [Ye70, Ye71]
Path Finding Single—S?urce Shortest Path [MSO03, Ma07]
K Spanning Tree [Pr57]
Minimum Spanning Tree [NMNOI1]
A* Shortest Path [HNR6S]
Betweenness Centrality [Fr77, BrO1, BPO7, Ko13]
Closeness Centrality [Ba50]
Centrality Measuring Dangalchev Centrality [Da06]
Harmonic Centrality [MLO00]
PageRank [MROS5, GZB04]
Label Propagation [RAKO7, F114]
Louvain Modularity [BIO8, Wil4]
Community Detection Triangle Counting and Clustering Coefficient ~ [Ts08, CC11]
Strongly Connected Components [Ta72, MNS17, SRM14]
Balanced Triads [He58, F163]

Tab. 1: Graph analytical algorithms implemented in Neo4j graph algorithms.

Each algorithm utilizes the provided graph representation to optimally batch and execute
partial operations concurrently. The partial operations are orchestrated by a concurrency
infrastructure that handles utilization and work redistribution. This allows threads that finish
earlier to pick up work from threads computing metrics for nodes with a higher degree. For

Understanding Trolls with Efficient Analytics of Large Graphs in Neo4j 383

the implementation of the algorithms we evaluated and implemented the latest state of the
art research with dedicated focus on parallelization and scaling.

Each stage of loading, algorithm execution and result production tracks and reports memory
consumption to allow configuration adjustments for future invocations.

3.3 Result Consumptions

The library offers three kinds of result consumptions: (1) write back results, (2) tabular
aggregated results, and (3) tabular streamed results.

Write back results: The non-streaming procedures, write back results to the property graph
in the database as node properties or relationships. This write back uses again low level
transactional APIs and batches updates of larger chunks of the graph (e.g. 100 000 updates
per transaction). By utilizing Neo4j’s transaction-co-commit and joint-flush mechanics, it
can achieve write performance of at least 1 M record updates per second, depending on
available compute resources and I/O bandwidth.

The non-streaming procedures are indicated by the procedure name not having the suffix
.stream. The parameter write indicates if only statistics should be computed or actual write
back executed. For instance,

CALL algo.pageRank('Page', 'LINKS',
{ iterations: 20, dampingFactor: 0.85,
write: true, writeProperty: "pagerank" })

calls the procedure pageRank with four config parameters. Two, iterations: 20 and
dampingFactor: 0.85 are PageRank algorithm-specific, while write: true triggers a
write back result and writeProperty: "pagerank" specifies the name of the node property
to which the result shall be written back. In this case, the PageRank scores calculated
for each node is written to the property pagerank of that node. Those written back graph
metrics are used to enrich the original graph data and can be used afterwards by regular,
OLTP query processing, e.g. for recommendations, ranking, or other decision making.

Tabular aggregated results: Procedures report the various statistics for the computed
metrics and for operations (projected graph size, timings, memory usage), which the user
can utilize for further processing and monitoring.

Tabular streamed results: Most algorithms can return tabular results also as a tuples
stream. The procedure implementing the stream variant of an algorithm is suffixed with the
name .stream, €.g. algo.pageRank.stream(...). Tabular results are return as a driving
table for further processing to the query that contains the CALL statement and potentially to
the client. In this mode for each node entry in the projected graph one or more computed
metrics are returned. For instance centrality measures, shortest paths, triangle counts,

384 David Allen et al.

and specific triangle triples. This computed information is proportional to the size of the
projected graph, i.e. it can reach billions of result rows produced.

All columns that should be returned must be explicitly selected in the YIELD clause after
the CALL. Which columns are provided is documented for every procedure and can also
be inspected interactively. The driving table can be further processed within Cypher or
returned to the user with a RETURN clause. For instance, the query

CALL algo.pageRank.stream('Page', 'LINKS',

{ iterations: 20, dampingFactor: 0.85 })
YIELD nodeId, score
RETURN nodeId, score ORDER BY score DESC LIMIT 5

calls the procedure algo.pageRank.stream and postfilters its result to return only the ids
and scores of the top five page-ranked nodes.

Summary: The Neo4j graph algorithms procedure library provides a comprehensive set
of graph analysis algorithms. The algorithms are implemented for parallel execution and
operate on succinct optimized in-memory data structures that scale to very large graphs of
interest. The procedures take care of data extraction and result routing. They blend in very
well with Cypher. Cypher queries can call the procedures, specify the graph of interest, and
consume the result for further processing in a seamless, composable fashion.

4 Analyzing Troll Behavior

To demonstrate usefulness and practicality we show how Twitter troll behavior can be
analyzed and better understood with the help of Neo4j graph algorithms. As part of the
House Intelligence Committee investigation into how Russia may have influenced the 2016
US Election, Twitter published the screen names of almost 3000 Twitter accounts believed
to be connected to Russia’s Internet Research Agency, a company known for operating
social media troll accounts. Twitter immediately suspended these accounts, deleting their
data from Twitter.com and the Twitter API. A team at NBC News including Ben Popken
and EJ Fox was able to reconstruct a dataset consisting of a subset of the deleted data for
their investigation and using Neo4j, were able to show how these troll accounts went on
attack during key election moments. NBC News open-sourced the reconstructed dataset and
released it as a Neo4j database. In this section we show how this analysis was conducted
using Neo4j graph algorithms.

4.1 Preparation

Graph data schema: The Neo4j database was constructed from several anonymous sources
who had been collecting election related tweets leading up to the 2016 US Election. These

Understanding Trolls with Efficient Analytics of Large Graphs in Neo4j 385

#y

At / 5
‘BE‘\N Ep{y_'
POsTED
Osr,
&p
~Vig N\ENT\ONS
HAS_TAG
Po,
\’\@\‘\ STep
5>
‘AP\ ME
N,
TJ’ON S
URL

Fig. 1: The property graph schema used to represent the Russian Twitter Trolls dataset in Neo4j.

datasets were combined and imported into Neo4j so that the data is structured as shown
in Fig. 1. The nodes are Tweets, Users (which can also be Trolls), Hashtags, Sources (the
application used to post a Tweet), and URLs mentioned in Tweets. Relationships connect
these nodes, showing for example, users mentioned in tweets and hashtags used. User nodes
representing known troll accounts are additionally labeled Troll.

Exploratory data analysis with Cypher: Once the data was modeled and imported into
Neo4j, Cypher queries permit exploration. Find tweets with the hashtag #thanksobama:

MATCH (u:User)-[:POSTED]->(t:Tweet)
-[:HAS_TAG]->(ht:Hashtag {tag: "thanksobama"})
RETURN * LIMIT 50

Hashtags were used by the trolls to insert themselves into conversations and gain visibility.
We can query the most common hashtags used by the trolls:

MATCH (ht:Hashtag)<-[:HAS_TAG]-(tw:Tweet)<-[:POSTED]-(:Troll)
WITH ht, count(tw) AS num ORDER BY num DESC
RETURN ht.tag AS hashtag, num LIMIT 10

One of the findings reported by the NBC team was that troll tweet volume spiked during
key election related events. We can see that much of the tweet volume occurs leading up to
and immediately following the 2016 US Election. Here we query for tweet volume by day:

MATCH (:Troll)-[:POSTED]->(t:Tweet)

WHERE t.created_str > "2016-10-01"

RETURN substring(t.created_str,0,10) AS day, count(t) AS num
ORDER BY day LIMIT 60

Projected graph of interest: Much of the analysis (including the application of graph
algorithms) was done on a projected monopartite User-to-User graph from the broader
domain graph. For example, we consider a Troll account to amplify another Troll account
when it posts a Tweet that is a retweet of a Tweet posted by another Troll account as

386 David Allen et al.

A
RT unique
@BlackToLive: picture of a

A unique picture RETWEETED black man
of a black man supporting

supporting Trump and
Trump and police

Q <
& S

AMPLIFIED

Fig. 2: Illustration of the projected graph used to run graph algorithms on the Russian Twitter Trolls
dataset.

illustrated in Fig. 2. We construct an projected graph of this retweet network for analysis.

This particular analysis is based on the insight that retweets on Twitter generally indicate

agreement of a message, or at least desire for broader visibility of that message, and that

they also permit a network of authors to limit the amount of original content that needs to

be written in order to push key themes and messages. This projected graph can be expressed

using Cypher:

MATCH p=(rl1:Troll)-[:POSTED]->(:Tweet)
<-[:RETWEETED]-(:Tweet)<-[:POSTED]-(r2:Troll)

RETURN p LIMIT 1

This is however only one of the possible projections, others could be based on mentions,
replies, or jointly used hashtags for topic analysis.

4.2 Analysis

For the analysis, we apply two graph algorithms. Centralities measures helps us detect who
are the most influential troll accounts. Subsequently community detection helps to answer
which Troll accounts are strongly connected through Retweets.

Centrality: Centrality algorithms determine the most important nodes in the network. In
the context of our retweet graph, centralities will allow us to determine the most influential
accounts.

We can run PageRank on the projected graph:

CALL algo.pageRank(
"MATCH (t:Troll) RETURN id(t) AS id",
"MATCH (rl1:Troll)-[:POSTED]->(:Tweet)
<-[:RETWEETED] - (: Tweet)<-[:POSTED]-(r2:Troll)
RETURN id(r2) as source, id(rl) as target",

Understanding Trolls with Efficient Analytics of Large Graphs in Neo4j 387

{graph:"cypher", write: true, writeProperty: "pagerank"}
)

The above Cypher statement will write a pagerank property to the Troll nodes. We can use
Cypher to find the trolls with the highest pagerank score, and are thus the most influential in
the network by this measure:

MATCH (t:Troll) WHERE exists(t.pagerank)
RETURN t.screen_name AS troll, t.pagerank AS pagerank
ORDER BY pagerank DESC LIMIT 25

With a slight modification of this query, we can assign (SET) each of the most influential
trolls a random seeding community number:

MATCH (t:Troll) WHERE exists(t.pagerank)

WITH t ORDER BY t.pagerank DESC LIMIT 25

SET t.community = toInteger(round(rand()*1000))
RETURN t

Community detection: Community detection algorithms are applied to this projected
network to partition the graph. In the context of the retweet graph community detection
will illustrate which accounts are frequently amplifying others. We want to see if there
are clusters of troll accounts that are promoting certain types of content. For example, are
certain accounts focused on pro-Trump content while others are focused on anti-Clinton
content?

Here we partition the graph into communities using the Label Propagation algorithm. Label
propagation is a particularly fast algorithm for finding communities in a graph. As we are
particularly interested in communities around the most influential trolls, we use the algorithm
in a semi-supervised way and seed it with the community property we have assigned to
these trolls. Then run, the algorithm adds to a community property to all remaining nodes
and updates the property values so that they eventually specify the communities the nodes
have been assigned to by the algorithm. The value of the community property does not have
inherent meaning apart from categorical separation of the detected communities.

CALL algo.labelPropagation(
"MATCH (t:Troll) RETURN id(t) AS id",
"MATCH (r1:Troll)-[:POSTED]->(t:Tweet)
<-[:RETWEETED] - (: Tweet)<-[:POSTED]-(r2:Troll)
RETURN id(r2) AS source,
id(rl) AS target, count(t) AS weight",
"OUTGOING",
{graph:"cypher", write: true,
partitionProperty: "community", iterations: 200}

)

We can then see which Trolls were assigned to each community:
MATCH (t:Troll) WHERE exists(t.community)

388 David Allen et al.

RETURN collect(t.screen_name) AS members, t.community
ORDER BY size(members) DESC LIMIT 10

Finally, we can see if there are certain themes that each community was focused on, by
inspecting the top-10 common hashtags used by the top-10 largest communities:

MATCH (t:Troll) WHERE exists(t.partition)
WITH collect(t) AS members, t.community
ORDER BY size(members) DESC LIMIT 10
UNWIND members AS t
MATCH (t)-[:POSTED]->(tw:Tweet)-[:HAS_TAG]->(ht:Hashtag)
WITH community, ht.tag AS tag, count(tw) AS num
ORDER BY community, num DESC
RETURN community, collect(tag)[..10] AS toptags

Upon aggregating the hashtags that each community was using, we can see that the group
around top influential troll @ TEN_GOP was tweeting mainly about right-wing politics
(#VoterFraud, #TrumpTrain); the group around @DanaGeezus was more left leaning, but not
necessarily positively (#ObamasWishlist, #RejectedDebateTopics); and the group around
@gloed_up covered topics in the Black Lives Matter community (#BlackLivesMatter,
#Racism, #BLM). Each of these three clusters tended to have a small number of original
content generators, with the bulk of the community amplifying the message. For example,
one account @TheFoundingSon sent more than 3200 original tweets, averaging about 7
tweets per day. On the other hand, accounts like @ AmelieBaldwin authored only 21 original
tweets out of more than 9000 sent.

4.3 Visualization

Including the results of graph algorithms in visualization allows us to interpret the results
of graph algorithms that otherwise might be difficult to make sense of. Fig. 3 visualizes
the three distinct communities identified by our community detection algorithm and the
most influential troll accounts within each community, as determined by PageRank. The
communities are shown in different colors, node sizes are styled proportionally to their
PageRank score, and relationship thickness is styled proportionally to relationship weights,
in this case the number of times a troll retweeted another.

5 Evaluation

To demonstrate the performance of Neo4j graph algorithm procedure library we conducted
a series of experiments. We ran PageRank, Union Find (connected components), Label
Propagation, and Strongly-Connected Components on a number of standard graph datasets
available on SNAP [LK14].

Understanding Trolls with Efficient Analytics of Large Graphs in Neo4j 389

MeggieONell grucigDubiin

DonnieLMiler

BGamer2107

Dominicvalent AidenT757

HelleEawards pureDavie
T Kathior DaileyJadon

JmsCon DansGCoans Agrienne GG pelvinSRoberts

AmangaVGroon
¥ ynappymom

ChrixMorgan

ikeBIGhUtane LoraGrasen

Dickyinwin
CatelinaWatkins NotRtatiart GisBlEENDS » caiowan

Cab1Adana 3
brightandglory
i

CalobPasr cquelinisBest

DorathieBell

Aldrihu20
\

MichelleArry

Paricla/Moore 13
LazyKStafiord g | Paoiasnc ||

\ O—n\wn*k
DrMichaelGarcia
gloed\up /

LoroyLovesusa @ %)
LauraBooioy

e

Fig. 3: Visualization of the three distinct communities and the most influential troll accounts within
each community.

Setup: We used a machine with four Intel Xeon E7-8870 v3 CPUs, each featuring eighteen
cores at 2.1 GHz clock speed, hyper threading, and 45 MB of cache. Additionally, the
machine was equipped with 1 TB of DDR4 memory and 1.8 TB of PCIE-SSD storage, in
which the Neo4j database files resided. The software stack consisted of Ubuntu Server 16.04
with kernel version 4.4.0, Java(TM) SE 1.8.0_121-b13 for compiling, Java HotSpot(TM)
64-Bit Server VM 25.121-b13 for running, Neo4j Enterprise 3.1.4. Neo4j was configured to
a page cache size of 5 GB and the Java VM was allowed to allocate 32 GB of heap while
executing Neo4;.

Graph dataset: We have not used the Twitter troll dataset for our experiments, since it is
not very large in size. Instead, we used in total eight datasets of various sizes as shown in
Tab. 2. Note that the disk size shows the size of the graphs in the Neo4j database, which
resides on SSD and gets page cached in-memory. When loaded as graph of interest into

390 David Allen et al.

the in-memory representation, each graph fitted into the memory the JVM was allowed to
allocate.

Graph #Nodes [M] #Relationships [M] Avg. out degree Disk size [GB]
Pokec (PK) 1.63 30.62 18.75 0.99
cit-patents (CP) 3.77 16.52 4.38 0.58
Graphs500-23 (G5) 4.61 129.33 28.05 4.17
soc-LifeJournall L)) 4.85 68.99 14.23 2.27
DBPedia (DP) 11.47 116.60 10.16 3.87
Twitter-2010 (TW) 41.65 1468.37 35.25 47.60
Friendster (FR) 65.61 1806.07 27.53 58.94

Tab. 2: Graph datasets used in measurements.

Algorithms: We ran four algorithms, precisely: PageRank, Union Find, Label Propagation,
and Strongly-Connected Components (SCC) on each of the eight graph datasets. The
corresponding procedure calls are listed in Tab. 3. As can be seen, we did not set parameters
for graph projection, so that the algorithms ran on the complete graph dataset. All procedures
were set to write back their results into the graph dataset (write:true).

Algorithm Execution

Pagerank CALL algo.pageRank(null, null, {write:true, iterations:20});
Union Find CALL algo.unionFind(null, null, {write:true});

Label Propagation =~ CALL algo.labelPropagation(null, null, 'OUTGOING', {write:true});
SCC CALL algo.scc.iterative(null, null, {write:truel});

Tab. 3: Procedure calls used in measurements.

Results: We measured the total runtime of the complete procedure call, which included
loading the graph, computing the analysis, and writing back the result. Fig. 4 shows the
runtime for each procedure call on each graph dataset. All four algorithms completed within
a few seconds for graphs upto 30 M relationships (PK, and CP) and within half a minute
for graph upto 120 M relationships (G5, LJ, DP). On the very large graphs with more than
1 G relationships (TW and FR), all procedures finished within a few minutes.

To take a closer look, we also measured the individual runtimes of loading the graph (load),
computing the analysis (compute), and writing back the result (write). Fig. 5 reports for
each procedure call on each graph dataset the proportion of runtime spent on load, compute,
and write. As can be seen most procedure call spent the majority of their runtime in loading
the graph into to the representation used by the algorithms. This is as expected, since the
whole graph of interest has to be read during load. Although it takes most of the runtime, the
loading is still very efficient. Looking at the very large graphs TW and FR, the procedure
accomplished to load the graph of interest at a rate of put to 20 000 relationships/s.

The benefit of loading is revealed during the compute phase. The succinct in-memory
representation of the graph of interest facilitates very efficient graph algorithm computation.
For instance, PageRank requires to read over all relationships ones per iteration. In

Understanding Trolls with Efficient Analytics of Large Graphs in Neo4j 391

F T] T
Eee] g [Eee]
] 102 |] E
z T E = |]
= i] = I ’
5 | i 5
£ i] £ I A
&~ i ~
10! = E
10! g ’_‘ E s 1
PK CP G5 L] DP TW FR PK CP G5 L DP TW FR
(a) Pagerank. (b) Union Find.
[T q B T]
Ee] § | [E=] g
- 102 - _ 107 §
= -] = -]
Q : : Qo [B
£ L il £ - 1
5 5 : |
&~ |] ~
10! - ’—‘ H 10! = E
PK CP G5 L] DP TW FR PK CP G5 LJ DP TW FR
(c) Label Propagation. (d) Strongly-Connected Components.
Fig. 4: Total runtimes.
100 — T - = 100 e e
80 |- | - so 1~ | |1l |
B 60 H___| — — Ea 60 H
: m : >
H 40 H] Y H 40 H
£ — £
20 H m 20 H
| D load |:| compute |:| write | |:| load |:| compute |:| write
0 e 0 i —
PK CP G5 L DP TW FR PK CP G5 Ly DP TW FR
(a) Pagerank. (b) Union Find.
100 — — 100 ————— —
80 H 1| — — 80 H [+
S 60| - £ e H —1
g - g
g g L
g 40 5 g 40 -
~ A~
20 | SN 20 |
| |:| load |:| compute |:| write | |:| load |:| compute |:| write
PK CP G5 Ly DP TW FR PK CP G5 Ly DP TW FR
(c) Label Propagation. (d) Strongly-Connected Components.

Fig. 5: Proportion of runtime spent on loading, computing, and writing back.

392 David Allen et al.

our experiments PageRank was computed with an average over all graph datasets of
275 000 relationships/s and on the Twitter graph with upto 519 000 relationships/s.

6 Related Work

Any system for graph analytics provides an abstract construct for a user to execute analytical
graph algorithms without caring about the technical details of an efficient parallel execution.
So far, one of the most prominent and common abstractions for graph analytics has been
the vertex-centric programming model [Lo10, Mal0, SBC10]. A vertex-centric program
requires users to provide a compute function that defines the actual analytical computation.
A declarative variant worth mentioning is the GSQL [De18].

Since many graph algorithms are based on traversals, the traversal itself provides another
common abstraction for graph analytics. Traversal-based languages provide native support
for graph traversals as part of a domain-specific language, examples are Gremlin [Ro15],
GreenMarl [Ho14], GEM [Rul3], and GraphScript [Pal7].

Instead of an dedicated abstraction, declarative graph query language [ARV 18, Fr18, Rel6,
PPvR18] can be extended for analytical purposes by means of composition, grouping and
aggregation [Anl8, Vol7]. Under certain constraints aggregation can be even allowed
within recursion [SGL15].

All these approaches provide a means to implement or express algorithms as opposed to the
specific graph algorithms themselves. While this is very useful for users developing their
own custom algorithms, it unnecessarily complicates matters for users that simply want
to deploy well established and understood algorithms. Such users are better served with
algorithm libraries.

A very prominent graph algorithms library are the Boost Graph Library® [SLL02] and
Parallel Boost Graph Library®. Both libraries still require code from users in order to
extract and feed their graph into the chosen algorithm or input results of one algorithm into
another. While Neo4;j graph algorithms provide a similar set of algorithms, they are, in
addition, well-integration with the graph platform. Users can directly call graph algorithms
on a graph database and have their result written back to the graph database, without any
additional imperative programming needed. User can also directly leverage the Cypher
query capabilities to declaratively select the graph of interest. This is a relevant feature,
since the graph database contains in practice significantly more data or data in different
shape than the graph of interest, as illustrated in Section 4.2.

For a more comprehensive overview on systems for big graph analytics we refer the reader
to [PV17].

8 https://www.boost.org/doc/libs/1_66_0/1libs/graph/doc/
9 https://www.boost.org/doc/libs/1_66_0/1libs/graph_parallel/doc/html/

Understanding Trolls with Efficient Analytics of Large Graphs in Neo4j 393

7 Conclusion

With a relationship-centered approach one does not look at individuals in isolation, builds
understanding of the world by looking at how person, events, and things are connected.
For many aspects, the relationships of interest are hidden behind layers of many other
connections. For uncovering such hidden relationship, graph data and graph analytics
becomes increasingly instrumental. The Neo4j graph platform provides a comprehensive
software stack to perform graph analytics, from ingesting the data all the way to visualizing
the results. A central piece provided by the graph platform and used in such a graph analytics
are the graph algorithms, which we presented in this paper. The graph algorithms provide a
comprehensive library of user-defined procedures offering graph analytical algorithm well-
integrated with the other components of the graph platform. The library covers algorithms
for centrality measuring, path finding, and community detection. All procedures can be
called within a Cypher query. Cypher can be also used to project out the graph of interest
for called procedure. The procedures can write back the result to the base data or stream
it to the calling Cypher query for post processing. The graph algorithms are designed to
be executed on large to very large graphs and were tested with several billion nodes and
tens of billions of relationships, exhibiting linear performance gain and scalability on large
multi-core machines.

In the future, we will continue to apply new research from graph analytics and machine
learning. For instance, we are already in the processes of adding performant means for
similarity computations including a number of different common similarity measure, such
as Jaccard distance. We also look into the generation of k-nearest-neighbour networks.
Another considered extension of the library will provide an infrastructure for user-defined
algorithms that allows for efficient execution. We also intend to explore new execution
models like distributed processing or GPU based approaches.

References

[Ah95] Ahamad, Mustaque; Neiger, Gil; Burns, James E.; Kohli, Prince; Hutto, Phillip W.:
Causal Memory: Definitions, Implementation, and Programming. Distributed Computing,
9(1):37-49, March 1995.

[An18] Angles, Renzo; Arenas, Marcelo; Barceld, Pablo; Boncz, Peter A.; Fletcher, George H. L.;
Gutierrez, Claudio; Lindaaker, Tobias; Paradies, Marcus; Plantikow, Stefan; Sequeda, Juan;
van Rest, Oskar; Voigt, Hannes: G-CORE: A Core for Future Graph Query Languages. In:
SIGMOD. ACM, 2018.

[ARV18] Angles, Renzo; Reutter, Juan; Voigt, Hannes: Graph Query Languages. In: Encyclopedia
of Big Data Technologies. Springer, 2018.

[Ba50] Bavelas, Alex: Communication Patterns in Task-Oriented Groups. The Journal of the
Acoustical Society of America, 22(6):725-730, November 1950.

394 David Allen et al.

[BI108]

[BPO7]

[BrO1]

[Bu09]

[CC11]

[Da06]

[Del8]

[Di59]

[F114]

[F163]

[Fr77]

[Fr18]

[GZB04]

[HA90]

[He58]
[HNR68]

[Hol4]

Blondel, Vincent D.; Guillaume, Jean-Loup; Lambiotte, Renaud; Lefebvre, Etienne: Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008+12, October 2008.

Brandes, Ulrik; Pich, Christian: Centrality Estimation in Large Networks. International
Journal of Bifurcation and Chaos, 17(7):2303-2318, 2007.

Brandes, Ulrik: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical
Sociology, 25(2):163-177, 2001.

Bulug, Aydin; Fineman, Jeremy T.; Frigo, Matteo; Gilbert, John R.; Leiserson, Charles E.:
Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Com-
pressed Sparse Blocks. In: SPAA. ACM, pp. 233-244, 2009.

Chu, Shumo; Cheng, James: Triangle Listing in Massive Networks and Its Applications.
In: KDD. ACM, pp. 672-680, 2011.

Dangalchev, Chavdar: Residual closeness in networks. Physica A: Statistical Mechanics
and its Applications, 365(2):556-564, June 2006.

Deutsch, Alin: Querying Graph Databases with the GSQL Query Language. In: SBBD.
SBC, p. 313, 2018.

Dijkstra, Edsger W.: A Note on Two Problems in Connexion with Graphs. Numerische
mathematik, 1(1):269-271, 1959.

Fujiwara, Yasuhiro; Irie, Go: Efficient Label Propagation. In: ICML. JMLR.org, pp.
784-792, 2014.

Flament, Claude: Application of Graph Theory to Group Structure. Prentice-Hall, chapter
3: Balancing Processes, 1963.

Freeman, Linton C.: A Set of Measures of Centrality Based on Betweenness. Sociometry,
40(1), March 1977.

Francis, Nadime; Green, Alastair; Guagliardo, Paolo; Libkin, Leonid; Lindaaker, Tobias;
Marsault, Victor; Plantikow, Stefan; Rydberg, Mats; Selmer, Petra; Taylor, Andrés: Cypher:
An Evolving Query Language for Property Graphs. In: SIGMOD. ACM, 2018.

Gleich, David F.; Zhukov, Leonid; Berkhin, Pavel: Fast Parallel PageRank: A Linear
System Approach. Technical report, Yahoo, 2004.

Hutto, Phillip W.; Ahamad, Mustaque: Slow Memory: Weakening Consistency to Enchance
Concurrency in Distributed Shared Memories. In: ICDCS. IEEE Computer Society, pp.
302-309, 1990.

Heider, Fritz: The Psychology of Interpersonal Relations. John Wiley & Sons, 1958.

Hart, Peter E.; Nilsson, Nils J.; Raphael, Bertram: A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Trans. Systems Science and Cybernetics,
4(2):100-107, July 1968.

Hong, Sungpack; Salihoglu, Semih; Widom, Jennifer; Olukotun, Kunle: Simplifying
Scalable Graph Processing with a Domain-Specific Language. In: CGO. ACM, pp.
208-218, 2014.

Understanding Trolls with Efficient Analytics of Large Graphs in Neo4j 395

[Ko13]

[KS91]

[LK14]

[Lo10]

[Ma07]

[MalO]

[MLOO]

[MNS17]

[MRO5]

[MSO03]

[NMNO1]

[0014]

[Pal7]

[PPVR18]

[Pr57]

Kourtellis, Nicolas; Alahakoon, Tharaka; Simha, Ramanuja; lamnitchi, Adriana; Tripathi,
Rahul: Identifying High Betweenness Centrality Nodes in Large Social Network. Journal
of Social Network Analysis & Mining, 3(4):899-914, December 2013.

Kumar, Vipin; Singh, Vineet: Scalability of Parallel Algorithms for the All-Pairs Shortest-
Path Problem. Journal of Parallel and Distributed Computing, 13(2):124—138, October
1991.

Leskovec, Jure; Krevl, Andrej: , SNAP Datasets: Stanford Large Network Dataset Collection,
June 2014.

Low, Yucheng; Gonzalez, Joseph; Kyrola, Aapo; Bickson, Danny; Guestrin, Carlos;
Hellerstein, Joseph M.: GraphLab: A New Framework For Parallel Machine Learning. In:
UAL pp. 340-349, 2010.

Madduri, Kamesh; Bader, David A.; Berry, Jonathan W.; Crobak, Joseph R.: An Ex-
perimental Study of A Parallel Shortest Path Algorithm for Solving Large-Scale Graph
Instances. In: ALENEX. SIAM, 2007.

Malewicz, Grzegorz; Austern, Matthew H.; Bik, Aart J. C.; Dehnert, James C.; Horn, Ilan;
Leiser, Naty; Czajkowski, Grzegorz: Pregel: A System for Large-Scale Graph Processing.
In: SIGMOD. ACM, pp. 135-146, 2010.

Marchiori, Massimo; Latora, Vito: Harmony in the small-world. Physica A: Statistical
Mechanics and its Applications, 285(2-3):539-546, October 2000.

Mehlhorn, Kurt; Niher, Stefan; Sanders, Peter: Engineering DFS-Based Graph Algorithms.
The Computing Research Repository, abs/1703.10023, March 2017.

Manaskasemsak, Bundit; Rungsawang, Arnon: An Efficient Partition-Based Parallel
PageRank Algorithm. In: ICPADS. IEEE Computer Society, pp. 257-263, 2005.

Meyer, Ulrich; Sanders, Peter: A-stepping: a parallelizable shortest path algorithm. Journal
of Algorithms, 49(1):114-152, October 2003.

Nesetril, Jaroslav; Milkova, Eva; Nesetrilova, Helena: Otakar Boruvka on minimum
spanning tree problem Translation of both the 1926 papers, comments, history. Discrete
Mathematics, 233(1-3):3-36, April 2001.

Ongaro, Diego; Ousterhout, John K.: In Search of an Understandable Consensus Algorithm.
In: ATC. USENIX Association, pp. 305-319, 2014.

Paradies, Marcus; Kinder, Cornelia; Bross, Jan; Fischer, Thomas; Kasperovics, Romans;
Gildhoff, Hinnerk: GraphScript: implementing complex graph algorithms in SAP HANA.
In: Proceedings of The 16th International Symposium on Database Programming Lan-
guages, DBPL 2017, Munich, Germany, September 1, 2017. ACM, pp. 13:1-13:4,
2017.

Paradies, Marcus; Plantikow, Stefan; van Rest, Oskar: Graph Data Management Systems.
In: Encyclopedia of Big Data Technologies. Springer, 2018.

Prim, Robert C.: Shortest Connection Networks And Some Generalizations. Bell System
Technical Journal, 36(6):1389—1401, November 1957.

396 David Allen et al.

[PV17]

[RAKO7]

[Rel6]

[RN10]

[Ro15]

[Rul3]

[SBC10]

[SGL15]

[SLLO2]

[SRM14]

[Ta72]

[Ts08]

[Vol7]

[Wil4]

[Ye70]

[Ye71]

Paradies, Marcus; Voigt, Hannes: Big Graph Data Analytics on Single Machines — An
Overview. Datenbank-Spektrum, 17(2), July 2017.

Raghavan, Usha Nandini; Albert, Réka; Kumara, Soundar: Near linear time algorithm to
detect community structures in large-scale networks. Physical Review E, 76(3):036106—1-
11, September 2007.

van Rest, Oskar; Hong, Sungpack; Kim, Jinha; Meng, Xuming; Chafi, Hassan: PGQL: a
property graph query language. In: GRADES. ACM, p. 7, 2016.

Rodriguez, Marko A.; Neubauer, Peter: Constructions from Dots and Lines. Bulletin of
the American Society for Information Science and Technology, 36(6):35-41, August 2010.

Rodriguez, Marko A.: The Gremlin Graph Traversal Machine and Language. In: DBPL.
ACM, 2015.

Rudolf, Michael; Paradies, Marcus; Bornhévd, Christof; Lehner, Wolfgang: The Graph
Story of the SAP HANA Database. In: BTW. volume 214. GI, pp. 403-420, 2013.

Stutz, Philip; Bernstein, Abraham; Cohen, William W.: Signal/Collect: Graph Algorithms
for the (Semantic) Web. In: ISWC. Springer, pp. 764-780, 2010.

Seo, Jiwon; Guo, Stephen; Lam, Monica S.: SociaLite: An Efficient Graph Query Language
Based on Datalog. IEEE Transactions on Knowledge and Data Engineering, 27(7):1824—
1837, 2015.

Siek, Jeremy G.; Lee, Lie-Quan; Lumsdaine, Andrew: The Boost Graph Library - User
Guide and Reference Manual. Pearson / Prentice Hall, 2002.

Slota, George M.; Rajamanickam, Sivasankaran; Madduri, Kamesh: BFS and Coloring-
Based Parallel Algorithms for Strongly Connected Components and Related Problems. In:
IPDPS. IEEE Computer Society, pp. 550-559, 2014.

Tarjan, Robert Endre: Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing, 1(2):146-160, June 1972.

Tsourakakis, Charalampos E.: Fast Counting of Triangles in Large Real Networks without
Counting: Algorithms and Laws. In: ICDM. IEEE Computer Society, pp. 608—617, 2008.

Voigt, Hannes: Declarative Multidimensional Graph Queries. volume 280. Springer, pp.
1-37, 2017.

Wickramaarachchi, Charith; Frincu, Marc; Small, Patrick; Prasanna, Viktor K.: Fast

parallel algorithm for unfolding of communities in large graphs. In: HPEC. IEEE, pp. 1-6,
2014.

Yen, Jin Y.: An algorithm for finding shortest routes from all source nodes to a given
destination in general networks. Quarterly of Applied Mathematics, 27(4):526-530,
January 1970.

Yen, Jin Y.: Finding the K shortest loopless paths in a network. Management Science,
17(11):712-716, 1971.

