
Search design patterns

Henry Müller
Fraunhofer FIRST, Kekuléstr. 7, D-12489 Berlin, Germany

henry.mueller@first.fraunhofer.de

Abstract: In the context of constraint programming search algorithms are normally
implemented as monolithic units, which often are complex and error prone, hard to
understand and to extend. That holds even for object-oriented state-of-the-art con-
straint solvers, although the paradigm of object-oriented programming offers various
techniques which encourage abstraction, flexibility and code reuse. We apply these
techniques on CP search and propose a conception of platform independent, object-
oriented search design patterns which state composable search modules. The com-
position of these modules forms complete search algorithms. Formulating search al-
gorithm with modules has many advantages: They are flexible, reusable and easy to
understand. As search modules encapsulate orthogonal abstractions, they categorize
search and allow fast and easy search modelling.

1 Introduction

Faced with the huge amount of known CP search algorithms and the invention of new
algorithms in rapid rate, it is rather astonishing that there are only little efforts of devising
a common and consistent formalism or framework for these algorithms. Even though many
algorithms have a lot of similarities and many common features are orthogonal, there is
no general scheme describing how different aspects of search can be separated from each
other and how these aspects can be composed to express variations of search.

Although many state-of-the-art constraint programming systems are hosted in an object-
oriented environment, not much effort is made to exploit the possibilities of object-oriented
programming which especially supports abstraction and flexibility, modularity and reuse
of software. In [Mül05] we introduced a first impression of the ”Generic object-oriented
search environment” (Goose), which makes extensive use of object-oriented techniques to
modularise CP search algorithms. In this paper present the possibilities of this environment
and give some insight in its working:

Goose primarily proposes a catalogue of object-oriented search design patterns to enforce
ease of use, modularity and flexibility of search algorithms. In Section 2 we motivate its
use and present some central ideas of the conception. Using an example we show how to
model search algorithms in Goose and demonstrate the consequences. Then we give an
overview over already designed search patterns. Finally we discuss some related work and
draw a conclusion (Section 3).

517



2 Goose conception

Motivation Most CP systems traditionally offer well known standard search algorithms
as black box units, i.e. they can be used to solve arbitrary CSPs but the implementation
is hidden. Sometimes they can be adjusted with flags to allow variation (e.g. to enable
a heuristic). Some modern constraint systems additionally offer primitives which allow
the implementation of own search procedures, e.g. choice points. With these primitives
custom tailored algorithms can be implemented which solve special CSPs efficiently.

Traditionally CP search algorithms are implemented as monolithic units. But the imple-
mentation of any but the most basic monolithic search can easily get very complex, espe-
cially if several techniques are woven into one algorithm. Nested loops and conditional
clauses can quickly cause high code complexity. Such algorithms are hard to understand,
maintain and error-prone. It is also almost impossible to reuse parts of a complex algorithm
in a slightly varying algorithm. Hence new algorithms are often copied and modified.

The perception of monolithic search contrasts with the compositional nature of constraints,
which are natural modules: The semantic of a CSP is equivalent to the conjunction of the
semantics of its constraints. Many search algorithms use the same features, and many of
them are orthogonal. What one really wants is to combine such features into a runnable
search algorithm, that is, model search out of components representing these features. The
difficulty lies in finding these components: It’s unclear how to distribute search algorithm
behaviour among modules so that they are applicable to many algorithms and how to
conceptualise their semantics as compositional as possible. The semantics of single search
components should imply the semantic of the search algorithm composition. That is what
we do within the Generic object-oriented search environment (Goose) [Mül05].

Search design patterns Goose is a conception of modularised CP-based search algo-
rithms, which consists primarily of a catalogue of object-oriented search design patterns
which define composable search modules and to the lesser extent of concepts which deal
with the handling of these modules. Using well known object-oriented design patterns
[GHJV94], which are solutions to often occurring problems of object-oriented design, we
formulate search design patterns that define modules out of which search algorithms are
composed. Especially the patterns Factory Method, Strategy and Decorator are sufficient
to express many variations. A Search design pattern is basically defined as shown in
[GHJV94]: It has a name, a problem description which sorts out when the pattern can be
applied, it presents a possible solution to the problem and discusses consequences of this
solution. A pattern defines its search modules structurally by giving appropriate class and
interface definitions. Often a search module (class) describes an algorithm a in abstract
steps, and the semantics of these steps (methods) – and thus a – are defined by specifying
their pre/post conditions. Search design patterns are designed with emphasis on flexibility
and code reuse, are platform independent and can be applied to arbitrary object-oriented
constraint programming systems. Search modules represent more or less orthogonal fea-
tures of search algorithms, i.e. different search strategies, variable and value selection
heuristics, alternative implementations with different space and time tradeoffs. A search
algorithm is formulated by composition of several modules in a plug and play way.

518



Composition of search modules into complete algorithms has advantages over the tradi-
tional way of implementing search: Modules encapsulate concepts into reasonable, under-
standable units. This significantly accelerates development of new algorithms and sim-
plifies correctness and termination proofs. Provided with adequate design, modules are
generic and reusable in different contexts. They categorise search and enable modelling of
search algorithms. A search model is essentially a composition description of compatible
search modules, and thus done fast and easily. Aggregated algorithms are less error prone
and comparable. Models are aggregated to form complete, runnable programs. Goose
defines an XML language GooseML to express search (and problem) models and an ag-
gregation algorithm capable of transforming a model into a runnable, platform-specific
program (Figure 1). Problem and search model are interconnected with shared variables.
For every search component used in the model the host system must provide an imple-
mentation which fullfills the specification given by the underlying search design patterns.
A special feature of GooseML are variations, which makes formulation of algorithmic
variation easy, i.e. stating a base algorithm and several slight variations.

Platform independent
GooseML-model

Search algorithm
model

CSP model

Variables

Transformation

Platform specific
GooseML-program

Object-oriented
constraint system
(target platform)

Execution

Search algorithm

CSP

Variables

Figure 1: Transformation of a GooseML-Model into a platform-specific, runnable form

Goose defines four abstraction layers, and each search module can be associated with
one layer. I is the most abstract, IV the most special abstraction layer. Layer I defines an
abstract decision maker which is the frame for every search algorithm. Layer II specialises
this algorithm to a search strategy (e.g. local search or systematic search). Layer III
contains variation modules, which alter or enhance the behaviour of other modules. Layer
IV holds the most special search space modules. An aggregated search algorithm always
consists of at least 3 parts: The abstract decision algorithm, a search strategy and a search
space. Variation components can express variations of this algorithmic skeleton.

Goose is inspired by Prosser’s categorisation of labelling search algorithms [Pro93], which
allows to express variations of CP search algorithms in a uniform way. It distinguishes al-
gorithms by the way in which they move vertically along the search tree, e.g. moving
back chronologically in an inconsistent state or jumping back over not involved variables.
With Goose we generalise and extend this approach to allow deeper categorisation by fur-
ther separation of orthogonal features. It allows not just labelling but the formulation of
arbitrary algorithms. Identified features are worked up with object-oriented methods and
encapsulated into modules to enforce flexibility, extendibility and code reuse. The num-
ber of possible algorithms arises by building all possible variations over these modules.
Goose abstraction layers I and II embody a general form of Prosser’s scheme: The generic
decision algorithm successively makes decisions as long as no solution is found and un-
does decisions when an inconsistent state arises. The concrete form of these actions is

519



realised in the search strategy, e.g. a systematic search may try to extend partial solutions
and backtrack. On top of this we generify search strategies by factoring out data structures
into a special search space. Strategies can thus be reused for different spaces. Furthermore
we vary behaviour of search strategies and search spaces with variation modules.

We will demonstrate the consequences of modelling search algorithms with an example
of depth first search (DFS) with backtracking over variables. Figure 2 shows the class
diagram specifiying available modules and the search model as an object diagram (at-
tributes and methods hidden). This ought to give an impression of how to form a complete,
runnable search algorithm out of modules. The classes are search modules defined by dif-
ferent search design patterns, and the algorithm is assembled by aggregating instances of
these classes. The outermost object chronologicBacktracking is an interface between the
host system and the algorithm. Thus, the aggregate forms an easy to use black box and
can be handled like any other native search procedure. A search request sent to chronolog-
icBacktracking is delegated to varLabeller, which realises a generic backtracking search
over the compatible search space variables, which is basically a variable sequence. Com-
patibility of modules is structurally defined by interfaces, i.e. chronologicBacktracking
works on a search space of type Backtrackable . The chronologicMover helps varLa-
beller, which performs the abstract high level search logic, to move chronologically over
the search space variables, which contains data structures and low level helper functions
regarding these structures.

chronologicBacktracking : ConcreteSystemSearch

domIterator : GenericBacktrackingDecisionMaker

varLabeller : GenericBacktrackingDecisionMaker

mainOrder : MostConstrainedDecorator

domOrder : RandomOrderingDecorator

domain : DomainArraySearchSpace

variables : VariableSearchSpace

subOrder : FirstFailDecorator

cMover : ChronologicMover

fMover : ForwardMover

Depth first search with chronologic backtracking

GenericBacktrackingDecisionMaker

RandomOrderingDecorator

MostConstrainedDecoratorDomainArraySearchSpace

ConcreteSystemSearch

AbstractDecisionMaker

VariableSearchSpace

ChronologicMover

FirstFailDecorator

DecisionMaker

Backtrackable

Constrainable

ForwardMover

SearchableMovable

Mover

1..*

1..*

Figure 2: Class diagram of search modules and object graph of an aggregated search algorithm

DFS constructs a decision tree while systematically traversing the search space. The class

520





3 Related Work and conclusion

Most constraint solvers offer limited or no search modelling capabilities (Koalog, CHIP,
ILOG Solver (OPL is an addon), firstcs [HMSW03], SICStus prolog, ECLiPSe,
JSolver). Normally, some standard search procedures are offered as monolithic black box
algorithms with flags for configuration, and sometimes heuristics can be used. Object-
oriented constraint systems can implement Goose search design patterns, thus gaining the
presented search modelling features.

There are basic differences between Goose and other modelling approaches. Firstly Goose
is a set of search design pattern, which can be implemented in different constraint solvers.
The pattern catalogue is an open framework offering several abstractions, arbitrary con-
cepts can be added or changed. Other modelling approaches like OPL [Hen99] – probably
the most expressive tree search modelling language – are proprietary and shut systems.
OPL achieves a concise and elegant formulation of search algorithms, but it is quite com-
plex and neglects accessibility to other systems. Goose is open and makes use of standards
like UML and XML for easy access of modern IT systems. By the use of standard OO
techniques the Goose concepts can be understood by many people, and modelling of search
is a simple plug and play process.

Goose is a new approach which improves implementation and modelling of CP search in
many ways. Its concepts will be published in detail in the author’s doctoral thesis [Mül08].

References

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[Hen99] Pascal Van Hentenryck. The OPL optimization programming language. MIT Press,
Cambridge, MA, USA, 1999.

[HMSW03] Matthias Hoche, Henry Müller, Hans Schlenker, and Armin Wolf. firstcs — A Pure
Java Constraint Programming Engine. Juli 2003. submitted to the 2nd International
Workshop on Multiparadigm Constraint Programming Languages (MultiCPL’03).

[Mül05] Henry Müller. GOOSE – A generic object-oriented search environment (extended
abstract), 2005. Submitted to Eleventh International Conference on Principles and
Practice of Constraint Programming, CP 2005. The submission is available on the CP
website: http://lia.deis.unibo.it/ zk/DP2005/DP2005.htm.

[Mül08] Henry Müller. Konstruktion und Adaption generischer, modularisierter Suchalgorith-
men im Kontext objektorientierter Constraint-Programmierung. PhD thesis, Technis-
che Universität Berlin, (forthcoming) 2008.

[Pro93] Patrick Prosser. Hybrid Algorithms For The Constraint Satisfaction Problem. Compu-
tational Intelligence, 9(3):268, 1993.

522




