
Type Safe Programming of XML-based Applications

Martin Kempa
sd&m AG

software design & management
Carl-Wery-Str. 42

D-81739 München, Germany

Volker Linnemann
Universität zu Lübeck

Institut für Informationssysteme
Ratzeburger Allee 160, Geb. 64

D-23538 Lübeck, Germany
E-mail: linnemann@ifis.uni-luebeck.de

Abstract: There is an emerging amount of software for generating and manipulating
XML documents. This paper addresses the problem of guaranteeing the validity of
dynamically generated XML structures statically at compile time of an XML-based
application. In the XOBE (XML OBJECTS) project we extend the object-oriented
programming language Java by new language constructs. XML Schema is used for
describing sets of valid XML documents. An XML schema provides a vehicle to
define new classes, i.e. each element declaration in a schema defines a new class
of objects (XML objects). Each object within a class represents an XML structure
which is valid according to the underlying XML schema. XML objects are created by
a new language construct called XML object constructor. XML object constructors
are expressed in XML syntax. Previously generated XML objects can be inserted
according to the declared XML schema.
The main focus of the paper is the type system of XOBE. Among others, this type
system provides the basis for checking the validity of assignments of XML objects to
variables. The type system will be described and we present formally a type checking
algorithm based on this type system.

1 Introduction

XML [W3C] plays an important role for internet data. Due to this fact, there is an emerg-
ing amount of software for generating and manipulating XML documents. Therefore,
programming language concepts and tools for this purpose are needed. The approaches
that are currently in use are not sufficient because they cannot guarantee that only valid
XML documents are being dealt with. In the XML context a valid XML document is a
document which is correct according to an underlying XML Schema [W3C] or an XML
Document Type Definition DTD [ABS00] which we call schema in the remainder of this
paper. This means that a document is an element of the language defined by a schema.
Since most current languages and tools do not allow to guarantee the validity of dynami-
cally generated XML documents at compile time, extensive runtime checking is necessary
in order to achieve valid documents.

The XML OBJECTS project (XOBE) [LK02] at the University of Lübeck addresses this
mismatch by defining XML objects representing XML fragments and by treating them as
first-class data values. We extend Java for this purpose. XOBE overcomes the different
representations of XML fragments as strings and as nested object structures in the same

397

source code. Instead, a running XOBE program works only with XML objects. A text
form of XML objects with explicit tagging is constituted for communication with the out-
side world only. XML objects are created by a new language construct called XML object
constructor. XML object constructors are expressed in XML syntax. Previously generated
XML objects can be inserted according to the declared schema. The schema is used for
typing the XML objects.

The main aspect of this paper is the type system of XOBE. This type system is the basis
for checking the validity of assignments of XML objects to variables. The type system
will be described and we present a type checking algorithm based on this type system.

The paper is organized as follows. Our approach for programming XML based applica-
tions by using XML objects in Java is introduced in Section 2. The corresponding type
system is described informally and formally in Section 3. Section 4 presents implemen-
tation details of the XOBE system. Section 5 provides some related work. Concluding
remarks and an outlook for future work conclude the paper.

2 XML Objects in XOBE

In this section we briefly introduce the syntax and semantics of XML objects in an informal
manner. A more detailed introduction can be found in [KL02, KL03, Kem03]. XOBE
extends the object-oriented programming language Java by language constructs to process
XML fragments. Due to space limitations, we introduce only the construction of XML
objects. Traversing XML objects by XPATH [W3C] is not needed for describing the type
system of XOBE. Details can be found in [KL03, Kem03].

In XOBE, we represent XML fragments, i.e. trees corresponding to a given schema, by
XML objects. Therefore, XML objects are first-class data values that may be used like any
other data value in Java. The given schema is used to type different XML objects.
We use the schema given in listing 1 describing a bookstore as the basis for our example.
According to this schema, a bookstore contains several books. Each book contains several
authors and one title.

<xsd : schema xmlns : xsd=” h t t p : / / www. w3 . o rg / 2 0 0 1 /XMLSchema”>
<xsd : e l e m e n t name=” b o o k s t o r e ”><xsd : complexType><xsd : sequence>

<xsd : e l e m e n t name=” book ” minOccurs=” 0” maxOccurs=” unbounded”>
<xsd : complexType><xsd : sequence>

<xsd : e l e m e n t name=” a u t h o r ” minOccurs=”0” maxoccurs =” unbounded”
t y p e =” xsd : s t r i n g ”/>

<xsd : e l e m e n t name=” t i t l e ” t y p e =” xsd : s t r i n g ”/>
</ xsd : sequence > </ xsd : complexType>

</ xsd : e l emen t>
</ xsd : sequence > </ xsd : complexType > </xsd : e l emen t>

</ xsd : schema>

Listing 1: XML schema for bookstore

Listing 2 shows a method which reads books with their authors and titles. It subse-
quently constructs an XML object for these books. The class declaring collectBooks
uses our bookstore schema by importing the corresponding file by a clause like import
bookstore.xsd.

398

1 b o o k s t o r e c o l l e c t B o o k s () {
2 XML <book∗> books = <>;
3 i n t countBooks = keyboard . r e a d i n t () ;
4 f o r (i n t i = 1 ; i<=countBooks ; i ++){
5 XML < a u t h o r∗> a u t h o r s = <>;
6 i n t c o u n t A u t h o r s = keyboard . r e a d i n t () ;
7 f o r (i n t j = 1 ; j<=c o u n t A u t h o r s ; j ++) {
8 S t r i n g a u t h o r = keyboard . r e a d S t r i n g () ;
9 a u t h o r s = a u t h o r s +

10 <a u t h o r > { a u t h o r } </ a u t h o r >;
11 } / / f o r j
12 S t r i n g t i t l e = keyboa rd . r e a d S t r i n g () ;
13 book b =
14 <book>
15 { a u t h o r s }
16 < t i t l e > { t i t l e } </ t i t l e >
17 </book>;
18 books = books + b ;
19 } / / f o r i
20 re turn
21 <b o o k s t o r e>
22 {books}
23 </ b o o k s t o r e >;
24 } / / c o l l e c t B o o k s

Listing 2: Method collectBooks

Line 2 declares a variable books for XML objects. A corresponding value is a list of
books. books is initialized by the empty list. Line 5 declares a variable authors for
lists of authors. Lines 9 and 10 append a newly created author element to the list of authors.
The author element is constructed in line 10 by a so called XML object constructor.
An XML object constructor is an XML fragment where the content of a variable can be
inserted in places where it is allowed according to the underlying schema. In line 10, the
string content of variable author is inserted. This conforms with the underlying schema
because the content of an author element is a string. In line 13, the declaration book b
is an abbreviation for XML<book> b. An abbreviation of this kind is allowed in cases
where the type of a variable corresponds directly to an element name, e.g. book. This does
not apply to variable books (line (2)). Lines 13-17 use an XML object constructor for
constructing a book out of the previously generated author list and the title.

This finishes our short introduction to XOBE. Due to space limitations, we did not cover
the important aspect of using XPath [W3C] within XOBE for type safe decomposition of
XML values. For details and more examples we refer to [Kem03, KL03, Kra02, LK02].

3 The XOBE Type System

This section is the major part of this paper presenting the XOBE type system. Type anal-
ysis is done in two steps. First, the types of the XML object expressions are determined
using type inference. Second, the subtype relationship of the inferred types is checked by
a subtyping algorithm. Details are given in [Kem03, KL03].

Formalizing XML
For a precise definition of our subtyping algorithm we need a formalization of XML. We
use regular hedge expressions [BKMW01] and regular hedge grammars describing sets

399

of trees.

Definition 3.1 Let B and E be finite sets of basic types (simple types) and element names
respectively with B ∩ E = ∅. A set of all hedges T ∗ over a set of terminal symbols
T = B ∪ E is defined inductively as follows:
ε ∈ T ∗ is the empty hedge,
b ∈ T ∗ is a hedge with b ∈ B,

e[v] ∈ T ∗ is a hedge with e ∈ E and v ∈ T ∗,
vw ∈ T ∗ is a hedge with v ∈ T ∗ and w ∈ T ∗. �

Definition 3.2 The set of regular hedge expressions Reg over a set of terminal symbols
T = B ∪ E and a set N of nonterminal symbols (names of groups and complex types,
N ∩ T = ∅) is defined recursively by:

∅ ∈ Reg (empty set), ε ∈ Reg (empty hedge),
b ∈ Reg (simple type), n ∈ Reg (complex type),

e[r] ∈ Reg (element), (r|s) ∈ Reg (regular union),
(r; s) ∈ Reg (regular concatenation), (r)∗ ∈ Reg (Kleene star)

for all b ∈ B, n ∈ N , e ∈ E and r, s ∈ Reg. �

For simplifying parentheses, we assume operator precedence in the decreasing order ∗ ; |.
We define r+ = r; r∗ , r? = r|ε and for I = {i1, ..., in}:

∣∣∣
∣∣∣∣∣∣
i∈I

ri = ri1 | ... | rin .

Definition 3.3 The hedge language L(r) over a regular hedge expression r ∈ Reg for a
given set of production rules P of the form n→ r with n ∈ N , r ∈ Reg and n→ r ∈ P ,
m→ r′ ∈ P =⇒ n �= m, is defined by:

L(∅) = {} L(ε) = {ε}
L(b) = {b} L(n) = L(r) with n→ r ∈ P

L(e[r]) = {e[u]|u ∈ L(r)} L(r|s) = L(r) ∪ L(s)
L(r; s) = {uv|u ∈ L(r), v ∈ L(s)} L(r∗) = {ε} ∪ L(r; r∗)

for all b ∈ B, n ∈ N , e ∈ E and r, s ∈ Reg. ε denotes the empty hedge. �

The predicate isnullable? : Reg→ {true,false} decides ε ∈ L(r) for r ∈ Reg.

Definition 3.4 A regular hedge grammar is defined by G = (T,N, s, P) with T , N , P as
defined in definitions 3.2, 3.3. s ∈ Reg is a start expression. Each rule n → r ∈ P has to
fulfill the following two conditions guaranteeing regularity of the grammar:

1. If the nonterminal symbol n is defined recursively, the recursive application has to
be in the last position of the regular expression r.

2. If a nonterminal symbol n is defined recursively, the expression s in front of the
recursive application has to fulfill ¬isNullable?(s). �

Definition 3.5 A regular inequality of two regular hedge expressions r and s is defined
by: r ≤ s⇔ L(r) ⊆ L(s) . �

Example 3.1 The following regular hedge grammar corresponds to the schema in listing
1. Element names and simple types are boldfaced, nonterminal symbols are italic. The
start expression s is bookstore.

bookstore → bookstore[book∗] book → book[author∗ ; title]
author → author[string] title → title[string] .

For example, the following regular inequalities hold:
book[author∗ ; title] ≤ book[author∗ ; title]

book[author ; author∗ ; author ; title] ≤ book[author∗ ; title] .

400

Type Inference
The type corresponding to an XML object constructor is given by a regular hedge ex-
pression. An inserted variable is replaced by the symbol of the hedge expression which
corresponds to the declared type of the variable. Type inference for XML object construc-
tors is quite simple because all variables have to be declared in XOBE.

Example 3.2 The type of the left hand side of the assignment in lines 13-17 in listing 2 is
book. The type of the right hand side is book[author∗ ; title[string]].

The subtyping algorithm which is described in the next subsection has to check the regular
inequality book[author∗ ; title[string]] ≤ book.

Subtyping Algorithm
After inferring the types of the XML objects in a XOBE program, the type system checks
the correctness of the concerned statements using the subtyping algorithm. For this we
adopt Antimirov’s algorithm [Ant94] for checking inequalities of regular expressions and
extend it to the hedge grammar case. The idea of the algorithm is that for every invalid
regular inequality there exists at least one reduced inequality which is trivially inconsistent,
a notion which is defined by the function inc as follows.

Definition 3.6 A regular inequality r ≤ s is called trivially inconsistent if
inc(r ≤ s) = (isNullable?(r)∧ ¬isNullable?(s)) holds. �

Definition 3.7 For r ∈ Reg the set of leading terminal symbols is defined by
term(r) = {t | t ∈ T ∧ (tw ∈ L(r) ∨ t[v]w ∈ L(r) with hedges v, w)}. �

The reduction of regular inequalities is expressed by partial derivatives der of regular
hedge expressions. They formalize the set of hedges which can follow after an already
recognized terminal symbol. A partial derivative consists of pairs of expressions. The first
component of a pair stands for the element content of the reduced terminal symbol, i.e. the
child dimension. The second component represents the expression part after the reduced
terminal symbol, i.e. the sibling dimension. Due to space limitations, we present only
some examples in this paper. For details see [Kem03].

In the following example the regular expression author[string]; author∗ is reduced
by the given terminal symbol author. According to Def. 3.2, ”;” denotes regular con-
catenation. ”,” separates elements of pairs and elements of sets:

derauthor(author[string]; author∗) = {(string, author∗)} .

The result is a set of regular hedge expression pairs because we can receive multiple pairs
as the following example shows:

derbook(book[title]|book[author; title]) = {(title, ε), (author; title, ε)} .

Please notice that in the case of Kleene star operations the length of the resulting expres-
sions can increase:

derauthor((author[string]; title)∗) = {(string, title; (author[string]; title)∗)}.
Based on the partial derivatives of regular expressions we can define partial derivatives of
regular inequalities. This definition is quite complex in the hedge grammar case because of
the two dimensions. For the definition we adopt a set-theoretic observation from [HVP00].
Examples will follow in example 3.3.

401

Definition 3.8 A partial derivative of a regular inequality r ≤ s with r, s ∈ Reg with
respect to a terminal symbol x ∈ T is defined by

partx(r ≤ s) = { (cr ≤
∣∣∣
∣∣∣∣∣∣
i∈I

cis) ∨ (rr ≤
∣∣∣
∣∣∣∣∣∣
i∈I

ri
s) | (cr, rr) ∈ derx(r) ∧

derx(s) = {(c1s, r1s), . . . , (cns , r
n
s)} ∧

I ∈ P({1, . . . , n}) ∧ I = {1, . . . , n}\I }
with cr, rr, cis, r

i
s ∈ Reg and P(I) = {J | J ⊆ I}. �

The subtyping algorithm is defined by two subtyping judgements Γ � r ≤ s ⇒ Γ
′

and
Γ �∗ r ≤ s⇒ Γ

′
with a set Γ of regular inequalities of type t ≤ u. Both judgements have

to be interpreted as: ”The algorithm proves r ≤ s and all inequalities t ≤ u in Γ are not
trivially inconsistent. All results are returned in the set Γ

′
with all regular inequalities of

the partial derivatives of r ≤ s”. Because the production rules of the hedge grammar can
be defined recursively it can happen that an already calculated inequality appears during
the algorithm later on. To ensure termination in that case we save all already seen inequal-
ities in the set Γ. For this reason we have to introduce the two subtyping judgements. With
judgement �∗ we indicate that an inequality has been added to Γ.

Definition 3.9 The subtyping algorithm is defined by the following rules:

r ≤ s ∈ Γ
Γ � r ≤ s⇒ Γ

(HYP)

r ≤ s /∈ Γ,
Γ ∪ {r ≤ s} �∗ r ≤ s⇒ Γ

′

Γ � r ≤ s⇒ Γ′ (ASSUM)

¬inc(r ≤ s),
For all x ∈ term(r) and for all i ∈ {1, . . . , k} with partx(r ≤ s) =

{(cr,1 ≤ cs,1 ∨ rr,1 ≤ rs,1), ..., (cr,k ≤ cs,k ∨ rr,k ≤ rs,k)} is
Γi−1 � cr,i ≤ cs,i ⇒ Γi ∨ Γi−1 � rr,i ≤ rs,i ⇒ Γi

Γ0 �∗ r ≤ s⇒ Γk
(REC)

�

With rule HYP we test if the inequality in question is already in the set of all calculated
inequalities Γ terminating that recursion branch. Rule ASSUM switches between the two
judgements � and �∗ adding the inequality to Γ. The rule REC is applicable if the inequal-
ity is not trivially inconsistent. With operation part all partial derivatives are calculated
and checked recursively.

Example 3.3 Consider the regular inequality author∗; title ≤ author; author∗; title|title.
We start with Γ0 = ∅. The computations and the derivation tree of the execution are given
in figure 1. The inequality is accepted finally.

Due to the regularity of the production rules the subtyping algorithm is guaranteed to
terminate. For a detailed correctness proof we refer to [Kem03].

Complexity and Extensions
The complexity of the subtyping algorithm is EXPTIME complete as shown in [Sei90].
This means that in the worst case the number of checked inequalities depends exponen-
tially on the length of the given inequality. Nevertheless, in contrast to the classic proce-
dure using a tree automaton the algorithm works more efficiently in some cases. In the

402

term(author∗; title) = {author, title}
derauthor(author∗; title) = {(string, author∗; title)}

derauthor(author; author∗; title|title) = {(string, author∗; title)}
dertitle(author∗; title) = {(string, ε)}

dertitle(author; author∗; title|title) = {(string, ε)}
partauthor(author∗; title ≤ author; author∗; title|title) =

{ (string ≤ string ∨ author∗; title ≤ ∅), (1)

(string ≤ ∅ ∨ author∗; title ≤ author∗; title) } (2)

parttitle(author∗; title ≤ author; author∗; title|title) =

{ (string ≤ string ∨ ε ≤ ∅), (3)

(string ≤ ∅ ∨ ε ≤ ε) } (4)

REC

Γ7 �∗ ε ≤ ε ⇒ Γ3

Γ6 � ε ≤ ε ⇒ Γ3
∨ Error

Γ6 � ε ≤ ∅ ,

Error

Γ3 � ε ≤ ∅ ∨ HYP

Γ3 � ε ≤ ε ⇒ Γ3

Γ6 �∗ string ≤ string ⇒ Γ3

Γ1 � string ≤ string ⇒ Γ3
∨

Error

.

.

.
Γ1 � author∗; title ≤ ∅ , (1)

Error

Γ3 � string ≤ ∅ ∨

HYP

.

.

.
Γ3 � author∗; title ≤ author∗; title ⇒ Γ5

, (2)

HYP

Γ5 � string ≤ string ⇒ Γ5
∨ Error

Γ5 � ε ≤ ∅ , (3)

Error

Γ5 � string ≤ ∅ ∨ HYP

Γ5 � ε ≤ ε ⇒ Γ5
(4)

Γ1 �∗ author∗; title ≤ author; author∗; title|title ⇒ Γ5

Γ0 � author∗; title ≤ author; author∗; title|title ⇒ Γ5

Figure 1: Proving inequality author∗; title ≤ author; author∗; title|title

classic procedure both automata representing the regular hedge expression of both sides of
the inequality in question have to be made deterministic. In our algorithm the right hand
side of the inequality has to be made deterministic lazily, i.e. only as much as needed.

In XML Schema and DTDs restrictions to general hedge grammars are assumed. First all
element types with the same element name in one content model have to have the same
content model. As shown in [Kem03] this simplifies the subtyping algorithm to a PSPACE
complete complexity, which is the same as comparing regular string expressions [Ant94].
The second restriction is that the content models have to be one-unambiguous. This leads
to a linear subtyping algorithm.

The subtyping algorithm described so far deals with the structural typing in XML. How-
ever, in XML Schema additional concepts like substitution groups, type extensions and
type restrictions sometimes called named typing exist. This requires an extension of our
regular hedge grammars. Therefore we introduce a reflexive and transitive substitution
group relation SubGr holding the relations of element names as defined as substitution
groups in the schema. Additionally the named type relation Inh is defined were the non-
terminal types of the hedge grammar are in relation corresponding to the specified type
extensions and type restrictions. Further the strategy of the subtyping algorithm has to be
more sophisticated as well, because during the calulations we have to take care of the two

403

relations. The idea is to reduce the regular inequality by appropriate nonterminal symbols
also instead of reducing only by terminal symbols. This allows to take the relations SubGr
and Inh into account. This extended algorithm is described in detail in [Kem03].

4 Implementation

XOBE is realized as a Java preprocessor [Kra02]. The general architecture is shown in
Figure 2.

In our implementation we use the Java compiler com-

Java compiler

Java transformation

Type checking

Schema parserProgram parser

Java with DOM

XOBE preprocessor

XOBE program XML schema

Figure 2: Architecture of the XOBE
system

piler JavaCC [Web02] to generate the XOBE parser.
Additionally we use the XML parser Xerces [Apa01]
to recognize the used schemas. The internal represen-
tation of the processed XOBE program is done with
the Java tree builder JTB [TWP00].

XML objects are internally stored by using the stan-
dard representation of the Document Object Model
(DOM) [W3C], recommended by the W3Consortium.
Please note that even though DOM is an untyped XML
implementation not guaranteeing validity at compile
time, the transformed XML objects in the XOBE pro-
gram are valid. This holds because our type checking
algorithm guarantees this property.

The XOBE system including the type checking system
was, among others, successfully used in a web based
real estate broker system [Kra02] and in a web based
academic exercise administration system [Spi04].

5 Related Work

The most elementary way to deal with XML fragments is to use ordinary strings without
any structure. For example, this technique is used in Java Servlets. Java Server Pages
provide an improvement over pure string operations especially when the XML fragments
are almost static, i.e. there are only a few places where dynamically generated values are
inserted. There is no validation at compile time.

High level binding approaches like JAXB [Sun01] or CASTOR [Exo01] assume that all
processed documents follow a given schema. Validity is only supported to a limited extent
depending on the selected language mapping.

Recently, full compile time validation gained some interest. Xduce [HP03] is a special
functional language developed as an XML processing language. Compile time validity is
ensured by type inference and by a subtyping algorithm based on regular tree automata.
Xtatic [GP03] applies the concepts of Xduce to the object-oriented programming language

404

C#. In contrast to XOBE, Xtatic does not support XPATH. JWig [CMS03] which is based
on BigWig [BMS02] is quite close to XOBE. JWig extends Java by language constructs
for XML support. Validity is guaranteed at compile time. However, in contrast to XOBE,
there is no XML type system in JWig, i.e. there is only one XML type. XML fragments
are generated by using XML constructors with previously generated values inserted. Va-
lidity is achieved by two data flow analyses constructing a graph which summarizes all
possible XML fragments. JWig’s data flow analysis is rather time consuming. Other full
compile time validation approaches include Xen [MSB03], XL [FGK02], XJ [HRS +03]
and WASH [Thi].

6 Concluding Remarks, Outlook for Future Work

This paper presented a short overview over the XOBE project and concentrated on the type
system of XOBE. XOBE is an extension of the programming language Java, addressing
the programming purposes of web applications and web services. The language extension
combines Java with XML by introducing XML objects which represent XML fragments.
XML objects are created using XML object constructors. In XML object constructors,
previously generated XML objects can be inserted in places which are allowed according
to the declared schema. The validity of all XML objects within a program is checked by
the XOBE type system at compile time.

We are currently working on the integration of the XML query language XQuery [W3C]
into XOBE. Allowing XML objects to be persistent and allowing to modify XML objects
results then in an XML-based database programming language [SKL04].

Moreover, in addition to our real-estate brokering system [Kra02] and our academic exer-
cise administration system [Spi04] we plan to use XOBE in other application areas.

References

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web, From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.

[Ant94] Valentin Antimirov. Rewriting Regular Inequalities. In Reichel, editor, Fundamentals
of Computation Theory, volume 965 of Lecture Notes in Computer Science (LNCS),
pages 116–125. Springer-Verlag, 1994.

[Apa01] The Apache XML Project. Xerces Java Parser. http://xml.apache.org/
xerces-j/index.html, 15. November 2001. Version 1.4.4.

[BKMW01] Anne Brüggemann-Klein, Makoto Murata, and Derick Wood. Regular Tree and Regu-
lar Hedge Languages over Unranked Alphabets: Version 1. Technical Report HKUST-
TCSC-2001-05, Hong Kong University of Science & Technology, Theoretical Com-
puter Science Center, April 3 2001.

[BMS02] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The BIGWIG project.
In ACM Transactions on Internet Technology, volume 2(2), pages 79–114. ACM, 2002.

405

[CMS03] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extending
Java for High-Level Web Service Construction. In ACM Transactions on Programming
Languages and Systems, volume 25(6), pages 814–875. ACM, 2003.

[Exo01] ExoLab Group. Castor. ExoLab Group, http://castor.exolab.org/, 2001.

[FGK02] Daniela Florescu, Andreas Grünhagen, and Donald Kossmann. XL: An XML Pro-
gramming Language for Web Service Specification and Composition. In Proceed-
ings of International World Wide Web Conference (WWW 2002), May 7-11, Honolulu,
Hawaii, USA, pages 65–76. ACM, 2002. ISBN 1-880672-20-0.

[GP03] Vladimir Gapayev and Benjamin C. Pierce. Regular Object Types. In ECOOP 2003,
volume 2743 of Lecture Notes in Computer Science (LNCS), pages 151–175. Springer-
Verlag, 2003.

[HP03] Haruo Hosoya and Benjamin C. Pierce. XDuce: A Statically Typed XML Processing
Language. In ACM Trans. on Internet Technology, volume 3(2), pages 117–148, 2003.

[HRS+03] Matthew Harren, Mukund Raghavachari, Oded Shmueli, Michael Burke, Vivek Sarkar,
and Rajesh Bordawekar. XJ: Integration of XML Processing into Java. IBM Research
Report RC23007 (W0311-138), November 18, 2003.

[HVP00] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular Expression Types
for XML. In Proceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming (ICFP ’00), Montreal, Canada, volume 35(9) of SIGPLAN
Notices, pages 11–22. ACM, September 18-21 2000. ISBN 1-58113-202-6.

[Kem03] Martin Kempa. Programmierung von XML-basierten Anwendungen unter Berücksich-
tigung der Sprachbeschreibung. PhD thesis, Institut für Informationssysteme, Univer-
sität zu Lübeck, 2003. Aka Verlag, Berlin, (in German).

[KL02] Martin Kempa and Volker Linnemann. VDOM and P-XML – Towards A Valid Pro-
gramming Of XML-based Applications. Information and Software Technology, El-
sevier Science B. V., pages 229–236, 2002. Special Issue on Objects, XML and
Databases.

[KL03] Martin Kempa and Volker Linnemann. Type Checking in XOBE. In Gerhard Weikum,
Harald Schöning, and Erhard Rahm, editors, Proceedings of Datenbanksysteme für
Business, Technologie und Web (BTW), 10. GI-Fachtagung, volume P-26 of Lecture
Notes in Informatics, pages 227–246. Gesellschaft für Informatik, Feb. 2003.

[Kra02] Jens-Christian Kramer. Erzeugung garantiert gültiger Server-Seiten für Dokumente der
Extensible Markup Language XML. Master’s thesis, Institut für Informationssysteme,
Universität zu Lübeck, 2002. (in German).

[LK02] Volker Linnemann and Martin Kempa. Sprachen und Werkzeuge zur Generierung von
HTML- und XML-Dokumenten. Informatik Spektrum, Springer-Verlag Heidelberg,
25(5):349–358, 2002. (in German).

[MSB03] Erik Meijer, Wolfram Schulte, and Gavin Biermann. Programming with
Circles, Triangles and Rectangles. http://www.cl.cam.ac.uk/∼gmb/
Papers/vanilla-xml2003.html, 2003.

[Sei90] Helmut Seidl. Deciding equivalence of finite tree automata. SIAM Journal of Comput-
ing, 19(3):424–437, June 1990.

[SKL04] Henrike Schuhart, Martin Kempa, and Volker Linnemann. XOBEDBPL: A statically
typed XML Database Programming Language Based on JAVA and XQUERY, 2004.

406

[Spi04] Torben Spiegler. Übungsdatenverwaltungssystem mit XOBE. Master’s thesis, Institut
für Informationssysteme, Universität zu Lübeck, 2004. (in German).

[Sun01] Sun Microsystems, Inc. Java 2 Platform, Standard Edition, v 1.3.1, API Specification.
http://java.sun.com/j2se/1.3/docs/api/index.html, 2001.

[Thi] Peter Thiemann. An Embedded Domain-Specific Language for Type-Safe Server-Side
Web-Scripting. Univ. of Freiburg 2003, ACM Trans. on Internet Technology, to appear.

[TWP00] Kevin Tao, Wanjun Wang, and Dr. Jens Palsberg. Java Tree Builder JTB. http://
www.cs.purdue.edu/jtb/, 15. May 2000. Version 1.2.2.

[W3C] W3Consortium. http://www.w3.org.

[Web02] WebGain. Java Compiler Compiler (JavaCC) – The Java Parser Generator. http://
www.webgain.com/products/java cc/, 2002. Version 2.1.

407

