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Abstract: The DEEP (Dynamical Exascale Entry Platform) project aims to provide a
first implementation of a novel architecture for heterogeneous high-performance com-
puting. This architecture consists of a standard HPC Cluster and — tightly coupled —
a cluster of many-core processors called Booster. This concept offers application de-
velopers the opportunity to run different parts of their program on the best fitting part
of the machine striving for an optimal overall performance. In order to take advantage
of this architecture applications require some adaption. To provide optimal support
to the application developers the DEEP concept includes a high-level programming
model that helps to separate a given program to the Cluster and Booster parts of the
DEEP System. This paper presents the adaption work required for a Particle-in-Cell
space weather application developed by KULeuven (Katholieke Universiteit Leuven)
done in the course of the DEEP project. It discusses all crucial steps of the work start-
ing with a scalability analysis of the different parts of the program, their performance
projections for the Cluster and the Booster leading to the separation decisions for the
application and finally the actual implementation work. In addition to that some per-
formance results are presented.

1 Introduction

Even though today’s supercomputer systems reach multi-Petaflop compute power (exam-
ples are: Tianhe-2 at Guangzhou, Titan at Oak Ridge National Lab, IBM Sequoia at LLNL,
or JSC’s JUQUEEN) the HPC community prepares for the next step, i.e. having Exa-
scale systems (10'® floating-point operations per second) by the end of the decade. The
DEEP (Dynamical Exascale Entry Platform) project[1] aims to develop a novel, Exascale-
enabling supercomputing platform, the Cluster-Booster architecture. On this platform ap-
plication developers can map their code onto two diverse parts of the system supporting
the different demands of scalability of their programs in an optimized way. Those two
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parts are: (1) a Cluster of multi-core Xeon processors interconnected by an InfiniBand
network with a fat-tree topology; and (2) a second cluster of self-hosted Xeon Phi many-
core processors called Booster. The latter utilizes the EXTOLL network [2] supporting a
3D torus topology. A comprehensive software environment including low-level commu-
nication libraries, programming environments and run-time systems complete the system.

As an assessment of this novel supercomputer architecture six scientific pilot applications
were chosen within DEEP. In the course of the project these applications are ported to
the platform acting as the yard-stick to evaluate the software environment and to act as
benchmarks of the overall architecture. They have been selected with regard to their high
scientific, industrial and social relevance and the urgent need for Exascale compute power
in their research fields. Furthermore, the existence of highly scalable parts in their code
that shall profit from the Booster was crucial. This paper will focus on the iPiC3D applica-
tion from the Katholieke Universiteit Leuven. iPiC3D is a Particle-in-Cell space weather
simulation predicting conditions of the magnetized plasma that permeates the space be-
tween Sun and Earth as well as the whole solar system.

The actual steps performed in the first three years of the DEEP project are explained in
detail in the course of this paper. As a first step this includes a detailed analysis of the
application with different performance tools. Next a plan to separate the code in a Booster
and a Cluster part based on this analysis was created. It serves as a basis to finally im-
plement this separation. To help the application developers to perform the separation the
OmpSs runtime[3] — developed by BSC (Barcelona Supercomputing Center) and extended
in the DEEP project — was used.

The paper is organized as follows: As a first step we motivate the division of applications
by the description of the Cluster-Booster architecture in section 2. Next we give a short
overview of the iPiC3D application including the analysis results from the beginning of
the DEEP project in section 3. After a brief summary of Xeon Phi optimization strategies
in section 4 we focus on the actual work done for adapting the code to the DEEP system
and the resulting problems in section 5. Finally we present some performance results in
section 6. The last section gives a short conclusion and an outlook on the next steps.

2 Cluster-Booster architecture

On the way to an Exascale supercomputer the DEEP project pursues the strategy of a new
architecture consisting of a Cluster part and a Booster part. This architecture represents
an alternative approach to organize heterogeneity in high-performance computing. As
sketched in figure 1 the Cluster nodes utilize Intel Xeon multi-core processors and utilize
an InfiniBand fabric for communication. In contrast to that, the Booster is based on Xeon
Phi’s many-core processors interconnected by an EXTOLL fabric developed at University
of Heidelberg. A so called Booster Interface bridges between the two different intercon-
nects of Cluster and Booster and allows for a most efficient communication between the
two parts of the system.

The general idea of the Cluster-Booster concept is based on the observation that complex
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Figure 1: DEEP architecture scheme

applications in HPC often have code-parts with differing ability to scale on parallel ma-
chines. In order to utilize the DEEP system in a most efficient way, the less scalable code
parts and the I/O operations are run on the Cluster while highly scalable parts are offloaded
from the main application to the Booster. The DEEP system, in contrast to today’s GPU-
based heterogeneous systems, allows for communication between the processes offloaded
to the Booster Nodes. This gives the application developers the chance to offload more
complex kernels; code parts with intensive collective communications should be executed
on the Cluster instead of the Booster anyway.

In order to support application developers to port their applications to this unconven-
tional heterogeneous architecture the DEEP project develops a rich software infrastructure.
While its basic mechanisms rely on MPI and its MPI_Comm_spawn functionality to start
additional processes within the system, special emphasis was taken to relief the application
programmer from having to re-organize the code manually. For this OmpSs, an OpenMP
based data-flow programming model with directives to support asynchronous parallelism
and heterogeneity, is extended allowing the user to just annotate the code leaving the main
work to the Mercurium source-to-source compiler and the Nanos++ runtime system.

Of course, separating applications into two parts and distributing them to the Cluster and
Booster parts of the DEEP system might introduce new bottle-necks if the parts have to
exchange data. Therefore, it is crucial to split the application in a way that the amount
of data to be exchanged is minimized. In addition to that a highly optimized Cluster-
Booster protocol was introduced into the DEEP software stack reducing the overhead of
the necessary bridging between the two fabrics as much as possible.

Since this paper will not explain neither the overall concept nor the hardware or software
architecture in more detail, the interested reader is referred to [4] for more information.
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3 iPiC3D application

The iPiC3D application of KULeuven is a massively parallel code to simulate the evolution
of a magnetized plasma traveling from the Sun to the Earth. This topic is highly relevant
in order to forecast space weather related events which may lead to severe problems like
damage to spacecraft electronics, GPS signal scintillation or even disturbance of wide-area
power grids. There are different approaches to model the plasma evolution; the iPiC3D
application implements a kinetic approach wherein both ions and electrons are simulated
as particles. iPiC3D is written in C++ and was parallelized using MPI before the beginning
of the DEEP project. At the current state of work also OpenMP is used allowing for an
hybrid parallelization. An application run consists of multiple time steps. For each of
them particles are moved under the effect of the electric and magnetic fields defined on a
discrete mesh in physical space.

Particle information is deposited on this spatial grid through interpolation procedures in
the form of moments, i.e. densities, currents and pressures defined on the mesh, which
act as sources for the equation solved for obtaining the fields at the next time step. More
details on the actual algorithm are provided in [5].

The main part of iPiC3D is to calculate the evolution of the electric and magnetic fields and
the positions and velocities of the computational particles in time. The particle information
is averaged and collected as moments; these also have their part in evolving the electric
field. During the analysis phase at the beginning of the DEEP project figure 2 was created,
representing the logical structure of the application.

init ops

topology setup
field initialization
particle initialization

/ B5: moments calculation \

B4: particle mover, Bl: hatted moments
B3 - calculation of fields on particles included CﬂlCLIlB.tiOn

l\ B2: field solver, /
CG + GMRES

particle

result writing

field results
writing

Figure 2: Logical structure of iPiC3D
The different parts can be shortly explained as follows:

B5: moments calculation: density, currents and pressures are calculated starting from
particles.
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B1: hatted moments calculations: the hatted moments, i.e the effective moments of in-
teraction with the electric and magnetic fields, are calculated from the moments.

B2: field solver: the electric and magnetic fields are calculated for the new time step.

B4: particle mover: particles are moved under the influence of the newly calculated
fields.

The green boxes of figure 2 are related to the fields and therefor the grid, the blue ones
refer to the particles.

When describing the different phases we will concentrate on the moments calculation, the
field solver and the particle mover, as they are the most time consuming or communication
intensive parts of the application. This was shown by Scalasca profiling runs performed
on the JUDGE cluster and the BlueGene/Q system JUQUEEN at Jiilich Supercomputing
Centre; the results are presented in figure 3.
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Figure 3: Percentage of execution time (left) and communication time (right) of the rele-
vant phases for the JUDGE tests with 4 x 2 X 2,4 x 4 x 2 and 4 x 4 x 4 cores (small test
case) and the JUQUEEN test with 16 x 16 x 8 cores (big test case)

During the moments calculation, the particle information is gathered and accumulated in
grid moments. After the collection the total moments of quantities like density or pres-
sure are calculated. The nearest neighbors then exchange ghost node information using
MPI_Sendrecv_replace. This phase is the second most relevant phase with regard to
percentage of execution time, communication calls and bytes exchanged. Especially the
collective communication of the ghost node information should be noted here.

In the field solver phase a Poisson correction of the electric field is performed and both the
electric and the magnetic field are updated. This phase is not very time consuming, but is
the most important one related to communication. As in the moment calculation the ghost
node information is exchanged using point to point communication. Additional collective
communication is required during each iteration of the solver in order to determine the
stopping criterion.

Finally, the particle mover updates the particle positions and velocities. Since the particles
are moved independently, this phase is highly scalable. After the movement all particles
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that are now located on a part of the grid hosted by a different processor have to be iden-
tified and exchanged; this is done with a series of point to point communications between
nearest neighbors. In addition to that, the number of particles to be moved is assessed
grid-wide through an MPI_Allreduce. These are the only few collective communica-
tions not done in the solver phase. This phase is essentially compute intensive.

The decision on how to divide the application into a Cluster and a Booster part was made
on the basis of the following aspects:

e There are two different kind of phases, grid related (fields and moments) and particle
related ones. They operate mostly on different data, so they should be kept on one
part of the DEEP system each.

e The phases which have the most intensive collective communication should be kept
on the Cluster, as these are implemented more efficiently on this part of the sys-
tem. In the case of iPiC3D these are the grid related ones, i.e. moment and field
calculations.

e The particle related phases can be vectorized more easily and have better scalability,
as particles are processed independently; therefore, they fit better on the Booster
part.

4 Xeon Phi optimization

For a most beneficial use of the DEEP Booster the application parts that will be launched
there shall be optimized for the Xeon Phi processor. Different code changes were done to
achieve this goal. They will be briefly explained within this section.

The most important step in the course of the optimization process is the introduction of
OpenMP thread parallelization of the loops that process particles. Tests unveiled that
using one MPI process for each hardware thread — 240 in total on a 60 core MIC — would
introduce a significant communication overhead. On the other hand, with only 60 MPI
processes of 4 OpenMP threads each the performance was about 2 to 4 times better.

A second approach was to introduce an improved localization of field data by using an
array of structs (AoS) instead of a st ruct of arrays (SoA). Typically an SoA is pre-
ferred over an AoS when vectorizing code. Although, in this application using an AoS
has considerable advantages like a faster sorting of particles (needed to eliminate random
access) or a superior cache performance. As transpositions are rather cheap in this case it
was decided to use an AoS for the basic particle representation and convert it to an SoA in
blocks when it is beneficial for vectorization.

The next optimization step would be the vectorization of particle processing; for that step
a sorting of the particle is needed, which has not yet been implemented for the code.
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5 Offload adaption work

The application was logically divided into a part to run on the Booster and one to be
offloaded to the Cluster! as can be seen in figure 2. This section explains the necessary
steps performed to achieve a successful division.

5.1 Code division

The changes in the application workflow with the offload can be shown best along the flow
charts in figure 4.

BOOSTER CLUSTER

set up OmpSs

environment offload to Cluster

read input file
|startca|cu|ations |

move particles send electric field :
BB (LS send magnetic field n
compute moments compute moments send moments

il

(a) (b)

Figure 4: Workflow without (a) and with offload (b)

The original version of the application contains a single run function to start the whole
simulation. In the offload version two corresponding functions are called, run_Cluster
and run_Booster. For a clearer logical division the different calculation steps were di-
vided between host and offload part as sketched in figure 4b and separated into the two
functions. The necessary communication of the moments, the particles and the magnetic
field between Cluster and Booster were added after the corresponding calculations. For
the sending and receiving of data between host and offload the proper MPI communi-
cators have to be used. In the offload part the parent communicator can be fetched via
MPI_Comm_get_parent. This function returns an inter-communicator to the processes
on the host part. For sending to or receiving from the offload on the host part the inter-
communicator is used that was created and returned by the call of deep booster_alloc
(see section 5.2). To have access to this communicator in the relevant classes it is given as a
parameter to the run_Booster function and from there forwarded to the communication
functions.

UIn fact, this is contrary to the basic concept described in section 2. Nevertheless, DEEP’s software stack is
flexible enough to support the reverse offloading used in iPiC3D, too.

44



5.2 OmpSs

As mentioned before iPiC3D was parallelized in a hybrid way using MPI and OpenMP.
Utilizing the OpenMP offload was no option in the case of the DEEP project for two rea-
sons: On the one hand this technology was not yet introduced in the OpenMP standard
until almost two years in the project. On the other hand the OpenMP offload assumes a
local target and does not allow for MPI-communication between offloaded processes. The
latter is crucial when the offloaded tasks are computationally heavy as in the DEEP exam-
ples. Although OmpSs and OpenMP are similar in many aspects OmpSs does not support
all OpenMP pragmas. All pragmas aside from #pragma omp task and #pragma
omp for were commented in the OmpSs version of the application.

For using OmpSs the application has to be compiled with the Mercurium compiler devel-
oped by BSC[6]. Some minor changes in the code were necessary for that but will not be
discussed further in this paper.

The next step was to integrate the call of the OmpSs function deep_booster_alloc
and the offload pragma into the code. We are implementing a reverse offload here where
we start the application on the Booster part and offload to the Cluster. This is due to the
fact, that logically the application is build around the particle calculation, offloading the
fields calculations fits better into the overall concept of the code (see figure 5).

MPI_Comm clustercomm;
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
MPI_Comm_size (MPI_COMM_WORLD, &size) ;

deep_booster_alloc (MPI_COMM_WORLD, 1, size, &clustercomm);
//create offload task
#pragma omp task device (mpi) onto(clustercomm, rank) \

in([...]) copy_deps

solver.run_Cluster () ;

solver.run_Booster (clustercomm) ;

Figure 5: Integration of OmpSs in main part of the code

In the original code, the input parameters were read from the input file, the necessary
objects were created and the run function was called to start the calculations. It was
planned to give the objects essential for the calculations to the offload as input parameters,
but this was not feasible due to OmpSs not supporting the offload of C++ objects. A
serialization and deserialization of all necessary objects seemed to be a solution, but with
some testing this approach turned out to be way to complicated, as too many objects were
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needed.

Therefore it was decided to recreate the whole environment in the offload part. For this
approach, only argc and argv are crucial, as argv contains the name of the input
file, which is sufficient for establishing the whole setup in the offload part. argv is now
serialized and given as an input parameter to the offload pragma. Generally speaking, the
whole calculation is set up and started both on the host and in the offload part.

5.3 MPI_Comm_spawn

It has to be taken into account that the OmpSs runtime and the Mercurium compiler are still
under development as part of the DEEP project; during the months of work shown in this
paper they were constantly enhanced but issues like a significantly decrease of application
performance or compiling problems appeared from time to time that needed investigation
and hindered us to get detailed and meaningful performance results. To avoid these is-
sues for the moment and to have a possibility for later comparison (mostly to see if using
OmpSs creates overhead) yet another version of the application was implemented. This
variant uses MPI_Comm_spawn explicitly for offloading. In contrast to that OmpSs uses
this function, too; nevertheless the actual calls are hidden from the application develop-
ers. It required only minor changes in the code to create this version; mainly the OmpSs
offload pragma was replaced by the call of MPI_Comm_spawn. Additionally the applica-
tion was compiled directly with the Intel compiler without performing a source to source
compilation with Mercurium beforehand. The main benchmarks were performed with this
version of iPiC3D to analyze the general behavior of the application when offloading from
Xeon Phi to Xeon. Lately, some tests revealed that with the newest versions of OmpSs
the issues of a decrease of performance were solved and the overhead compared to the
MPI_Comm_spawn has mostly vanished; future experiments will give specific numbers.

6 First results

During the adaption work the application was mainly tested on a KNC system installed at
JSC with two compute nodes. This was done due to lack of the actual Booster hardware.
The node that was used consists of two Xeon ES-2670 processors with 8 cores clocked at
2.6 GHz and four Xeon Phis 7120 co-processors with 61 cores each running at 1.23 GHz.
Each Xeon Phi is equipped with 16 GB of memory. As it was decided to use a reverse
offload model, the application was started on the Xeon Phis and offloaded to the Xeons. In
addition to that tests were performed on the DEEP Cluster, offloading from Xeon to Xeon
(Intel Xeon E5-2680 at 2.70 GHz).

Two different test cases were simulated. The smaller one contains 460,800 particles and
was used for performance runs on the smaller KNC system. The larger test case of about
93 million particles was performed on the DEEP Cluster, taking advantage of the bigger
system. In both cases 30 cycles were simulated.
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Figure 6: Execution time on the KNC system with small test case (a) and on the DEEP
Cluster with larger test case (b)

Figure 6a shows the performance results generated on the KNC system with the small test
case, in figure 6b the execution times from the DEEP Cluster simulating the larger test
case are shown.

Especially for the larger test case the application scales quite well with an increasing num-
ber of MPI processes. For the smaller example, the gain of the faster calculation is likely
too small to hide the communication for more than 2 processes. A larger test case with
more intense calculations should lead to a better scalability but couldn’t be tested on the
KNC system due to memory restrictions. One should to take into account that these per-
formance numbers were created shortly after integrating the offload in iPiC3D; therefore
they should be seen as first evaluation of the application behavior.

7 Conclusion and outlook

At the current point of the project, both the OmpSs and the MPI_Comm_spawn reverse
offload are fully integrated in the iPiC3D application. The code was separated into differ-
ent functions for the Cluster and the Booster part. Starting on the Booster, the parts of the
code which operate on the moments or fields are offloaded to the Cluster. The minimal
required communication between Cluster and Booster to exchange the fields and moments
was set up.

Additional tests were performed on a bigger system, showing promising results. The next
step will be to run a large set of benchmarks on the whole DEEP system as soon as possi-
ble.

As illustrated in this paper, working on a highly experimental project can lead to unfore-
seen challenges that might influence the outcome of the whole project. E.g. due to the
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late availability of hardware the applications could not be tested on the full DEEP system
in time. Instead it had to be settled for a smaller test system for Xeon Phi performance
evaluations and the DEEP Cluster for larger tests on Xeon cards; but these systems are
able to give a prospect on what to expect from the final system and were used extensively
for optimizing the applications for the two different kinds of architectures.

With hindsight it probably would have been more efficient to implement the offload in
iPiC3D directly with MPI_Comm_spawn instead of trying OmpSs first, as the concept
of OmpSs to offload multiple tasks with input and output dependencies does not fit the
structure of the application in an optimal way. Nevertheless, it revealed some issues in
the OmpSs runtime which could be solved this way, leading to more efficient and better
performing versions in the course of the last months.
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