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Abstract: Distributed top-k query processing is increasingly becoming an essential
functionality in a large number of emerging application classes. This paper addresses
the efficient algebraic optimization of top-k queries in wide-area distributed data re-
positories where the index lists for the attribute values (or text terms) of a query are
distributed across a number of data peers and the computational costs include network
latency, bandwidth consumption, and local peer work. We use a dynamic programming
approach to find the optimal execution plan using compact data synopses for selecti-
vity estimation that is the basis for our cost model. The optimized query is executed
in a hierarchical way involving a small and fixed number of communication phases.
We have performed experiments on real web data that show the benefits of distributed
top-k query optimization both in network resource consumption and query response
time.

1 Introduction

Top-k query processing has received great attention for a variety of emerging application
classes including multimedia similarity search [GM04, NR99, Fag99, GBK00, BGRS99,
NCS+01], preference queries over product catalogs and other Internet sources [CK98,
MBG04, BGM02], ranked retrieval of semistructured (XML) documents [GSBS03,
TSW05], and data aggregation for “heavy hitters” in network monitoring and other sensor-
network applications [CKMS04, CJSS03]. Such queries typically need to aggregate, score,
and rank results from different index lists or other forms of data sources. Most of the prior
work concentrates on centralized settings where all index lists reside on the same server
of server farm. The case where the sources are distributed across a wide area network and
the optimization of communication costs is crucial has received only little attention, the
most noteworthy exceptions being the TPUT algorithm [CW04], our own prior work on
KLEE [MTW05], and the work by [MBG04] and [ZYVG+] both of which build on the
family of threshold algorithms (TA) that seems predominant in centralized top-k querying
[FLN03, GBK00, NR99].

For the centralized case, the need for choosing good query execution plans from a lar-
ge space of possible plans has been recognized, and research has started towards a better
understanding of algebraic and cost-based optimization of top-k queries. The most promi-
nent, recent example of this line of work is the RankSQL framework [ISA+04, LCIS05],
which considers binary trees of outer joins with score aggregation and ranking, so-called
“rank joins”. The TA family, on the other hand, is a fixed execution strategy with a single
m-ary join over precomputed index lists where m is the number of attributes or keywords
in the score-aggregation function. For the distributed setting, only fixed algorithms have

324



been proposed without consideration to flexible, data- and/or workload-dependent, con-
struction of different execution plans. For example, TPUT and KLEE, the best known
algorithms, first fetch the best k data items from each of the underlying m index lists or
data sources, compute the aggregated score s of the rank-k item in this intermediate re-
sult, and then issue score-range queries against the different sources to fetch all items with
per-attribute scores above s/m. Despite some additional optimizations for better pruning
of result candidates, this approach does not explore at all the space of forming different
execution trees of joining and aggregating scored items in a flexible manner with attention
to networking and local computation costs.

The current paper is the first work that addresses this issue. In contrast to [LCIS05] we
consider distributed execution and variable-arity trees. In contrast to [CW04, MTW05] we
consider different execution plans, based on estimates of data characteristics, and aim to
find the cost-optimal execution plan by algebraic rewriting and a novel way of dynamic-
programming-style search for a cost minimum. Compared to the ample work on distributed
join queries [MTO99, Kos00], our method is ranking-aware and aims to terminate the
query execution as early as possible once the top-k results can be safely identified. More
specifically, this paper makes the following research contributions:

• a new model for describing, systematically enumerating, and algebraically rewriting
the feasible execution plans in a large space of plans for distributed top-k queries over
wide-area networks,

• a new form of dynamic-programming-style optimization for finding the cost-minimal
execution plan with cost estimation based on score-distribution statistics,

• a new way of estimating and aggregating statistical score-value distributions, using Pois-
son mixtures or equi-depth histogram convolutions, to assess the costs of an execution
plan, with the salient property that the statistical synopses themselves are very small and
thus network-friendly in the optimization phase,

• comprehensive performance studies on large, real-world web data collections, showing
that significant performance benefits can be achieved with acceptable overhead of the
optimization step itself.

The paper is organized as follows. Section 2 introduces our computational model. Sec-
tion 3 discusses relevant work on distributed top-k querying and on query optimization
in general. Section 4 presents the query optimization techniques together with the actu-
al query processing algorithms. Section 5 presents the cost model and shows how we use
distributed statistics to characterize the input data and estimate selectivities. Section 6 pres-
ents an experimental evaluation that shows the impact of query optimization on distributed
top-k queries. Section 7 concludes the paper and presents ongoing and future work.

2 Computational Model

We consider a distributed system with N peers, Pj , j = 1, ..., N , that are connec-
ted, e.g., by a distributed hash table or some overlay network. Data items are either do-
cuments such as Web pages or structured data items such as movie descriptions. Each
data item has associated with it a set of descriptors, text terms or attribute values, and
there is a precomputed score for each pair of data item and descriptor. The inverted in-
dex list for one descriptor is the list of data items in which the descriptor appears sor-
ted in descending order of scores. These index lists are the distribution granularity of
the distributed system. Each index list is assigned to one peer (or, if we wish to repli-
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cate it, to multiple peers). In the following we use only IR-style terminology, speaking
of ”terms” and ”documents”, for simplicity. Each peer Pj stores one index list, Ij(t),
over a term t. Ij(t) consists of a number of (docID, score) pairs, where score is a real
number in (0, 1] reflecting the significance of the document with docID for term t. Each
index list is assumed to be sorted in descending order according to score. In general, sco-
re(docID) reflects the score associated with docID in an index list, e.g., a tf ∗ idf -style
(term − frequency ∗ inverse − document − frequency) or language-model-based
measure derived from term frequency statistics. A query, q(T, k), initiated at a peer Pinit,
consists of a nonempty set of terms, T = {t1, t2, ..., tt}, and an integer k. Assuming the
existence of a set of, say m, peers having the most relevant index lists for the terms in T ,
with m = t, our task is to devise efficient methods for Pinit to access these distributed
index lists at the m peers, so as to produce the list of (the IDs of) the top-k documents for
the term set T . The top-k result is the sorted list in descending order of TotalScore which
consists of pairs (docID, TotalScore), where TotalScore for a document with ID docID is a
monotonic aggregation of the scores of this document in all m index lists. For the sake of
concreteness, we will use summation for score aggregation, but weighted sums and other
monotonic functions are supported, too. In case an index list does not contain a particular
docID, its score for docID is set to zero, when calculating its TotalScore. Note that Pinit

serves as a coordinator only for the given query; different queries are usually coordinated
by different peers. However, we will see later that Pinit can forward the coordination task
to another peer that is involved in the query if this is promising to decrease the overall
query execution cost. A naive solution would be to have all m cohort peers (i.e. peers that
maintain an index list for a specific keyword) send the complete index lists to Pinit and
then execute a centralized TA-style method on the copied lists at Pinit. This approach is
unacceptable in a P2P system for its waste of network bandwidth resulting from transfer-
ring complete index lists. An alternative approach would be to execute TA at Pinit and
access the remote index lists one entry at a time as needed. This method is equally unde-
sirable for it incurs many small messages and needs a number of message rounds that is
equal to the maximum index-scan depth among the participating peers. Even when mes-
sages are batched (e.g., with 100 successive index entries in a single message), the total
latency of many message rounds renders this approach unattractive.

3 Related Work

Top-k query processing has received much attention in a variety of settings such as si-
milarity search on multimedia data [GM04, NR99, Fag99, GBK00, BGRS99, NCS+01],
ranked retrieval on text and semi-structured documents in digital libraries and on the Web
[AdKM01, LS03, TWS04, KKNR04, BJRS03, PZSD96, YSMQ], network and stream
monitoring [BO03, CW04] collaborative recommendation and preference queries on e-
commerce product catalogs [YPM03, MBG04, GBK01, CwH02], and ranking of SQL-
style query results on structured data sources in general [ACDG03, CDHW, BCG02].
Among the ample work on top-k query processing, the TA family of algorithms for mono-
tonic score aggregation [FLN03, GBK00, NR99] stands out as an extremely efficient and
highly versatile method. TA-sorted (aka. NRA) variants process the (docID, score) entries
of the relevant index lists in descending order of score values, using a simple round-robin
scheduling strategy and making only sequential accesses on the index lists. TA-sorted
maintains a priority queue of candidates and a current set of top-k results, both in memory.
The algorithm maintains with each candidate or current top-k document d a score interval,
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with a lower bound worstscore(d) and an upper bound bestscore(d) for the true global sco-
re of d. The worstscore is the sum of all local scores that have been observed for d during
the index scans. The bestscore is the sum of the worstscore and the last score values seen in
all those lists where d has not yet been encountered. We denote the latter values by high(i)
for the ith index list; they are upper bounds for the best possible score in the still unvisited
tails of the index lists. The current top-k are those documents with the k highest worstsco-
res. A candidate d for which bestscore(d) < mink can be safely dismissed, where mink

denotes the worstscore of the rank-k document in the current top-k. The algorithm termi-
nates when the candidate queue is empty (and a virtual document that has not yet been seen
in any index list and has a bestscore ≤

∑
i=1...m high(i) can not qualify for the top-k

either). For approximating a top-k result with low error probability [TWS04], the conser-
vative bestscores, with high(i) values assumed for unknown scores, can be substituted by
quantiles of the score distribution in the unvisited tails of the index lists. Technically, this
amounts to estimating the convolution of the unknown scores of a candidate. A candidate
d can be dismissed if the probability that its bestscore can still exceed the mink value
drops below some threshold: P [worstscore(d) +

∑
i S(i) > mink] < ε, where the S(i)

are random variables for unknown scores and the sum ranges over all i in which d has not
yet been encountered.

The first distributed TA-style algorithm has been presented in [BGM02, MBG04]. The
emphasis of that work was on top-k queries over Internet data sources for recommendation
services (e.g., restaurant ratings, street finders). Because of functional limitations and spe-
cific costs of data sources, the approach used a hybrid algorithm that allowed both sorted
and random access but tried to avoid random accesses. Scheduling strategies for random
accesses to resolve expensive predicates were addressed also in [CwH02]. In our widely
distributed setting, none of these scheduling methods are relevant for they still incur an
unbounded number of message rounds. The method in [SMwW+03] addresses P2P-style
distributed top-k queries but considers only the case of two index lists distributed over two
peers. Its key idea is to allow the two cohort peers to directly exchange score and candi-
date information rather than communicating only via the query initiator. Unfortunately, it
is unclear and left as an open issue how to generalize to more than two peers. The recent
work by [BNST05] addresses the optimization of communication costs in P2P networks.
However, the emphasis is on appropriate topologies for overlay networks. The paper deve-
lops efficient routing methods among super-peers in a hypercube topology. TPUT [CW04]
executes TA in three phases: 1) fetch the k best (DocID, Score) entries from each cohort
peer and compute the mink score (i.e., the score of the item currently at rank k) using
zero-score values for all missing scores; 2) ask each of the m cohort peers for entries with
Score > mink/m, then compute a better mink value and eliminate candidates whose
bestscore is not higher than mink; 3) fetch the still missing scores for the remaining can-
didates, asking the cohorts to do random accesses. [YLW+05] presents a modification of
TPUT that adapts the mink/m threshold to the score distributions’ peculiarities. KLEE
[MTW05] is an approximate version of TPUT that leverages Bloom filter and histograms
to prune / filter unpromising documents. [DKR04] considers hierarchical in-network data
aggregation where the query hierarchy is given by the network topology. [ZYVG+] pres-
ents a threshold algorithm for distributed sensor networks, here, again, the hierarchy is
predetermined by the network. [CW04] shortly mentions a hierarchical version of TPUT
but does not consider optimized query plans.

Query processing in general is a well studied standard technique. We employ an opti-
mization algorithm that uses a search space exploration technique similar to the Volcano
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Figure 1: Two equivalent execution plans

approach [GM93]: The search space is explored in a top-down manner by splitting the pro-
blem into smaller problems and solving these recursively, memoization prevents duplicate
work. The other standard techniques include bottom-up dynamic programming [HFLP89]
and transformative optimization [Gra95]. However, only a few paper consider the peculia-
rities of top-k queries during the optimization phase and treat the actual top-k processing
as orthogonal to the main query optimization step. One notable exception is the RankSQL
proposal [LCIS05], which integrates the decision about rank computation and usage into
the query optimization. It extends the relation algebra towards a rank-aware algebra using
an extended search space that includes the available rank aware functions. In contrast to
their work, we assume that the basic rank (score) is already known. The problem that ari-
ses when dealing with score aggregations is not sufficiently covered in [LCIS05] as the
paper is focused on the optimal computation of rank functions. Although they do recogni-
ze the problem they only consider scores that follow normal distributions [ISA+04], or
they use sampling [LCIS05], which is, from our point of view, prohibitively expensive in
a distributed setting.

4 Algorithms

In this paper we use an algorithm that, besides the actual query optimization, essentially
consists of the 3-phase algorithm TPUT in an hierarchical environment as shortly mentio-
ned in [CW04]. The query initiator Pinit retrieves the top-k documents from the involved
cohort peers and calculates a top-k estimate by aggregating the scores for the particular
documents. mink denotes the partial score of the document at rank k. In a flat structure,
Pinit would send mink

m as a threshold to the cohort peers that return all documents above
this threshold. In a hierarchical environment, however, the threshold for a particular co-
hort is based recursively on the threshold of the parent cohort and the number of siblings.
For instance, consider the example in Figure 1: In the left query plan, the query initiator
sends 0.00028 (i.e. mink

3 ) to the cohort peers, this refers to an estimated mink of 0.00084.
In the left query plan the Pinit estimates the same mink but sends the threshold 0.0004
(i.e. mink

2 ) to its children. The child at the left receives the threshold 0.0004 and forwards
the new threshold 0.0004

2 ) to its children. For deeper hierarchies this procedure is applied
recursively.
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4.1 Overview

We now assume that a query with m terms is started at a peer Pinit, which has to produce
the top-k results, and that the (docId, score) lists are stored at m cohort peers. Note that
these peers need not be disjoint, as one peer can handle multiple terms, and Pinit can
also be one of the cohort peers. To model this in the algorithms, we introduce the concept
of sites: The basic assumption is that if two index lists are at the same site, they can be
accessed simultaneously. Usually a site corresponds to one physical peer. We name the set
of all sites relevant for the query S, |S| ≤ m + 1.

Our algorithms combine the concept of cost based query optimization with the basic
execution paradigm of TPUT [CW04]. This means that the execution is done in the follo-
wing four phases, where the phases 1, 3 and 4 are the same for all algorithms.

1. Exploration Step: Pinit communicates directly with the m cohort peers and retrieves
the top-k documents along with statistics and score models that will be used in the
selectivity estimation.

2. Query Optimization: Pinit constructs the execution plan according to the selected al-
gorithm.

3. Candidate Retrieval: Pinit sends the execution plan along with the estimated mink

x
thresholds to the involved peers. After having received this information, thus being
able to establish connections to children and parent peers the leaf peers start sending
(docId, score)-pairs to their parents. Subsequently, the former parents, now being trea-
ted as children, combine the received information and forward the (docId, worstscore)-
pairs to their parents, and so on, until the computations has reached the root node. The
pruning in the intermediate top-k steps is executed w.r.t. the documents’ bestscores.
Note that the bestscores are updated during the intermediate merge.

4. Missing Scores Lookup Phase: Pinit constructs the final list of top-k candidates, de-
termines the documents with missing scores, and sends the docIds to the corresponding
peers. The peers lookup the missing scores and send them to Pinit, which produces the
top-k result.

This phase structure is identical to the TPUT phases (except the optimization phase),
and in fact TPUT can be formulated as a special case of this algorithm, as we will see
below.

4.2 Algebraic Optimization

Query optimization requires the evaluation of different equivalent execution alternati-
ves. Therefore, the query optimizer has to decide if two alternatives are really equivalent.
This is usually done by formulating the query in a formal algebra and using algebraic
equivalences. What is different here (in the top-k case) is that these equivalences are so-
mewhat relaxed. The query optimizer also accepts alternatives that are not equivalent in a
strict sense, as long as the top-k entries are the same.

This basic premise is shown in Figure 2 and is the idea behind most top-k execution
strategies: The problem of finding the top k tuples is reduced to finding all tuples with a
sufficient score. Due to the subset relation, more than k tuples can satisfy the condition.
This relaxation allows for more efficient evaluation strategies, as reasoning about score is
much simpler than reasoning about ranks.
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Fk(S) = the first k tuples of S
mink(S) = min({s.score|s ∈ Fk(S)})
σ≥t(S) = {s ∈ S|s.score ≥ t}
top-k(S) ⊆ σmink(S)(S)

Figure 2: Rank based vs. score based top-k

Ck(S1 . . . Sn) = ∪+
1≤i≤nFk(Si)

mink(S1 . . . Sn) = min(Ck(S1 . . . Sn)
top-k(S1 . . . Sn) = top-k(∪+

1≤i≤nSi)
top-k(S1 . . . Sn) ⊆ ∪+

1≤i≤nσ≥mink(S1...Sn)/n(Si)

Figure 3: Definitions and relation used by TPUT

top-k(S1 . . . Sn) ⊆ σ≥mink(S1...Sn)(∪+
1≤i≤nSi)

σ≥t(S1 . . . Sn) ≡ σ≥t(∪+
1≤i≤lσ≥t/l(Pi))

where P1 . . . Pl is a partitioning of S1 . . . Sn

Figure 4: Generalization of TPUT

In practice, the exact (ideal) threshold mink(S) is not known a-priori and is approxi-
mated (conservatively). TPUT does this by sampling the first k entries of each input. The
TPUT approach is formalized in Figure 3; we concentrate on aggregation by score sum-
mation (∪+), other aggregations schemes can be used analogously. The basic idea is to
estimate mink(S) by fetching some tuples (k from each list) and using the k-th score in
the aggregation as a lower bound for mink(S). This is a safe choice, as at least k tuples
above the thresholds have already been seen. Now all tuples in the lists have to have a
score of at least mink(S)/n, that can be shown easily.

While this is a nice formalism to get a suitable threshold for aggregation, it offers no
optimization opportunities. The threshold propagation is fixed. The TPUT paper [CW04]
mentions the possibility of hierarchical TPUT, but offers no formalism. We now provide
a formalism and suitable equivalence rules to allow for an algebraic optimization of the
TPUT structure. Figure 4 shows the formalism of our approach: First, we do not push the
threshold down in a fixed scheme but use a more general transformation as in Figure 2.
This is just a minor variation, but essential to give the query optimizer freedom to optimi-
ze. More importantly, we present an equivalence that splits a top-k problem into smaller
top-k problems that can be solved recursively. This equivalence is used by the query opti-
mizer to find the optimal execution strategy. Note that TPUT itself is a special case of this
equivalence, it partitions the input directly into single lists.

4.3 Building Blocks

The previous section presented the algebraic optimization. However, the formulation
was very high level. A more detailed look is required to understand the distributed execu-
tion, furthermore some logic is required to handle the random lookups in the last phase of
the algorithm. We concentrate on the logical operators here, as the corresponding physical
operators used during plan generation are mostly obvious. Thus we assume that only one
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physical operator exists for each logical operator. However, this is not a limitation of the
algorithms, they can easily handle alternative physical operators. This could be useful for
different evaluation strategies, e.g. for using random lookups in the last phase vs. scanning
the lists sequentially.

For each logical operator we specify the optimization rule that is used to create an
appropriate plan. As we optimize in a distributed system, the optimizer must be able to
ship data to other sites. This is done by the transfer operator, the rule checks if the output
is at the correct site and ships otherwise:

transfer(target,p)
if p.site=target

return p
return a plan that ships p to target

To make the decision about data transfers easier, the algorithms always consider all
possible sites in each step. The output of a step is therefore not a single plan, but a set
of plans, with one plan for each possible result site. Since it might be cheaper to perform
a calculation at one site and ship only the result, the optimization rule ship examines all
pairs of sites (s1, s2) and considers using a transfer instead of performing the computation
locally:

ship(plans)
for ∀s1 ∈ S, s2 ∈ S, s1 6= s2

p=transfer(s2,plans[s1])
if p.costs<plans[s2].costs

plans[s1] = p
return plans

The top-k operation itself consists of three operations: base-top-k scans a list and pro-
duces all entries above a mink threshold (this corresponds to σ≥t(S)), intermediate-top-k
combines intermediate results (σ≥t(S1 . . . Sn)) and top-k produces the final top-k list (the
rank based top-k operator). The base rule simply inserts an base-top-k operator, it only has
to make sure that the score distribution is adjusted according to the mink:

base-top-k(mink,t)
p = a new plan to scan t
p.card = documents above mink

p.scoreDistribution = distribution ≥ mink

plans = empty plan set
plans[site of t] = p
return ship(plans)

The intermediate steps combines multiple partial top-k results (either from base-top-k
or another intermediate step) into a new partial result. The document scores are aggregates,
pruned according to the given mink threshold and the resulting tuples are sorted by de-
scending score. As the intermediate step can combine an arbitrary number of intermediate
results the input of this building block is a set of plansets, one planset per input operator.
The rule iterates over all sites and combines the plans for each site.

331



intermediate-top-k(mink,input)
plans = empty plan set
for ∀s ∈ S

i = {p[s]|p ∈ input}
h = convolution of {p.scoreDistribution|p ∈ i}
plans[s] = a new plan to combine i
plans[s].card = h.documents above mink
plans[s].scoreDistribution = part of h ≥ mink

return plans

The final top-k operator takes an intermediate result and constructs the final top-k list by
retrieving the missing scores. Note that we only have to consider the unary case, otherwise
an intermediate top-k can be used for aggregation.

top-k(mink,plans)
plans = empty plan set
for ∀s ∈ S

plans[s] = a new plan to finalize plans[s]
plans[s].card = k

return plans

4.4 Algorithms

Using these building blocks, the optimization algorithms can be formulated easily. To
illustrate the plan construction, we first formulate TPUT for a set of terms T using these
constructs:

tput(T ,mink)
b = {base-top-k(mink/|T |, t)|t ∈ T}
i =intermediate-top-k(mink, b)
p =top-k(mink, i)
return p[Pinit]

TPUT reads all lists up to mink/|T |, combines the results and finally calculates the
top-k by looking up the missing scores. The last two steps are always executed at Pinit,
therefore the plan for Pinit is returned.

A simple improvement of the TPUT algorithm is what we call the simple optimization
algorithm: It behaves like TPUT, but considers performing the aggregation at a different
peer than Pinit. As the final step only produces k tuples, pushing the aggregation down
can greatly reduce the costs. However, this decision must be made cost based: Pushing the
aggregation down induces additional latency, which can be higher than the gain from the
push down. The push-down is done by using the ship rule described above.

simple(T ,mink)
b = {base-top-k(mink/|T |, t)|t ∈ T}
i =intermediate-top-k(mink, b)
p =top-k(mink, i)
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p =ship(p)
return p[Pinit]

A much larger class of execution plans is possible when allowing additional interme-
diate aggregations. As already mentioned in [CW04], a tree structure can allow for much
larger min-k thresholds. However the optimization is also more difficult, especially since
an intermediate step can aggregate an arbitrary number of input streams. The optimization
is split in two parts: One finds the optimal way to construct intermediate results and the
other constructs the optimal top-k after the intermediate results are known.

The intermediate results can be optimized recursively: Given a set of terms, the optimi-
zer recursively solves all partitionings of the terms and combines them to an intermediate
result. Dynamic programming (DP) is used to reduce the search space, as term combina-
tions are used multiple times. The DP table maps from (terms, mink) → (planset), i.e.,
for each term/minimum score combination the optimal plan for each site is stored. Here we
use the top-down formulation of dynamic programming (memoization), which naturally
follows the recursive optimization scheme:

solveIntermediate(T ,mink)
if (T,mink) has already been solved

return the known solution
if |T | = 1

p =base-top-k(mink, t ∈ T )
else

p = empty plan set
for ∀P = {Ti ⊂ T}, P partitioning of T

i = {solveIntermediate(Ti,mink/|P |)|Ti ∈ P}
p′ =intermediate-top-k(mink, i)
for ∀s ∈ S

if p′[s].costs<p[s].costs
p[s] = p′[s]

p =ship(p)
store p as solution for (T,mink − k)
return p

Note that the algorithm is simplified, see Section 4.5 for performance improvements.
The optimal intermediate results can now be used to construct the complete plan quite
easily, as the larges intermediate result (all terms) can be used as input for the final top-k
operator:

optimal(T ,mink)
i =solveIntermediate(mink, T )
p =top-k(mink, i)
p =ship(p)
return p[Pinit]

The optimal algorithm considers the whole search space of possible execution trees. In
particular, it never produces a worse plan than tput or simple, as these algorithm produce
plans that are inside this search space.

Figure 5 shows an example of an optimized query plan, an output of the above stated
optimization technique.
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Figure 5: Optimal Execution Plan

4.5 Large Queries

As stated above, the optimal algorithm and especially the solveIntermediate function
considers the whole search space, which, even when memoization is used, means at least
2|T | different plans (more because of different mink values). While this is negligible for
common queries (e.g. GOV queries with at most 4 terms), the search space becomes a
problem for large queries, e.g. XGOV queries with up to 18 terms.

The search space can be reduced by using cost bound pruning: For a global cost bound
the optimizer can use a cheap heuristic (e.g. simple) to get a plan quickly, which can be
used to prune plans early. During the optimization the optimizer can use already con-
structed solutions to prune against later ones. In particular, it is possible to find lower cost
bounds for a given term set by looking at the original score distributions: If a tuple is alrea-
dy above mink without convolution it will also be after the convolution. These heuristics
allow estimating the costs early, which greatly reduces the search space.

Still the search space grows exponentially, and depending on the implementation and
the available hardware the optimal solution will be too expensive to compute for certain
queries. Then an idea from the query optimization for joins can be used: Iterative dynamic
programming [KS00] performs the full DP computation only for subproblems with a given
maximum, chooses one such solution, removes it from the search space and repeats the
DP step until the problem is solved. For the top-k processing this means that optimal
intermediate results for up to a given size are computed, then one solution is chosen (we
used the cheapest one) and the terms occurring in this solution are considered solved and
replaced by a new pseudo-term. This is repeated until the problem is solved. While this
does not guarantee the optimal solution, it results in quite good plans in practice (and of
course the optimal solution is still possible).
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5 Distributed Statistics and Cost Model

Using query optimization techniques for distributed top-k retrieval assumes that some
execution alternatives are better than others. This can be formalized using a cost model,
which describes how many resources are used by each alternative. This requires accurate
cardinality estimations to find the optimal execution plan. While this is always the case
for query optimization in general, the cardinalities during top-k processing depend on the
scores of the computed data. Therefore standard cardinality estimators are not enough, the
query optimizer needs to estimate score distributions. Prior work on this issue either used
fairly crude models like assuming Normal distributions [ISA+04], which is not a good
fit for real-data scores, or required extensive computations like sampling of histogram
maintenance [TWS04] that may incur high costs in a distributed setting with a high-latency
network.

When optimizing distributed queries, there exist mainly two interesting optimization
goals: Either minimize the query response time or minimize the total resource consump-
tion, especially the network bandwidth. Minimizing the query response time is obviously
relevant, as someone (either a user or a program) is waiting for the answer. Minimizing
the network bandwidth is also interesting, as it allows for more parallel queries. The al-
gorithms presented in the next section can handle both goals and we show experimental
results for both in Section 6, but we concentrate on minimizing response time.

In the following we will shortly discuss the statistics that we use as a basis for our cost
model. The gathering of these distributed statistics is then part of the first phase of our
algorithm: The query initiator retrieves from each peer the top k documents along with the
statistics for the particular attribute (i.e. term).

The main difficulty here is, however, to precisely describe single (per-attribute) score
distributions in a way that allows for a highly accurate prediction of the number of docu-
ments with score above a certain threshold. Moreover, as we are interested in employing
a hierarchical top-k algorithm, and thus during optimization logically split the top-k que-
ry into several sub-queries we additionally need score distribution models for aggregated
data, as we will see below.

For text-based IR with keyword queries, the query-to-document similarity function is
typically based on statistics about frequencies of term occurrences, e.g., the family of
tf*idf scoring functions [Cha02] or more advanced statistical language models [CL03].
Here, terms are canonical representations of words (e.g., in stemmed form) or other text
features.

In this work we consider Poisson Mixture Models and Equi-Depth Histograms to model
score distributions for single-term index lists. Score distributions of multi-term index lists
(i.e. combined single-term index lists using score aggregations) are computed as convolu-
tions [All90].

Given an index list for a particular term we can model the frequency of occurrences
using a Poisson Distribution:

π(k, θ) =
e−θ ∗ θk

k!

π(k, θ) is the probability that a particular term occurs exactly k times in a particular
document. The parameter θ is the mean of the distribution and is used to adapt the Poisson
model to a given distribution. A nice property of Poisson distributions is that the convolu-
tion of a Poisson distribution with parameter θ1 and a Poisson distribution with parameter

335



θ2 is a Poisson distribution with parameter θ1 + θ2. No other probabilistic distribution
has this property that the convolution reproduces the same distribution function just with
different parameters.

Unfortunately, simple Poisson distributions are not a particularly good fit for capturing
the scores of real data. However, mixtures of Poisson distributions are a fairly accurate,
realistic model [CG]. In our work we use Two Poisson Mixes to describe the score dis-
tribution for each index list in an ultra compact way as each Two Poisson Model requires
only 3 floating point numbers so that the additional network resource consumption is ne-
gligible. The Two Poisson Model is a simple example of a Poisson mixture:

Pr2P (x, θ) = απ(x, θ1) + (1− α)π(x, θ2)
[Har75] showed how to use the method of moments to fit the three parameters of the

Two Poisson Model θ1, θ2, and α, from the first three moments.

However, in general, Poisson Mixture Models suffer from the inability to capture extre-
me variations in the score distributions. Histograms are a better tunable approach to repre-
sent score distributions but the convolution of equi-depth histograms is computationally
expensive and they cause higher network traffic than Two Poisson Mixes, albeit providing
a more accurate estimation so that we are able to trade off accuracy vs efficiency.

For Poisson Mixes, and Histograms the quality of the convolution w.r.t. to the score
distribution of the true data depends to a large extent on the cardinality of the intersection
of the involved data. Without detailed knowledge of the cardinality of the resulting data,
the score distribution model will be way off, thus the query optimizer cannot work pro-
perly. For instance, recall that the convolution of two Poisson distributions is a Poisson
distribution with the mean being the sum of the two means of the original distributions.
In an extreme case the underlying data of the two distributions is nearly disjoint, thus the
mean of the convolution is not at all equal to the sum of means. As adequate score dis-
tribution models are an essential part of an effective query optimizer, we have focused on
integrating information about the input data’s mutual correlation into the convolution of
the data’s score distribution. In particular, we are interested in the cardinality of the in-
tersection (union) of two data sets (i.e. index lists). Estimating overlap of sets has been
receiving increasing attention for modern emerging applications, such as data streams, in-
ternet content delivery, etc. In prior work [MBTW06] we have conducted a comprehensive
evaluation of Bloom Filters [Blo70], Hash Sketches [FM85], and min-wise independent
permutations (MIPs) [BCFM00] that show that MIPs are best suitable for our purpose.

Now the query optimizer uses these statistics to estimate the number of tuples above
a certain threshold. When only considering base relations (i.e. unaggregated data), this
estimation can be done directly by using the available score distribution. The only point
to keep in mind is that the threshold affects the score distribution, as all tuples below the
threshold are missing afterwards. But this can be implemented easily. More interesting is
the score distribution of aggregated data: Assuming independence, the score distribution of
the sum of two scores can be estimated by a simple convolution of the score distributions
of the summands: PS1+S2(x) = Σi+j=xPS1(i) ∗ PS2(j)

However this estimation is only correct if the scores are indeed summed up. Here, this
means that the estimation assumes that every tuple in S1 finds a matching tuple in S2.
If this not the case (e.g. if S1 and S2 are disjoint), the score is overestimated. We takes
this effect into account by using the intersect and union estimations provided by MIPs:
Only the tuples in the intersection are convoluted, for the others the score distribution is
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unchanged. This lead us to the following estimation:

PS1+S2(x) =
|S1 ∩ S2|
|S1 ∪ S2|

[Σi+j=xPS1(i) ∗ PS2(j)] +

(1− |S1 ∩ S2|
|S1 ∪ S2|

)
|S1|PS1(x) + |S2|PS2(x)

|S1|+ |S2|
.

In our experiments this estimation predicts the actual score distribution very well. Taking
the size of the intersection into account is important, as it encourages intersecting relatively
disjoint sets early, which can greatly reduce the output cardinality.

6 Experimentation

6.1 Setup and Test Data

Our implementation of the testbed and the related algorithms was written in C++. All
peer related data were stored locally at the peer’s disk. Experiments were performed on
3GHz Pentium machines. For simplicity, all processes ran on the same server. Two real-
world data collections were used in our experiments: GOV and IMDB. The GOV collec-
tion consists of the data of the TREC-12 Web Track and contains roughly 1.25 million
(mostly HTML and PDF) documents obtained from a crawl of the .gov Internet domain
(with total index list size of 8 GB). We used 50 queries from the Web Track’s distillation
task where each query consists up to 5 terms. In our experiments, the index lists asso-
ciated with the terms contained the original document scores computed as tf ∗ log idf .
tf and idf were normalized by the maximum tf value of each document and the maxi-
mum idf value in the corpus, respectively. In addition, we employed an extended GOV
(XGOV) setup, which we utilized to test the algorithms’ performance on a larger num-
ber of query terms and associated index lists. The original 50 queries were expanded
by adding new terms from synonyms and glosses taken from the WordNet thesaurus
(http://www.cogsci.princeton.edu/∼wn/). The expansion resulted in queries with, on ave-
rage, twice as many terms, with the longest query containing 18 terms. For instance, the
GOV query juvenile delinquency has been expanded into juvenile delinquency youth mi-
nor crime law jurisdiction offense prevention. The IMDB collection consists of data from
the Internet Movie Database (http://www.imdb.com). In total, our test collection contains
about 375, 000 movies and over 1, 200, 000 persons (with a total index list size of 140
MB), structured into the object-relational table schema Movies (Title, Genre, Actors, De-
scription). Title and Description are text attributes and Genre and Actors are set-valued
attributes. Genre contains 2 or 3 genres. Actors included only those actors that appeared
in at least 5 movies. The IMDB queries contain text and structured attributes.

6.2 Competitors

TPUT: This is the 3-phase algorithm as described in [CW04]. TPUT comes in two fla-
vors: the original and a version with compression for long docIDs. This optimized version,
instead of sending (docID, score) pairs, hashes the docID into a hash array where it stores
its score and sends the hash array of scores. Even in the experiments conducted in [CW04]
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the compressed optimized version did not always perform better, so we report only the
results for the original TPUT version.
Simple: This algorithm is essentially the same as TPUT but allows a moving coordinator.
Optimal: As one of our key contributions is to show the suitability and significant bene-
fits of optimizing hierarchical top-k algorithms, we implemented a hierarchical version of
TPUT. This algorithm essentially consists of multiple TPUT instances organized in a tree
like structure.

6.3 Metrics

Network Bandwidth Consumption: This represents the total number of bytes trans-
ferred during query execution. It includes the bytes for the actual data items and the size
of the required statistics as described in Section 5.

Query Response Time: This represents the elapsed, ”wall-clock”time for running the
benchmarks. It includes network time, local i/o time, and time for query optimization and
local processing. Our optimization is primarily focused on minimizing the query response
time but as experiments indicate the overall network traffic will decrease too, since the
network traffic is an essential part of the overall response time.

6.4 Experiments

We report on experiments performed for each of the benchmarks, GOV, XGOV, IMDB.
In all experiments queries are for the top-10 results. Running the experiments over multiple
nodes in a network would be inherently vulnerable to interference from other processes
running concurrently and competing for cpu cycles, disk arms, and network bandwidth. To
avoid this and produce reproducible and comparable results for algorithms ran at different
times, we opted for simulating disk IO latency and network latency which are dominant
factors. Specifically, each random disk IO was modeled to incur a disk seek and rotational
latency of 9 ms, plus a transfer delay dictated by a transfer rate of 8MB/s. For network
latency we utilized typical round trip times (RTTs) of packets and transfer rates achieved
for larger data transfers between widely distributed entities [SL00]. We assumed a packet
size of 1KB with a RTT of 150 ms and used it to measure the latency of communication
phases for data transfer sizes in each connection up to 1KB. When cohorts sent more
data, the additional latency was dictated by a ”large”data transfer rate of 800 Kb/s. This
figure is the average throughput value measured (using one stream – one cpu machines) in
experiments conducted for measuring wide area network throughput (sending 20MB files
between SLAC nodes (Stanford’s Linear Accelerator Centre) and nodes in Lyon France
[SL00] using NLANR’s iPerf tool [Tir03]. Hence, the overall response times were the sum
of cpu times for an algorithm’s local processing, IO times, and network communication
times. Since the execution is running in parallel, each operator in the execution plan has to
wait for the slowest of its inputs.

Note that the execution time and network consumption includes the transfer of the re-
quired statistical data. While the TPUT algorithm does not require statistics, the other al-
gorithms ship the histograms (or poisson mixes) and MIPs during Phase 1. This overhead
is included in the results.
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6.5 Performance Results

Figure 6(left) shows the average query response time for the GOV benchmark where
queries with the same number of query terms were grouped together. For the two-term
queries there is almost nothing to gain as there are not many alternatives for the execution
plan. However, for the three- and four-term queries we clearly outperform TPUT. Figure
6(right) shows the total network traffic for the GOV benchmark. We clearly beat TPUT for
all numbers of query terms; TPUT causes two times more network traffic than the opti-
mized query execution, and even the simple approach shows a pretty strong improvement.
Recall at this point that we optimize the query response time and not the network resource
consumption, thus we can observe a bigger gain in query response time than in overall
network traffic, as can be seen in the Figures.
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Figure 6: Query Response Times (left) and Total Network Traffic (right) for the GOV Benchmark

Figure 7(left) shows the average response time for the XGOV benchmark. We clearly
outperform TPUT for all number of query terms. Note that the XGOV benchmark does not
contain queries with 16 or 17 terms. Figure 7(right) shows the total network traffic for the
XGOV benchmark. Although we optimize the queries with respect to the overall response
time the total network traffic is also smaller.
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Figure 7: Query Response Times (left) and Total Network Traffic (right) for the XGOV Benchmark

Figure 8(left) shows the query response time for the IMDB benchmark. Similar to the
GOV benchmark, all algorithms show nearly the same performance for the two keyword
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queries. However, for queries with three or more keywords the optimization has remar-
kable performance gains. For one particular query we gain a factor of around 32 for the
optimal plan. The median factor of the performance-improvement is around 5. We observe
a similar behavior for the overall network traffic as shown in Figure 8(right).
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Figure 8: Query Response Time (left) and Total Network Traffic (right) for the IMDB Benchmark

To compare the usefulness of the Histogram based query optimization with the Two
Poisson Model based optimization, Figure 9 show the relative performance gains in query
response time of the optimized query plans for these two score distribution models for
the XGOV benchmark. Obviously, as expected, the histogram based optimization shows
a better performance than the Poisson based approach. As discussed above, Histograms
offer a more accurate way to represent an index list’s score distribution, and although
Poisson Models are more compact, the overhead for the histograms is nearly negligible
too. As mentioned in Section 5, (Two) Poisson Models cannot capture extreme variations
in the score distribution that were present in our data. In particular, the IMDB index lists
have an extremely skewed score distribution with ties. The scores from the GOV collection
were based on tf ∗ idf that are skewed too. A more smoothed scoring function like BM25
[RW94] would have been better suitable for the Two Poisson Model. However, Poisson
Mixes give reasonably good approximations and are interesting as they have extremely
small overhead.
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340



7 Conclusion

This paper has addressed efficient algebraic optimization of top-k queries in a distributed
environment. We have shown how to deal with score-threshold based operators during
query optimization. The proposed algorithm uses compact data synopsis, shipped at query
execution time to find the optimal query execution plan for a particular information need.
The experimental evaluation shows that the additional resource consumption caused by
the query optimization is nearly negligible and that the optimized queries are superior
to the standard top-k queries both in terms of network resource consumption and query
response time. Future work includes the integration of other distributed top-k algorithms
than [CW04] and multi-query optimization across different distributed top-k queries.
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[BGM02] Nicolas Bruno, Luis Gravano und Amélie Marian. Evaluating Top-k Queries over
Web-Accessible Databases. In ICDE, 2002.

[BGRS99] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan und Uri Shaft. When Is
“Nearest Neighbor” Meaningful? Lecture Notes in Computer Science, 1999.

[BJRS03] M. Bawa, R. Jr, S. Rajagopalan und E. Shekita. Make it Fresh, Make it Quick –
Searching a Network of Personal Webservers, 2003.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7), 1970.

[BNST05] Wolf-Tilo Balke, Wolfgang Nejdl, Wolf Siberski und Uwe Thaden. Progressive Dis-
tributed Top k Retrieval in Peer-to-Peer Networks. In ICDE, 2005.

[BO03] Brian Babcock und Chris Olston. Distributed Top-K Monitoring. In SIGMOD, 2003.

[CDHW] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis und Gerhard Weikum. Probabilistic
Ranking of Database Query Results. In VLDB 2004.

[CG] K. Church und W. Gale. Poisson mixtures. In Natural Language Engineering, 1(2),
1995.

[Cha02] Soumen Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, San Francisco, 2002.

[CJSS03] Charles D. Cranor, Theodore Johnson, Oliver Spatscheck und Vladislav Shkapenyuk.
Gigascope: A Stream Database for Network Applications. In SIGMOD, 2003.

341



[CK98] Michael J. Carey und Donald Kossmann. Reducing the Braking Distance of an SQL
Query Engine. In VLDB, 1998.

[CKMS04] Graham Cormode, Flip Korn, S. Muthukrishnan und Divesh Srivastava. Diamond
in the Rough: Finding Hierarchical Heavy Hitters in Multi-Dimensional Data. In
SIGMOD, 2004.

[CL03] W. Bruce Croft und John Lafferty. Language Modeling for Information Retrieval,
Jgg. 13. Kluwer International Series on Information Retrieval, 2003.

[CW04] Pei Cao und Zhe Wang. Efficient top-K query calculation in distributed networks. In
PODC ’04, 2004.

[CwH02] Kevin Chen-Chuan Chang und Seung won Hwang. Minimal probing: supporting
expensive predicates for top-k queries. In SIGMOD, 2002.

[DKR04] Antonios Deligiannakis, Yannis Kotidis und Nick Roussopoulos. Hierarchical In-
Network Data Aggregation with Quality Guarantees. In EDBT, 2004.

[Fag99] Ronald Fagin. Combining Fuzzy Information from Multiple Systems. J. Comput.
Syst. Sci., 58(1), 1999.

[FLN03] Ronald Fagin, Amnon Lotem und Moni Naor. Optimal aggregation algorithms for
middleware. J. Comput. Syst. Sci., 66(4), 2003.

[FM85] Philippe Flajolet und G. Nigel Martin. Probabilistic Counting Algorithms for Data
Base Applications. Journal of Computer and System Sciences, 31(2), 1985.

[GBK00] Ulrich Guntzer, Wolf-Tilo Balke und Werner Kiesling. Optimizing Multi-Feature
Queries for Image Databases. In VLDB Journal, 2000.
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