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Unsupervised Learning of Fingerprint Rotations

Patrick Schuch1, Jan Marek May2, Christoph Busch3

Abstract: The alignment of fingerprint samples is a preprocessing step in fingerprint recognition.
It allows an improved biometric feature extraction and a more accurate biometric comparison. We
propose to use Convolutional Neural Networks for estimation of the rotational part. The main contri-
bution is an unsupervised training strategy similar to Siamese Networks for estimation of rotations.
The approach does not need any labelled data for training. It is trained to estimate orientation dif-
ferences for pairs of samples. Our approach achieves an alignment accuracy with a mean absolute
deviation 2.1◦ on data similar to the training data, which supports the alignment task. For other
datasets accuracies down to 6.2◦ mean absolute deviation are achieved.
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1 Introduction

Despite the fact that fingerprint recognition is a mature and widely deployed technology,
it still can be improved or extended to uprising demands. Some aspects in fingerprint
recognition can benefit from aligning fingerprint samples to a common orientation and
positioning. Both concerns can be tackled separately [Ma09]. This works focusses on the
orientation part of the alignment. There are two categories of alignments: alignments com-
mon for all fingerprints and those shared for all samples of the same finger. The former is
the more general approach. The latter allows a higher degree of freedom in the alignment,
since each fingerprint may have its individual alignment. Such an alignment can be ben-
eficial in many cases. Most important, biometric comparison algorithms may benefit and
especially speed up since they do not have to deal with large rotations between compared
samples.
A trivial orientation alignment is the upright position in the direction of the fingertip.
But finding this trivial orientation is actually far from being trivial. Usually, fingerprint
alignment works on focal points [RA00]. Detection of such points is challenging, if the
fingerprint quality is low or there is only a partial print without any focal points in it.
Another serious challenge in fingerprint alignment is the fact there is no ground truth for
the alignment, i.e. you never know for sure what the right alignment is. No assumptions
on initial rotations of fingerprint samples can be made. Any manual labelling is prone to
inaccuracies and lacks reproducibility.
Deep learning has provided quite impressive solutions in many domains of digital im-
age processing and pattern recognition in the last years. We propose to use Convolutional
Neural Networks (CNN) for the task of fingerprint alignment. Our main contribution is
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a training strategy. Similar as in Siamese Networks the CNN learns a rotational distance
between two arbitrarily rotated instances of a single fingerprint sample. As the approach
is not dependant on any ground truth data, the training can be done unsupervised. Large
amounts of unlabelled data in turn allow to train the CNN. The training finally yields an
orientation assignment, which is individual to each finger.
The rest of this paper is organized as follows: Section 2 provides an overview on related
work. Our approach will be explained in Section 3. Section 4 explains the experiments,
which were carried out to test the proposed approach. Section 5 concludes the findings.
An outlook on future work can be found in Section 6.

2 Related work

Several approaches for the task of fingerprint pose estimation have been proposed in the
past. Sood and Kaur provide an overview on alignment methods in fuzzy vault [SK14].
Markert et al. proposed to use the almost parallel ridges above creases for alignment, as
those ridges usually all have similar directions in every fingerprint [Ma18].
Most of the approaches make use of the orientation field of a fingerprint. The orientation
field is a representation for the local orientations of the ridges in a fingerprint. If no origi-
nal fingerprint sample is available, the orientation field can also be estimated for extracted
fingerprint minutiae [Kr14].
Some approaches work directly on the orientation fields. Yang et al. proposed to learn dic-
tionaries of orientation field patches [YFZ14]. They used the orientations fields to perform
a pose estimation for the fingerprint. Hotz proposed to extract an intrinsic coordinate sys-
tem based on a longitudinal axis [Ho09]. The longitudinal axis can be found by searching
for symmetries in the orientation field. This axis could also be used for a rotational align-
ment.
Other approaches extract distinctive points from the orientation field. So-called singu-
larities (cores and deltas) can be used for an alignment [Ja00]. For fingerprints lacking
singularities focal point can be defined as those point with the highest curvature [RA00].
Nagar et al. and Zhang et al. also used points of maximum curvature as reference points
for an alignment [NRV10] [ZFH14]. Li et al. proposed to use isosceles triangles for align-
ment [LBY14]. Isosceles triangles are placed on the ridges. The approach makes use of
local symmetries near focal points. Liu et al. proposed a multi-scale approach for detec-
tion of the focal points from orientation fields [LJK05]. Tams proposed to extract reference
points from the fingerprint orientation field [Ta13]. Jain and Minut used kernel curves to
describe the flow of the fingerprint ridges [JM02]. Those kernel curves describe the be-
haviour of the ridges around the focal points. Best fitting kernel curves can be used for an
alignment to typical patterns. Li et al. proposed to estimate an alignment by topological
structures around cores [Li08]. Detection of singularities and focal points depends on an
accurate extraction of the orientation field. Such a detection may fail for partial fingerprint
samples.
Merkle et al. proposed to use the shape of the fingerprint sample [Me10]. The outline of
the fingerprint sample usually can be approximated by an ellipse. This ellipse is aligned to
its principal axis. Yang et al. proposed to align small neighbourhoods of minutiae [YB09].
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Fig. 1: During training a fingerprint sample is rotated by two random angles θ1 and θ2. The CNN
estimates rotations θ̃1 and θ̃2, so that differences (θ1-θ2) and (θ̃1-θ̃2) are as similar as possible.
During testing estimation θ̃ can be used for rotational alignment.

There is also an approach, which uses techniques from the domain of Deep Learning.
Ouyang et al. proposed to use a variation of a Region-based Convolutional Network (R-
CNN), which have originally been proposed to the task of object detection [Ou17]. The
authors compared the estimated poses to manually labelled ground truth poses. They have
also found positive effects of alignment when applying Fingerprint Indexing.
There are further approaches in Deep Learning for the task of general alignment, e.g.
Spatial Transformer Networks proposed by Jaderberg et al. [Ja15]. Those can learn trans-
formations of sampling grids for given tasks. The original image is then sampled at the
transformed sampling grid. Any transformation, which helps solving the given task, can
be learned in this approach. Our approach does not need a given task for training.

3 Our Approach

CNNs for Estimations of Rotations We will exploit a training strategy called Siamese
Network [Br94] for the task of learning fingerprint alignment. Each training input consists
of a pair of randomly rotated instances of a single fingerprint sample (see Figure 1). The
CNN estimates a rotation for each instance. The CNN shall learn to assign estimations in
such a way, that the difference between the two estimated values is close to the difference
of the two actual rotations. The main advantage of this approach is, that no expert based
ground truth rotational information is necessary at all. This allows to use any unlabelled
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# Layer Output

0 Input (192×192×1) (192×192×1)
1 ConvLayer (32×5×5×1) (192×192×32)
2 BatchNorm (192×192×32)
3 PReLU (192×192×32)
4 MaxPooling (4×4) (48×48×32)
5 ConvLayer (32×5×5×32) (48×48×32)
6 BatchNorm (48×48×32)
7 PReLU (48×48×32)
8 MaxPooling (4×4) (12×12×32)
9 ConvLayer (32×5×5×32) (12×12×32)

10 BatchNorm (12×12×32)
11 PReLU (12×12×32)
12 MaxPooling (4×4) (3×3×32)
13 Flatten (288)
14 Dense (256×288) (288)
15 PReLU (256)
16 Dense (256×256) (256)
17 PReLU (256)
18 Dense (181×256) (181)
19 Softmax (181)

Tab. 1: CNN’s architecture. The final output can be interpreted as probabilities for different align-
ment angles.

fingerprint sample for training. For testing the trained CNN estimates the rotation for a
given input fingerprint sample (see Figure 1). This estimation can be used to align the
input fingerprint sample by a corresponding rotation.

Architecture There has been no extensive optimization of any hyperparameters. The en-
tire model assembles seven different types of layers: Convolutional layers (ConvLayer),
Parametric Rectified Linear Units (PReLu), Batch Normalization layers (BatchNorm),
Maximum Pooling layers (MaxPooling), Flatten layers (Flatten), Dense layers (Dense),
and Softmax layers (Softmax). There was no striding in the ConvLayers. Table 1 gives
an overview over the entire architecture and the outputs of each layer.4 The CNN has
179,424 trainable parameters. The input is a grey scale image. A region of interest of size
192×192 pixels is cropped from the image’s center.5 This size allowed reasonable perfor-
mance for images of about 500 dpi resolution. It also allows application to small images,
e.g. 300×300 images in FVC2000DB1 [Ma02a].
Rotation estimation is obviously a regression task. However, it has been shown that classi-
fication can be superior over regression even on regressions task, e.g. if one uses Deep Ex-
pectation, which averages estimations over classes to form a better estimation [RTVG15].
The method of Deep Expectation has also already been successfully applied to the domain
of fingerprint recognition: It was used for fingerprint orientation field estimation [SSB17].
4 The model was created and trained in the deep learning framework Tensorflow [Ab16].
5 Cropping the region of interest to the center of the fingerprint sample’s foreground might be beneficial. How-

ever, this approach is independent from such a foreground detection.
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Each class in the classification approach represents a distinctive angular offset. The out-
puts of the Softmax in this CNN can be interpreted as probabilities for the angular offsets.
Weighted averaging according to the probabilities yields the final estimation. We have
tried regression and classification for the task of estimating a rotational alignment. Our
experiments yielded classification including Deep Expectation to be more effective than
regression for this task.

Training Training of the CNN can be roughly summarized as follows: The CNN’s task
is to learn the rotational difference between two randomly rotated instances of the same
fingerprint (see Figure 1).
In detail, during training a fingerprint sample is picked from the training data. Two random
values θ1 and θ2 for rotations are sampled from a uniform distribution U[−90◦,90◦]. The
fingerprint sample is rotated according to θ1 and θ2. The rotated instances are then fed
into the CNN, which calculates two estimations θ̃1 and θ̃2 respectively. We can not make
any assumptions about the initial rotation of the original fingerprint sample. Thus, θ1
and θ2 must be assumed to be biased by this initial rotation. Therefore, minimization of
the differences |θ1− θ̃1| and |θ2− θ̃2| likewise does not seem reasonable. To circumvent
the lack of knowledge on the initial rotation, we formulate the loss function using the
difference between the random rotations and the difference between the estimations:

loss
(
θ1,θ2, θ̃1, θ̃2

)
=
∣∣(θ1−θ2)− (θ̃1− θ̃2)

∣∣ (1)

By doing so, the CNN learns the rotational difference between two rotations. Minimization
|θ1− θ̃1| and |θ2− θ̃2| would have a single optimal solution {(θ ∗1 ,θ ∗2 ) : θ ∗1 = θ1,θ

∗
2 = θ2}.

The proposed loss function allows an infinite set of optimal solutions {(θ ∗1 ,θ ∗2 ) : (θ ∗1 −θ1 =
θ ∗2 −θ2)}. A training sample therefore consists of two random rotation angles and the cor-
responding rotated instances of the same fingerprint sample. By the way, using two differ-
ent samples would fail, since their initial rotation is unknown.
Eight pairs of samples were processed as a single batch. We used optimizer AdaGrad
[DHS11]. Other optimizers like Stochastic Gradient Descent or Adam did not perform
significantly different. Learning rate was set to 10−5.
Training was stopped, when the mean absolute deviations of a validation set did not im-
prove any further. This was done to prevent over-fitting to the training data. Training took
only a few hours on a GPU6. Estimation of the rotation for a single fingerprint sample
takes about 4ms on GPU.

Data Augmentation For CNNs holds in general, that the more appropriate training data
is available, also the higher is the performance. A common method to increase the amount
of training data is data augmentation. Rotating the input data according to the random
angular distortions already increases the amount of available training data. In addition, we
did some additional augmentation by slightly shifting the input image horizontally and

6 NVIDIA GTX 780
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(a) Regression (b) Deviation

Fig. 2: For testing, the CNN estimates rotations for rotated instances of a given fingerprint sample.
Normalization allows to ignore the unknown initial offset of a single sample (2a). A linear regression
with unit slope represents an ideal estimation. It allows inspection of the actual deviations (2b).

vertically. This is a way to prevent over-fitting, i.e. the CNN works significantly better on
the training data than on any other data, which has not been seen during training.

4 Experiments

We tested our approach by training the CNN on fingerprint samples from dataset FVC2002
DB1 [Ma02b]. The dataset consists of 100 fingers with eight impressions each. We split
the set of 800 fingerprint samples into three parts: the first 400 samples for training, the
next 200 samples for validation, and the last 200 samples for testing. By doing so, we took
care, that no finger is shared between the sets.
No assumptions on distributions of rotations in the real world can be made. We there-
fore set up a test scenario, in which each fingerprint sample was rotated by angels from
[−45◦,45◦]. Quantisation step for the angles was 1◦. The trained CNN was then applied
to the rotated fingerprints to estimate the rotational offsets. Only differences between ro-
tations are relevant. Plain estimations cannot be used for evaluation. A normalization is
necessary. Let µθ be the mean of the estimations for all rotated samples of the same fin-
gerprint. We can then calculate a normalized estimation θ̃N(α) for estimation θ̃(α) for a
sample rotated by α by subtracting the mean estimation µθ :

θ̃N(α) = θ̃(α)−µθ (2)

The normalized estimation θ̃N(α) is independent from any initial rotations in the original
fingerprint sample. Thus, the normalization yields evaluations in the first place. Then we
calculated a linear regression with a unit slope for the normalized estimations for all ro-
tated instances of the fingerprint (see Figure 2). The linear regression represents an ideal
estimation. Therefore, the linear regression can be used to evaluate the estimation inde-
pendent from the unknown initial rotation of the original fingerprint sample.
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(a) Training set (b) Validation set (c) Test set

Fig. 3: Visualization of deviations between input orientations and normalized estimation for the en-
tire datasets(see Figure 2 for deviations of a single sample).

Linear regressions are calculated for each fingerprint sample in a dataset. The box plot
in Figure 3a visualizes the deviations between estimations and ideal estimations for all
samples in the training set. The deviation of the mean for the entire dataset varies about
1◦ around the ideal estimation. The relative deviation is therefore small compared to the
range of the input rotations. The normalized deviation θ̃N(inpα) of a given input sample
inp rotated by angle α can be used to calculate the mean absolute deviation δ over M
samplings:

δ (inp) =
1
M

45◦

∑
α=−45◦

∣∣α− θ̃N(inpα)
∣∣ (3)

For a given dataset with N input samples inp and a given range of input rotations we can
calculate the mean deviation δ̄ per dataset:

δ̄ =
1
N

N

∑
i=1

δ (inpi) (4)

This value δ̄ can be used to estimate the expected deviation on a dataset, i.e. how well
the estimation works on a dataset. Using the proposed evaluation method, we evaluated
the trained CNN on the training part, the validation part, and the test part of dataset
FVC2002DB1. We extended our evaluations also to other datasets to test the CNN for
its generalisation capabilities. We therefore chose beyond FVC2002DB1 five additional
datasets from the Fingerprint Verification Contest (FVC) benchmark series, which also
consists of fingerprint samples from optical fingerprint livescanners with a resolution of ap-
prox. 500 dpi: FVC2000 DB1 and DB3 [Ma02a], FVC2002 DB2 [Ma02b], and FVC2004
DB1 and DB2 [Ma04]. Only the last 200 fingerprint samples from each dataset were taken
for evaluation.
Table 2 summarizes the results, when the CNN is trained on the training set of dataset
FVC2002 DB1. Keeping in mind, that the quantisation step for estimation classes was 1◦,
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Trained on Trained on
Data FVC2002 DB1 FVC2000 DB3

Mean Abs Dev δ̄ Mean Abs Dev δ̄

FVC2002 DB1 Training 1.3◦ -
FVC2002 DB1 Validation 1.8◦ -

FVC2002 DB1 Test 2.1◦ 17.2◦

FVC2000 DB1 17.2◦ 35.0◦

FVC2000 DB3 Training - 1.6◦

FVC2000 DB3 Validation - 2.0◦

FVC2000 DB3 Test 20.8◦ 2.6◦

FVC2002 DB2 13.9◦ 40.4◦

FVC2004 DB1 6.2◦ 13.2◦

FVC2004 DB2 13.4◦ 15.4◦

Tab. 2: Results when trained on FVC2002 DB1 and FVC2000 DB3.

Fig. 4: Eight samples of a single fingerprint from the test set were rotated according to corresponding
estimations by the trained CNN.

the trained CNN achieves a very small mean absolute deviation of only one degree on
the training data. While the approach achieves a mean absolute deviation δ̄ of 1.8◦ on the
validation data, 2.1◦ are achieved on the test data. Figure 4 visualizes eight samples of a
single fingerprint. The trained CNN estimated the rotation in the original samples and the
samples were rotated according to the estimations.
When applied to other datasets the empirical mean absolute deviations δ̄ range from 6.2◦

for dataset FVC2004 DB1 to 20.8◦ for dataset FVC2000 DB3. Fingerprint samples in
these datasets have other characteristics than the samples in the training data. A distribu-
tion shift in the input data is a typical challenge in pattern recognition. Figure 5 visualizes
the cumulative probabilities for absolute deviations between the normalized estimations
and the ideal rotations.
As the CNN performed worst on FVC2000 DB3, we wondered whether our approach is
applicable to this data at all. If training is successful, the distribution shift can be tackled
by training on the relevant data. We therefore trained another CNN for estimations on this
database. It achieved a mean absolute deviation of 2.6◦ on the test part of FCV2000DB3
(see Table 2). It can therefore also be applied to this dataset.
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Fig. 5: Cumulative probabilities of exceeding absolute angle differences when trained on dataset
FVC2002 DB1.

Ref Approach Dataset Performance

[Ho09] Longitudinal axis NIST SD4 4.2◦ mean difference
[LBY14] Isosceles triangles CASIA 4.1◦ mean difference
[Me10] Ellipse from outline sequestered 2.3◦ mean difference
[Ou17] R-CNN NIST SD14 95% samples with difference < 5◦

[YFZ14] Localized dictionaries NIST SD27 13.8◦ mean difference

Tab. 3: Results reported in related work.

Comparisons to other approaches is hardly possible, since there are no other unsupervised
approaches for estimation of rotations. Unfortunately, most of the approaches in the related
work treat the aspect of rotational alignment as part of a larger workflow and do not explic-
itly report results for the estimation of the rotation. All reported results from related work
can be found in Table 3. Comparison is still difficult, since different metrics and different
datasets are used for evaluation. However, the reported results allow some comparison to
the proposed approach. Hotz et al. achieved a mean difference of 4.2◦ on dataset NIST
SD4 [WW92]. Li et al. tested their approach on 80 samples with pattern type Arch from
dataset CASIA. They reported a mean difference of 4.1◦. Merkle et al. achieved a mean
difference of 2.3◦ on a sequestered dataset. Ouyang et al. reported a deviation smaller than
5◦ for 95% of the tested samples of dataset NIST SD14 [WW93]. Yang et al. achieved a
mean difference of 13.8◦ on the latent fingerprint dataset NIST SD27 [GM00].

5 Conclusion

We presented an approach to estimate a rotational alignment for fingerprint samples. The
fingerprints are not guaranteed to be upright after alignment. CNNs were trained to es-
timate an individual rotational offset for each fingerprint. Our main contribution is the
definition of a dedicated loss function, which yields an unsupervised training, independent
of any initial rotation of the samples. Application of this loss function is not limited to
fingerprint samples. It can be applied to any image data.
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(a) Translational offset (b) Scaling

Fig. 6: Similar strategies may allow to learn translational offsets (6a) and scaling (6b).

The proposed approach was tested on several datasets containing plain fingerprint sam-
ples acquired with livescanners. For data similar to the training data a relative small mean
absolute deviation of 2.1◦ to an ideal alignment can be achieved. The best mean abso-
lute deviation for other datasets is 6.2◦. Generalization therefore is an issue. However, if
enough appropriate training data is supplied, then the approach can be applied to new data.

6 Future Work

Our approach does only assign an individual rotation to every finger. Extending this ap-
proach to train for an absolute rotation alignment may be even more beneficial. In addition,
this approach does also tackle only the orientation part of the alignment task. Extending
this approach with a translational alignment and scaling would beneficial as well. A simi-
lar unsupervised learning strategy for the translational offsets or scaling shall be applicable
(see Figure 6). An obvious strategy to further improve the orientation estimation is to ap-
ply the CNN to several crops of a single fingerprint sample and apply a voting strategy
among the resulting estimations.
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