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Abstract: Optimizing the maintenance of large-scale infrastructure can be a significant cost driver 
for small and medium-sized enterprises (SMEs). This paper presents a feasible approach to 
combine data from real-world physical structures collected through an automated maintenance 
process with cloud-based AI services to generate a meaningful virtual representation of such 
structures. We use photovoltaic systems as an exemplary physical structure and thermal imaging, 
collected through scheduled drone monitoring. With help of these unstructured data sources, we 
demonstrate our approach's applicability. Our solution artifact provides a lightweight AI 
application that is adoptable for other problem spaces, enabling an easier knowledge transfer from 
research to SMEs. By combining Cloud Computing with Machine Learning, the artifact identifies 
present and emerging damages of physical objects. It provides a virtual representation of the 
object's state and empowers a meaningful visualization. 
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1 Introduction 

Ineffective maintenance is a major cost driver [Mo02]. Failures of expensive 
infrastructure especially influences small and medium-sized enterprises (SMEs). Hence, 
optimizing the timing of maintenance cycles by predicting upcoming failures and thus 
minimize cost as well as resources is particularly important for SMEs. One emerging 
Predictive Maintenance method is based on Digital Twins (DT). The DT method has 
therefore seen adoption in a wide variety of different industry sectors [Sh18]. DT has a 
data-centric view, which enables the system itself to review its own contextual 
information and make operational decisions based on those data-driven analytics. With 
the advent of Internet of Things (IoT) devices and interconnected structures such as in 
smart cities, Predictive Maintenance based on DT will become ubiquitous. Although DT 
has many advantages, one of the main reported challenges by businesses concerning the 
adoption of DT´s in Predictive Maintenance processes is data availability [EBA20]. This 
is especially true for SMEs, since they cannot rely on large physical structures and 
surplus resources. Often businesses are legally required to provide regular cost intensive 
on-site inspections for their physical assets, so that Predictive Maintenance based on DT 
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would be more than useful. Against the background that large-scale physical structures 
are not trivial to realize as virtual entities, this paper aims to utilize object detection and 
the DT concept to create virtual representational models for real-world physical 
structures. We show how to achieve this based on the example of photovoltaic (PV) 
systems. Specifically, we present a prototype artifact that automatically utilizes thermal 
drone images and Artificial Intelligence (AI) to show a complete virtualized 
representation of the physical structures condition. 

To evaluate our artifact directly in the application context of SMEs, we tested a pilot 
project on-site and evaluated its validity in collaboration with solar park operators and a 
medium-sized technical support company. We contribute to the automation of creating 
digital representations of physical systems to build more sustainable business models for 
SMEs. While our solution artifact provides a lightweight AI application focused on the 
digitalization of solar parks, SMEs can adapt this approach to other problem spaces and 
industries i.e. allowing them to implement the functionality needed in their business 
context. Thus, our approach improves and optimizes current processes by saving time 
and costs. 

We structured the remainder of the paper as follows. The next section provides an 
overview of the existing state of knowledge on Predictive Maintenance and Digital 
Twins. Afterwards, we explain our produced artifact in more detail, covering data 
collection, object detection, and the DT visualization. Finally, after evaluating our 
artifact, we conclude with implications of our work and possible future research paths. 

2 Related Work and Research Context 

2.1 Design Science Research Methodology 

We draw on the Design Science Research (DSR) Contribution Framework presented by 
[GH13]. The DSR Contribution Framework allows us to frame our work and prioritize 
specific steps required to achieve our research goal. Second, for implementation, we 
draw on the Design Science Research Methodology (DSRM) by [Pe07]. The DSRM 
provides helpful principles, practices, and procedures consistent with prior Information 
Systems literature, suitable to evaluate automation processes of SMEs. It starts with 
identifying the problem and defining the artifact's objectives. We incorporate the existing 
state of knowledge for the design and development as suggested by [GH13]. Altogether, 
our artifact encompasses three layers: a data collection layer, a processing layer, and a 
visualization layer. After presenting each of the three layers, we follow [Pe07] to 
evaluate and demonstrate the proposed artifact's value. 

1202 Maximilian Lowin et al.



 
Digital Twin for PV Systems Maintenance    3 

2.2 Digital Twin 

The DT represents the formation of a two-way relationship between a physical structure 
and a virtual model. The DT concept has mostly seen wide adoption in manufacturing 
industries as it establishes a relationship between the physical object and sometimes 
multiple virtual models. However, to bring the concept of DTs into various other 
industries a wide adoption by SMEs will be crucial.  

The DT supports the creation of virtual representations allowing recording of activities 
throughout the whole life-cycle [Sc17]. Originally, the DT started as a Computer-Aided 
Design (CAD) description-based model of a product or so-called "Thing” with 
descriptive information added to it. However, the concept evolved to a more 
encompassing data-centric view by adding actionable components [GV17]. These 
components enable one of the DTs’ core capabilities to predict an unexpected event's 
physical response before it occurs [Sc17]. Whereas CAD description-based models were 
mostly static representations, the DT allows for dynamic interactions and simulations, 
resulting in actionable knowledge becoming available before real physical events occur 
[GV17]. DTs are not just singular models but rather a set of linked data artifacts and 
simulation models. By being an evolving “living” model for a physical asset, the DT 
offers an effective way of real-time interaction and integration in a so-called cyber-
physical system (CPS) [Sh18]. This actionable knowledge allows us to monitor so-called 
emergent behavior. Especially for automated maintenance based on drone imagery, 
recognizing emergent behavior is a focal point why a DT is particularly relevant [GV17]. 

Therefore, in our artifact, we use the DT to include all types of information about the 
physical structure, each of the structures’ assembled units, and their operational 
conditions. Thereby the DT provides access to the critical information for diagnostics 
and helps to initiate the maintenance processes. [GV17] 

2.3 Automated Maintenance Processes 

Maintenance is a significant cost driver in almost all industries with tangible assets 
[WY07]. As advanced analytics methods like Predictive Maintenance (PdM) became 
popular in the late 1980s due to ineffective maintenance methods [Mo02a] they are now 
omnipresent in many industries. PdM uses a system's information to determine the 
system's condition and predicts the optimal maintenance schedule [Al14]. As such, data 
has become of ubiquitous significance for PdM success. While this information can 
originate from various sources such as IoT devices and sensors by sensing internal 
information like temperature, vibration, voltage, or current [Ha10] it is almost 
nonexistent for larger physical structures as tangible assets. Maintenance of these assets 
also often legally requires businesses to provide regular on-site inspections. These 
inspections bind many resources and are a significant cost driver.  

To implement automated PdM, rich sensor data is a prerequisite that enables anomaly 
and potential failure detection through a combination of Machine Learning (ML) 
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techniques and Cloud Computing. ML uses historical data to identify patterns in data and 
learn from them to formulate predictions and insights relevant to various stakeholders 
[Be20]. In practice, ML methods help to detect unusual behavior like anomalies by 
identifying data records that deviate from the non-anomalous distribution of the sensor 
data [CBK09]. To date, mostly industrial settings such as manufacturing or aviation 
dispose of the data necessary to optimize their PdM activities [Al14]. However, due to 
PdM’s huge potential, transferring the concept to further applications can prove 
beneficial, too. 

Besides pure forecasts for optimal maintenance windows, businesses are also interested 
in automating the maintenance process as much as possible. With current efforts focused 
on the automation of scheduling the maintenance process rather than automating the 
maintenance itself [Yü20], this work seeks to advance the PdM process automation by 
presenting an automated monitoring solution for PdM. 

3 Artifact Description 

We conduct this research in the context of PV systems. Implementing Predicted 
Maintenance and automated monitoring solutions on PV panels is beneficial since 
analysts can often predict specific failures at a certain time in advance [Be17]. 
Traditional maintenance approaches analyze each panel's output data, e.g., by 
incorporating the produced power or the present voltage at each panel [De18]. An 
essential downside of such traditional maintenance approaches is that it is very work-
intensive, it requires modern measuring technology, and accurate information for each 
panel separately. Besides, it also requires expert knowledge on the technical set-up and 
the conversion of solar energy into electricity. 

Newer maintenance approaches are more independent of the solar panel’s technology 
and use infrared (IR) thermography to inspect solar panels. Based on their thermal 
characteristics [BS15], such approaches can identify faulty modules and panels. A single 
PV module consists of multiple cells that convert light into electricity. Faulty cells or 
panels heat up due to the inability to convert solar energy to power [Sp12]. Under 
infrared thermography, the heated spots appear like "hotspots". These so-called hotspots 
may occur due to cell failure, interconnection failure, partial shading, or mismatched 
cells [De12]. Undetected hotspots in a module may lead to a degradation of cell 
properties and damage the entire module. IR cameras can reveal modules and cells with 
anomalies [Sp12]. Because such anomaly detection does not require detailed information 
on the modules or advanced expert knowledge, thermography is a non-intrusive 
maintenance technique with high potential cost benefits. 

Drones equipped with IR technology enhance the maintenance process due to their 
versatility. Regular on-site inspections are a legal necessity for solar park operators. 
Combining these inspections with drone monitoring would enable a faster and more 
detailed maintenance process. Drones can quickly inspect field plants and access roofs 
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without further safeguarding inspectors [BS15]. We use both technologies and enhance 
them with Machine Learning to automate the process and improve its applicability and 
efficiency. 

3.1 Concept Architecture 

To present our artifact in a meaningful way, we split the description into separate layers 
(see Fig. 1), including the data collection, processing, and visualization layer: The data 
collection layer encompasses the initial thermal images as an unstructured data source. 
The processing layer incorporates cloud computing and ML to detect anomalies like 
reduced operational capacities in unstructured data. Finally, the visualization layer 
transforms the unstructured data into the virtual entity of the DT. Thus, the layer enables 
visualization of the asset structure as well as the condition and status of each assembled 
unit to provide helpful decision support.  

 

Fig. 1: Concept Architecture (Layer Structure) 

 
Fig. 2: Orchestration Architecture: AI-Modeling and Digital Twin Provisioning 

For physical structures such as PV systems, the idea is to create a complete virtual model 
or DT of the respective structures. As with many areas of application, the most pressing 
issue is the availability of data. We gather the necessary data via an automated 
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maintenance process based on thermal drone imagery to address this issue. Using such 
an external unstructured data source, we are not bound to utilize only certain PV module 
types or technologies. However, processing the unstructured data into a virtual entity 
poses various challenges: Firstly, we must incorporate the overall system's physical 
constructional composition and map each units’ diagnostic condition on the observed 
model. Secondly, we have to observe and determine damages or patterns on each 
assembled PV unit. In the end, the visualization layer needs to highlight the assets 
condition based on the prognosticated health of all assembled units. Based on the 
thermal images, the processing layer creates a detailed prediction for each unit's 
operational condition and allows for actionable insights (e.g., corrective maintenance 
processes), see Fig. 2. 

3.2 Data Collection & Processing Layer 

In the data collection layer, we stored several thermal drone images from various solar 
panels. Mainly, we collected thermal images of panels produced by ‘Schott Solar’ and 
‘CanadianSolar’ as well as inverters from ‘SMA’, ‘Fronius’, and ‘Emerson Control 
Techniques’. We collected 237 images showing up to 8 damages per picture. While 
some pictures show damaged cells, others display no failures or anomalies. The solar 
panels were mainly located in solar parks and are between 6 and 21 years old. Given the 
high density of PV panels, solar parks are the optimal location to build a reasonable data 
layer. 

In the processing layer, we detect where damages in a thermal drone image exactly 
appear by employing state-of-the-art Computer Vision (CV), i.e., object detection based 
on pre-trained deep learning models. Pre-trained models enable a lightweight knowledge 
transfer from research to SMEs through out-of-the-box models. To be more precise, we 
use YOLO_v5 (You Only Look Once - Version 5), a real-time object detection 
algorithm. We fine-tune the algorithm by optimizing the weights in the last layers. As a 
short explanation, the YOLO v5 algorithm is one of the most efficient object detection 
algorithms in CV. It builds on a Convolutional Neural Network (CNN), capable of real-
time predictions with high accuracy in most cases. First, it applies the CNN to the 
complete input image before it divides the given image into different regions where 
YOLO_v5 predicts bounding boxes and probabilities. Afterward, these probabilities are 
weighted to identify the region where the object, i.e., damage, appears [Re16]. We 
compared the YOLO v5 algorithm to other models (e.g., EfficientDet and MobileNet) 
but YOLO v5 yields the best accuracy scores and processing performance - which is 
critical when conducting automated maintenance. We use 111 thermal drone images 
(including several damages) with a pre-processed size of 416x416. The training set 
entails 78 thermal drone images. The validation set comprises 21 images. Finally, the 
test set entails 12 images. We trained the model for 3,000 epochs using a batch size of 
32. In Fig. 3, we present our models’ output results, i.e., annotated thermal images, and 
we can observe that it can capture certain solar panel damages. We are currently only 
using one class/object called 'broken', which indicates whether a panel is damaged or 
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not. Future work can extend the number of classes to distinguish between different kinds 
of damages solar panels can exhibit. For example, a typical damage is a defect bypass 
diode, where a whole substring of the panel sees a loss in efficiency (see left panel Fig. 
3). Besides, only single cells in the panel can be damaged, too (see right panel Fig. 3). 
Additionally, other relevant damages include cell cracks and defective junction boxes.  

   

 
Fig. 3: Exemplary Output and Performance Metrics of YOLOv5 during Training 

3.3 Visualization Layer 

A powerful visualization solution supports technicians and decision-makers to 
comprehensively monitor several solar plants and PV modules. However, it is necessary 
to assign the faulty solar panels to their DT representation to visualize the ML phase 
results. To this end, we leverage the fact that state-of-the-art drones tag and store the 
pictures they take together with additional meta-information like the time and location of 
each image. In our example, the location consists of the drone's exact location and the 
camera's exact location as three-dimensional GPS coordinates, including the height of 
the drone relative to the departure point. Additionally, it stores the camera angle from the 
GPS coordinate as pitch, yaw, and roll. We can compute each solar panel's approximate 
position on a picture by applying linear algebra based on this information (see Fig. 4).  

Finally, we can visualize the solar panels’ DT in a central dashboard. Such a dashboard 
(see Fig. 4) provides a high-level overview of all modules' status and their need for 
action. Possible information includes basic data like the manufacturer of the modules 
and year of manufacture, performance measures like the energy produced, manually 
recorded notes like damages, and damages detected automatically. The dashboard can 
enrich this information with additional details and explanations, e.g., the remaining 
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lifetime of a module, information regarding the type of damage (like cell crack or defect 
bypass diode), why the ML model classified a module as damaged, and 
recommendations for actions. Thus, it is a helpful extension for various stakeholder 
groups. On the one hand, various related industries such as the housing industry can 
adopt this dashboard to their existing Computer-Aided Facility Management systems to 
extend their infrastructure documentation. On the other hand, solar park operators and 
technical support companies can focus on the predictive components to improve their 
maintenance process. 

 

 
Fig. 4: From a Digital Twin Representation to a Comprehensive Dashboard 

3.4 Artifact Evaluation 

To establish convincing evidence that our artifact provides a practical approach for 
modeling a virtual entity of the physical structure, we evaluated the artifact's 
performance in terms of validity and utility in a real-world setting. We observed several 
solar park sites for validity and used the artifact to create fitting virtual entities for the 
physical structures. Overall, we observed three different solar parks and 12 residential 
roofs equipped with PV modules. We collected 237 thermal images and identified 166 
faulty cells. Overall, the tests on PV solar parks corroborate the efficiency and value of 
the proposed artifact. When looking at our ML model's performance metrics, we focus 
on the Mean Absolute Precision (MAP), Precision, and Recall, as these are the most 
reliable metrics in CV tasks. The MAP is 63%, Precision 58%, and Recall 63% on the 
test set. Although our models’ results promise a good performance, training the ML 
model based on a different algorithm or more input data might be beneficial. However, 
different CV algorithms require significantly higher computational power and longer 
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training times. Thus, they might be unsuitable for fast and efficient deployment and the 
hardware stack of most SMEs. Moreover, when comparing our model’s results to 
EfficientDet and MobileNet, YOLOv5 still outperformed both lightweight models in 
terms of MAP (EfficientDet: 28.26%; MobileNet: 18.33%). Notably, the presented 
approach's identified damages might be incomplete or include so-called false positives 
(i.e., working modules wrongly classified as damaged). Against this background, our 
artifact is a lightweight support solution to significantly reduce expert knowledge needs, 
even though it does not replace expert knowledge altogether. 

Overall, our artifact presents both advantages and disadvantages. One shortcoming of the 
described artifact lies in the frequency of data collection. The data is not real-time, i.e., 
permanent measurable, but instead based on automated maintenance cycles that might 
only occur several times a year. However, this is sufficient for most SMEs, as most of 
them currently have less control over such an infrastructure. On the beneficial side, our 
artifact can partly automate the full process by using autonomous flight capabilities of 
drones based on a predefined route combined with automated scheduling. Since flight 
scheduling depends on multiple factors, e.g., on the maintenance need and external 
conditions like wind, sunlight, and clouds, ML can predict an optimal timing. Due to 
legal restrictions, fully automated drone-based maintenance is currently not possible but 
by combining the drone flight with the required on-site inspections, we can decrease the 
necessary timeframe as well as staff requirements. Our proposed semi-automated 
process can decrease maintenance efforts, reduce costs, and increase structured 
information available for further analysis and decision-making.  

To assess whether the artifact also fulfills necessary utility criteria in the problem space, 
we contacted the responsible technical operations managers and solar park operators of 
several sites. By showcasing the performance and discussing the results, we established a 
confidence level in our solution. The transformation of the whole process into separate 
services enables the transformation of PV systems into virtual entities. Thus, 
stakeholders can select the relevant services they want to use, increasing the presented 
system's usefulness. Since most PV system operators currently do not rely on a digital 
representation of their modules, they demand such a solution. Furthermore, our artifact 
provides a lightweight AI application that could be further adopted for other problem 
spaces. SMEs could adopt this approach utilizing pre-trained image recognition models 
to build specific solutions in their area of expertise. This solution lowers the barrier of 
entry for digitalization and implementing smart maintenance processes enabling 
sustainable business models also for SMEs. 

4 Conclusion 

Particular context areas and industries still lack the availability of structured qualitative 
data to analyze the condition of physical assets. Modern technologies like cloud 
computing, Digital Twins, and Machine Learning can help SMEs to tackle this task by 
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integrating a virtual entity for physical structures. We demonstrated the applicability of 
such a transformation process on the example of PV modules. PV modules are rarely 
digitalized, and their maintenance is very work-intensive. With a drone equipped with a 
thermal camera, we reveal an improvement of current maintenance processes by using 
Computer Vision. Thus, we can transform solar panels and their unstructured data 
consisting of thermal images into their DTs. This information is useful for further 
processing, like predicting maintenance needs and automatic scheduling.  

We contributed to the theory of processing drone imagery to identify the respective DTs 
based on location data. Additionally, we provide valuable insights into the process of 
optimizing PV maintenance. Last, our results serve as input for SMEs decision-makers 
on how to collect and evaluate PV modules' respective physical conditions and improve 
current processes. 

While our demonstration focuses on PV maintenance, a more abstract representation 
would also enable an operationalization of the artifact into other context areas. This 
approach would thus allow for significant knowledge transfer between current research 
and SMEs and enables sustainable business models through automation. Potential 
context areas include all those with larger physical structures and a lack of digitalization. 
Possible applications are virtual identities for buildings, public infrastructure, or traffic 
surveillance. Such a knowledge transfer would also significantly increase the value and 
validity of the researched approach.  

Further research can either transfer our approach to a different context area or improve 
certain steps of our approach. Due to the modularity of possible services, future work 
could segment issues and research questions and address them individually without 
needing to address the whole implementation.  
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