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Abstract: Electroencephalographic signals (EEG) have been long supposed to con-
tain features characteristic of each individual, yet a substantial interest for exploiting
them as a potential biometrics for people recognition has only recently grown. The
biggest advantages of EEG-based biometrics lie in its universality and security, while
its major concerns are related to the acquisition protocol that can be inconvenient and
time consuming. This paper investigates the use of EEG signals, elicited using visual
stimuli, for the purpose of biometric recognition, and evaluates the performance ob-
tained considering various frequency bands, different number of visual stimuli, and
various subsets of time intervals after the stimuli presentation. An exhaustive set of
experimental tests has been performed by employing EEG data of 50 different healthy
subjects acquired in two different sessions, separated by one week time.

1 Introduction

Biometrics-based recognition is an active area of research which has brought to the de-

ployment of automatic recognition systems using mainly fingerprints and face for real life

application [JRN11]. In recent years, a growing interest emerged for alternative biometric

identifiers like vein patterns, electrocardiographic (ECG) signals, electrodermal response,

or electroencephalographic (EEG) signals, to cite a few. Specifically, brain signals, ac-

quired trough electroencephalography, have been investigated mainly in the medical arena.

However, despite having large interest in medical applications, EEG signal’s use as a bio-

metric identifier is relatively new [CLR14]. The advantage of using EEG biometrics relies

mainly in its security being brain signals not acquirable at a distance which makes diffi-

cult their synthetic replica [CLR14]. However, one disadvantage of using EEG signals for

people recognition is the difficulty for setting up the subject for EEG acquisition and cre-

ating an ideal environment for it. The acquisition process in fact requires placing multiple

electrodes over the subject’s scalp. These electrodes senses the electrical field generated

by the brain during resting states or while performing specific tasks, such as receiving

audio-visual stimuli, performing imagined or real body movements, speech, etc. The rest-

ing state condition or protocol has been for instance considered in [RCS13], where the

repeatability of discriminative characteristics of EEG signal over time has been partially

addressed, which is essential for biometric recognition. Among the different brain re-

sponses that can be acquired as the result of a brain stimulation, in this paper we rely on

303



the visually evoked potentials (VEP), a kind of Event-Related potentials (ERPs) that re-

fer to the electrical potential modification due to brief visual stimuli and recorded from

the scalp over the visual cortex [GPP12]. Within this regard, the focus of this paper is

the performance evaluation of EEG-based biometric verification based on VEP responses.

Specifically, EEG data collected from 50 healthy subjects during two different sessions,

acquired at time T0 and T0 + 1 week, are employed to test the effectiveness of VEP as a

potential biometrics. This large and multiple-sessions database allows us having a signifi-

cant number of comparisons for a stable and practical result. It is in fact worth remarking

that, although several techniques have been recently proposed for EEG-based biometric

recognition, most of them have been tested either on small databases with more than a

single session, or on datasets comprising recordings from a single session for performance

evaluation. In more detail, this paper evaluates the performance achievable when consid-

ering various EEG frequency bands. The performed experiments investigate which is the

best performing subband among different combinations of different bands in [0.5; 14 ]Hz,

the most relevant for our analysis [Bas99, CLR14, RCS13]. Moreover, experiments are

performed for finding the minimum number of visual stimuli that are required for gener-

ating a single ERP, and the best time interval after producing the visual stimuli that can be

considered as a EEG signal latency.

2 Related Work on VEP Based Biometric Recognition

In this section some of the earlier works which had evaluated VEP as a potential biometrics

are briefly reviewed (Table 1). In [Tou09] Touyama has investigated the possibility of per-

son identification by extracting the P300 evoked potentials from the generated EEG signal,

during a target and non-target photo retrieval task. The authors have used Principal Com-

ponent Analysis (PCA) on the time sequences along with Linear Discriminant Analysis

(LDA) for classification, and examined the identification performance. Five male subjects

have been considered, with every subject’s EEG response acquired for five sessions on a

same day upon producing target and non-target stimuli. Each session contained 20 trials

with 9 images. For performance evaluation the 0.5−30 Hz sub-band has been considered,

while only the Cz Channel (according to 10-20 international standard) has been used. A

leave-one-out approach has been employed by mixing the EEG signals from different ses-

sions for training purposes. Both the target and non-target stimuli are considered together

and a performance accuracy of 97.6% achieved. In [GPP12] Gupta et al. have considered

EEG signals recorded as responses to three variations of the oddball paradigm: standard

oddball, spatially varying oddball and Rapid Serial Visual Paradigm (RSVP), which is

nothing but the stimuli on the same spatial position which minimizes the influence of ir-

relevant stimuli. Eight subjects (4 males and 4 females) have been employed for testing

purposes, with acquisitions from a single sessions. Authors achieved a maximum Cor-

rect Recognition Rate (CRR) of about 97% when exploiting the RSVP paradigm, with the

1 − 12 Hz bandpass frequency. In [YSL13] Yeom et al. have evaluated the differences

of the averaged EEG signals generated in response to self-face and non-self-face images.

Tests have been performed over 10 different subjects with signals captured in two sessions

on different days, where each session included two runs, and each run further composed

of 50 trials. For each trial, a total of 20 face images were presented (10 of self-face and
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Table 1: Overview of state-of-the-art contributions using VEP from EEG signals as a biometrics.

Paper DB Ch.s Features Classifier Performance Sessions

[DZGE09] 20 20 LDA KNN CRR=94% 1

[PM07] 102 61 MUSIC spectrogram Elman NN GAR=98.12% 1

[Pal04] 20 61 spectral power ratio BP NN CRR=99.15% 1

[GPP12] 8 8 P300 LDA CRR=97% 1

[Tou09] 5 1 (Cz) PCA LDA CRR=97.6% 5, same day

[YSL13] 10 8 Adapt. discriminative feat. Non-Linear SVM CRR=86.1% 2, diff. days

10 of non-self-face images), i.e. 100 trial for each session and 200 trials overall. Cross-

validations are performed with random selection of 180 trials for training and remaining

20 trials for test. The proposed method has achieved an overall CRR of about 86.1% with

both false acceptance rate (FAR) and false rejection rate (FRR) of 13.9%.

In [DZGE09] Das et al. have used VEP data for person identification. 20 different subject’s

EEG signal have been collected, using a visual perceptual task in which filtered noise was

added with the visual stimuli. Face and car images have been used as a visual stimuli

and each of them appeared for 40ms, after that the subjects had to identify whether a

stimuli is car or face. They have also shown that a period of 120 − 200ms after the

stimulus is the most informative with respect to the individual discrimination. Authors

have obtained a classification accuracy around 75% to 94% for the best performing post-

stimulus set. This shows that the VEP signals are crucial for person recognition. In [Pal04]

R. Palaniappan has investigated VEP data recorded from 20 subjects by producing a single

stimuli, which consists of pictures of common objects represented by black and white line.

A classification accuracy of 99.6% has been achieved by ANOVA tests on each of the 61

channels. Also in [PM07] Palaniappan et al. used similar protocol for 300ms VEP stimuli

to collect the EEG signals. A total of 102 subjects were used for collection of EEG data

from 61 channels for a total of 3560 VEP and the acquired signals were filtered through a

25 − 56 Hz bandpass filter to retain the γ waves. The authors have also used CAR filter

for reduction of intra-class variance and they have achieved 98.12% of accuracy using

all channels. As already remarked in Section 1, most of already proposed works have

evaluated recognition performance achievable with EEG signals when using acquisitions

from a single session, or from multiple session yet while considering only few subjects.

The present paper is the first one properly investigating the discriminative capabilities of

VEP responses, by comparing the signals captured from a large number of users during

distinct recording sessions, as described in Section 4.

3 Proposed Biometric Recognition System using VEP

3.1 Employed VEP Acquisition Protocol

In this framework we use eight different geometric shapes, as described in Figure 1(c),

to generate VEPs. Among these shapes, the circle is considered as target stimulus, with

every subject asked to concentrate on it as it appears in the screen. An ERP response is

therefore expected to be noted when the target shape appears on the display. All the other

305



FPZ FPZ

PZ PZ
P5 P5P3 P3P1 P1

P6 P6P4 P4P2 P2

T5 T5

CPZ CPZ
CP6 CP6CP4 CP4CP2 CP2CP1 CP1CP3 CP3CP5 CP5

TP7 TP7

FCZ FCZ

POZ POZPO3 PO3PO1 PO1
PO7

P9 P9P1O P1O

PO8
PO4 PO4PO2 PO2

O2 O2O1 O1
OZ OZ

AFZ AFZ

FZ FZ

F7 F7

AF3 AF3AF1 AF1AF4 AF4AF2 AF2
AF8 AF8AF7 AF7

FP2 FP2FP1 FP1

CZ CZC1 C1C3 C3C5 C5C6 C6C4 C4C2 C2T3 T3

FT7 FT7

FC4 FC4FC2 FC2FC1 FC1FC3 FC3

F6 F6
F4 F4F2 F2F3 F3F5 F5

FC5 FC5

F1 F1

T6 T6

F8 F8

TP8 TP8
TP9TP10 TP10

FT8 FT8

T4 T4

FC6 FC6

NZ NZ

IZ IZ

PO8PO7 PO8

F9 F9F10 F10

T10 T10T9

(a) (b)

TP9

T9

Figure 1: Selected electrode positions. (a) 17 Selected electrodes or Channels, (b) 6 Selected elec-
trodes or Channels [Fz, C3, Cz, C4, O1, O2], (c) Shapes employed for the Geometric Protocol.

shapes are considered as a non-target stimulus. Each of these shapes is shown for 250

ms, and repeated for 60 times. The EEG data are acquired from 19 different electrodes

that are positioned on brain scalp according to the 10-20 international standards. For

experimental purposes we consider both kind of responses, generated after the presentation

of target and non-target shapes. Specifically, for verification purpose each and every users’

acquired EEG signals are compared using the following three schemes, these are: [Target

vs. Target]: where the recorded EEG signal has been generated due to the target stimulus;

[Non-Target vs. Non-Target]: EEG signal that has been generated due to the non-target

stimuli; [(Target - Non-Target) vs. (Target - Non-Target)]: generated by subtracting the

EEG signal generated by target and non-target stimuli

3.2 EEG Data Analysis

A preprocessing step is first carried out on the recorded EEG data to increase their signal-

to-noise ratio. Specifically, for each subject a Common Average Referencing (CAR) filter

is used to calculate the mean of all channels, and subtract this value from all the out-

put channels [CLR14]. The CAR filtered data are then down-sampled up to 128 Hz from

existing 256 Hz using a proper anti-aliasing bandpass filter, and then spectral filtered to

0.5− 40 Hz to retain all the relevant information which are required for feature extraction.

The data are then normalized using Z-score transformation to have a zero mean and uni-

tary standard deviation. Finally the data is detrended, by subtracting the mean or a best

fit line from the data. After the described preprocessing, performed in all the considered

experimental tests, a specific subband is isolated for extracting discriminative information

from the available signals. As discussed in Section 4, we in fact perform an analysis of the

best performing EEG subband or subband combinations in the range [0.5; 14 ] Hz, con-

ducted when considering the [Target vs. Target] scenario. We also analyze which is the

best performing time interval after the stimulus presentation, with a maximum interval of

0 − 700ms. Specifically, all the possible time intervals ∆T = [tb; te], where tb and te val-

ues can vary in between {0; 100; 200; 300; 400; 500; 600; 700}ms, can be considered for

this aim. As reported in Section 4, also for this analysis a large set of tests are performed

for user verification by considering [Target vs. Target] scenario. Once the recorded sig-

nals have been filtered, and a specific time interval after the presentation of the stimuli

has been determined, the EEG signal corresponding to the target and non-target stimulus
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Figure 2: EER vs frequency range for (a) 17 and (b) 6 channels fusion

can be processed in order to extract a VEP waveform from them. This task is performed

by averaging the responses taken from N events. Since we have 60 events available for

each considered shape, as described in Section 4 we select N = {20; 30; 40; 45; 50} in

the performed tests, to investigate the performance dependence on the number of consid-

ered events. The comparison between two VEP waveforms, extracted from two different

recording sessions, is performed by resorting to the cosine or to the Euclidean distance.

Specifically, the responses extracted from each channel are first compared between them,

and the M computed distances are then fused into a single score by taking their average

as the output of the matching process. In more detail, in our experiments we consider

the responses collected from M = 17 channels, selected from the available 19 ones by

excluding the two frontal ones, i.e. Fp1 and Fp2, since VEP responses are known to be

mostly present in central and occipital regions. In order to minimize the number of em-

ployed electrodes, thus reducing the user inconvenience, we also consider a configuration

using M = 6 channels: [Fz, C3, Cz, C4, O1, O2]. This latter configuration is in fact of-

ten employed for BCI applications based on VEP protocols [WW12]. Both the employed

montages are shown in Figure 1(a),(b).

4 Experimental Results and Discussion

As already remarked, the experimental validation is performed over a database of EEG sig-

nals collected from 50 healthy subjects during 2 different sessions, acquired at one week

distance each other. We first focus on the Target vs. Target scenario, where the VEPs gen-

erated in correspondence of the selected trigger are employed for biometric recognition.

Within this scenario, we evaluate the best performing frequency range, time interval and

number of observed events in the following subsection. In more detail, all these evalua-

tions are performed through a cross-validation test by selecting, for 10 different times, a

total of N events from the EEG signals during the first recording session of each user, to

build the associated enrollment dataset. For each time, intra-class comparisons are per-

formed by randomly selecting, for 10 different times, N events from the second recording

session of the tested user as authentication probes. The dimensionality of the number of

intra-class comparisons considered for performance evaluation is therefore [50×10×10].
Inter-class comparisons are instead obtained by randomly selecting, for each enrolled user,

other 20 subject acting as impostors, and selecting N random events from their recordings
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Figure 3: EER vs time intervals ∆T (after visual stimuli) for (a) 17 and (b) 6 channels fusion

from session-2. The dimensionality of the number of inter-class comparisons is therefore

[50×10×20]. This way, we can evaluate the performance in terms of FRR, FAR and equal

error rate (EER) through a very large sets of genuine and impostors comparison scores.

4.1 Results of Frequency Range Selection
For the selection of the best performing frequency range we have set the ∆T = [0; 600]ms

time interval, and evaluated the performance of frequency ranges in between [0.5; 4 ]Hz,

[0.5; 6 ]Hz, [0.5; 8 ]Hz, [0.5; 10 ]Hz, [0.5; 14 ]Hz when considering the cosine distance

for generating matching scores. The performance evaluation tests are done for both the

M = 17 channels and the M = 6 channels configuration, as detailed in Section 3.2.

N = 45 events are considered for generating ERP responses from the considered target

stimuli. Figure 2 shows the performance of all the above mentioned subbands, and it

can be clearly seen that [0.5; 8 ]Hz sub-band is the better performing one for both the

17-channel and the 6-channel combinations. Similar experiments are also performed for

other frequency ranges such as [4; 8 ]Hz, [4; 14 ]Hz and [8; 14 ]Hz. Nonetheless, the EER

increases substantially for all these latter cases.

4.2 Results of Time Interval Selection
Given the [0.5; 8 ]Hz frequency band, several time intervals ∆T , starting at the visual

stimuli time presentation, are then considered. Figure 3 shows the performance obtained

for various ∆T values, for both the 17-channel and the 6-channel configurations and con-

sidering VEP responses obtained with N = 45 events. We omit the results obtained for

time intervals lasting 100ms from Figure 3, since in these cases the EER is always greater

than 25%. To find the best performing distance metric, we also consider the Euclidean

(L2) and manhattan (L1) distances along with the cosine one, finding out that the L1 dis-

tance performs almost as similar as L2 distance, whose associated performance is reported

in Figure 3. It can be clearly seen that matching performed using the cosine distance out-

performs the Euclidean distance calculation as cosine distance measures the similarity of

vectors by considering the direction of the signal with respect to the origin while Euclidean

distance measures the distance between particular points of interest along the vector; e.g.

magnitude. So, by considering the entire EEG signal and its direction produces better

result than only considering the magnitudes at some particular points; as the magnitude

may be same for different EEG signals coming from different sources. Better results are
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Figure 4: EER vs different no of events ∆N for (a) 17 and (b) 6 channels fusion

typically obtained when considering a large time interval for the considered VEPs, not

focusing only on the temporal interval characteristic of ERP responses.

4.3 Results of Required Minimum Number of Events
Having set the [0.5; 8 ]Hz frequency range and the ∆T = [0; 600]ms time interval, we also

evaluate the performance dependency on the number of events considered for generating

VEP responses in Figure 4. The reported results are obtained having set the [0.5; 8 ]Hz

frequency range and the ∆T = [0; 600]ms time interval, while changing the number of

events N as explained in Subsection 3.2. It can be clearly seen that the EER is inversely

proportional to the number of events, and VEPs generated by averaging N = 50 events

produce the lowest EER.

4.4 Performance Evaluation of Proposed Recognition System
By considering [0.5; 8 ]Hz frequency range, ∆T = [0; 600]ms time interval and ∆N = 50
events as selected system parameter, further experiments are carried out to compare the

performance achievable when considering the [Target vs. Target], [Non-Target vs. Non-

Target] and [Target − Non-Target vs. Target − Non-Target] scenarios. Specifically, in

order to present results with a high statistically significance, in this case we carry out a

cross-validation process by selecting, for 20 different runs, 40 subjects out of the available

50 for estimating the achievable recognition performance. The rates reported in the fol-

lowing are obtained as the average of the results obtained during each run. Specifically,

for each run we evaluate intra- and inter-class scores as described at the beginning of this

section, performing several divisions of the data in sessions 1 and 2 to respectively gener-

ate the enrollment and testing datasets. Therefore, now the dimensionality of the number

of intra-class comparisons is now [20 × 40 × 10 × 10], while the number of inter-class

comparisons employed to evaluate the FAR is now [20 × 40 × 10 × 30]. Table 2 shows

the calculated EER after performing the above mentioned comprehensive testing. It can

be seen that by using either using the 17-channel or the 6-channel configuration, EER of

around 14.5% can be achieved for the [Target vs. Target] scenario. However, for [Non-

Target vs. Non-Target], the considered configurations achieve around 14% and 13% EER

respectively. Worse results are obtained when performing comparisons between wave-

forms obtained as difference between the target and non-target responses. Therefore, it

can be concluded from the above results that the [Non-Target vs. Non-Target] scheme is
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Table 2: Performance Evaluation of Target and Non-Target stimuli by EER calculation.

Testing Schemes EER (in %) for 17 Ch. Fusion EER (in %) for 6 Ch. Fusion

[Target vs Target] 14.82 14.45

[Non-Target vs Non-Target] 13.55 14.01

[(Target − Non-Target) vs

(Target − Non-Target)]
23.50 19.66

more stable than the other two, for both the considered channel configurations. This re-

sult leads us to consider [Non-Target vs. Non-Target] scheme and the 6-channel scheme for

further research on achieving performance stability for EEG-based biometrics recognition.

5 Conclusions

In this paper we have investigated about the use of EEG for the purpose of automatic

people recognition. Specifically, visually evoked potentials have been employed in our

approach. An extensive dataset of 50 healthy people acquired in two sessions one week

time apart has been employed. Different frequency subbands, time intervals and channel

configurations have been tested. In summary our analysis can be considered as a prelimi-

nary step towards the assumption that, EEG signals generated as a result of VEP, are stable

enough for its consideration as a biometric identifier.
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