
23

Towards An Analysis Driven Approach for Adapting

Enterprise Architecture Languages

Sybren de Kinderen1,3, Qin Ma2,3

1 University of Luxembourg, Luxembourg
2 Public Research Centre Henri Tudor, Luxembourg, Luxembourg

3 EE-Team, Luxembourg, Luxembourg∗

sybren.dekinderen@uni.lu, qin.ma@tudor.lu

Abstract: Enterprise Architecture (EA) modeling languages are increasingly used for
various enterprise wide analyses.

In most cases one needs to adapt EA languages to an appropriate level of detail.
However such an adaptation is not straightforward. Language engineers currently deal
with analysis driven language adaptation in an ad-hoc manner, adapting languages
from scratch. This introduces various problems, such as a tendency to add uninterest-
ing and/or unnecessary details to languages, while important enterprise details are not
documented. Moreover, adding detail increases the complexity of languages, which in
turn inhibits a language’s communication capabilities. Yet experience from practice
shows that architects often are communicators, next to analysts. As a result, one needs
to find a balance between a model’s communication and analysis capabilities.

In this position paper we argue for an approach for assisting language engineers in
adapting, in a controlled manner, EA languages for model-driven enterprise analyses.
Furthermore, we present the key ingredients of such an approach, and use these as a
starting point for a research outlook.

1 Introduction

Enterprise Architecture (EA) is increasingly recognized as a steering instrument that cov-

ers the complete business-to-IT stack of an enterprise [AW09, OPW+08, Lea13], interre-

lating an enterprise’s products and services, business processes, IT applications and physi-

cal IT infrastructure. By emphasizing such a holistic perspective on an enterprise [Lea13],

EA can act as an instrument for various enterprise-wide analyses (briefly enterprise anal-

yses) to support decision making, such as the enterprise wide impact of access control

concerns [FDP+12], the modifiability of an enterprise-wide IT system [LJH10], cost man-

agement [Lea13], and more. Two recent surveys among practitioners [MLM+13, LJJ+06]

also show a need from industry for such analyses.

∗The Enterprise Engineering Team (EE-Team) is a collaboration between Public Research Centre Henri Tu-

dor, The University of Luxembourg, Radboud University Nijmegen and HAN University of Applied Sciences

(www.ee-team.eu)



24

EA modeling languages, prominently the Open Group standard ArchiMate [IJLP12, Lea13],

provide a model driven approach to capture enterprise architectures. Because of the holis-

tic nature, these languages are often on purpose designed for expressing an enterprise at

a high level of abstraction [IJLP12]. As a consequence, resulting EA models of such

languages are more used to facilitate communication among stakeholders than to support

enterprise analyses [IJLP12, MLM+13].

Yet to do a proper enterprise analysis (be it for cost management, security concerns, or oth-

erwise), we also need domain-specific details that provide us with a detailed expression

of analysis concerns. Thus, to perform an enterprise-wide analysis we essentially need to

perform both (1) inter-layer analysis, whereby models with a high level of abstraction al-

low us to connect different enterprise layers, e.g., business, application and infrastructure

layers as defined in ArchiMate, and (2) intra-layer analysis, whereby detailed domain spe-

cific models can express analysis concerns to a level of detail that is sufficiently amenable

for analysis purposes.

A case supporting this argument is the ArchiMate language. As illustrated by the authors

of [Lea13, p. 189 - 219], ArchiMate is enriched with domain specific details to enable

enterprise analyses, namely:

• either extra attributes assigned to concepts and relations of ArchiMate to capture

measures relevant for analysis, e.g., response time of a service and utilization of a

resource for performance analysis [JI09], and e.g., importance of a business process

and effectiveness of an information system for portfolio analysis [QSL12] (more

syntactical details);

• or more details about the meaning of these attributes and the inter-relation between

their values [JI09, QSL12] (more semantical details);

• or a higher degree of formality by translating ArchiMate models into mathematical

formalisms to support static impact-of-change analysis [dBBJ+04, BBJ+05] (more

formal).

As hinted above, it is impractical, if not impossible, to have a universal language that

caters to all types of analyses [MLM+13, LPJ10, KGP12], because the diversity of types of

analysis and their distinct requirement on the level of detail. Therefore, a tailored solution

pertaining to the level of detail for each type of analysis is a better option. Note here that

Sect. 3 elaborates further on what we mean by “analysis” and “level of detail”.

The right level of detail is not straightforward to achieve. Currently, it is mainly done

in an ad-hoc manner, where for each analysis task, a language engineer basically has to

start from scratch. This gap is also reflected in literature. The authors of [MLM+13,

p.18] state that, for analysis purposes, architects call for extending current languages with

extra properties to enhance their expressiveness for a particular domain. Yet this language

extension is not considered a trivial task as one may tend to add excessive detail to a

language [MLM+13, p.13], describing aspects of a system that are trivial or uninteresting,

while the most interesting discussions are not documented.



25

Furthermore, [MLM+13] observes a tension between the architect’s dual roles as an ana-

lyst (the “introvert” architect) and as a communicator (the “extrovert” architect). On the

one hand, as stated, architects as analysts call for extending current languages with ex-

tra (e.g. domain specific) properties. On the other hand, for communication purposes

architects prefer a language that is “simple enough to communicate the right message to

stakeholders”[MLM+13, p.18]. To this end, [MLM+13] states that architectural languages

should be generic and semi-formal, rather than domain-specific, and detailed.

The above two challenges further emphasize that, for model-driven enterprise analysis,

dealing with the model’s level detail is a non-trivial issue. In this position paper, we

argue for an approach that tackles the challenges from a model-driven, language-based

perspective. We envision a generic analysis-driven EA language adaptation approach to

assist language engineers in evaluating and adapting, in a controlled manner, EA languages

for model-driven enterprise analyses.

As elaborated in Sect. 4, such an approach will address the problem from the following two

aspects: firstly, a framework will be established to evaluate the fitness of a candidate EA

modeling language for the targeted analysis purpose; secondly, language customization

and model integration techniques will be studied to realize the suggested adaptation.

As a starting point for the evaluation part, we can take inspiration from existing work

such as model quality [KSJ06, Moo05] to assess the level of detail. For the adaptation

part, we can exploit model integration techniques [ZKK07, KM10] to make languages fit

for analysis purposes. Each of these elements is a valuable component for creating our

language adaptation approach. However, these elements by themselves are not sufficient

for our research purposes. First, model quality work is generic, thus lacking a capability

to specifically assess the capacity of models for dealing with a particular analysis. Second,

how to specialize and combine these individual works in an effective approach to indeed

support model-driven enterprise analyses has not received much research attention yet.

Meanwhile, in developing the approach, we will give special care to achieve a balance

between using EA models for communication and analysis purposes. We require such

attention since the addition of details adds complexity that may inhibit communication.

As a starting point we can use literature on (1) the design principles behind the ArchiMate

language [LPJ10], which are explicitly aimed at model complexity reduction through, e.g.,

conceptual integrity principles, (2) model (de-composition), which subdivides models into

smaller relevant models to aid communication [MKG13], and (3) model complexity man-

agement [Moo09], which provides techniques to construct a visual notation that does not

overload the human mind.

As such, the main contribution of this paper is twofold (1) to argue for an approach that

can adapt, in a systematic way, EA languages to cope with various enterprise analyses, (2)

a first impression of what we consider to be the key elements for such an approach.

This paper is structured as follows. Sect. 2 discusses how the state of the art forms useful

input for analysis-driven language adaptation, and where it falls short. Thereafter Sect. 3

argues for systematic analysis-driven language adaptation, whereas Sect. 4 provides a first

impression of what we consider to be important elements for such language adapation.

Sect. 5 concludes, and provides a research outlook.



26

2 Background

2.1 Enterprise Architecture modeling

Various enterprise architecture frameworks provide ingredients for enterprise analysis.

To name a few: ARIS [SN00, STA05], CIMOSA [KVZ99], DoDAF/MoDAF, Archi-

Mate [Lea13], MEMO [Fra02], and UPDM [OMG13].

UPDM (Unified Profile for DoDAF/MoDAF) is an OMG standard language that uni-

fies concepts and viewpoints from the enterprise architecture frameworks DoDAF and

MoDAF 1. It provides a standard UML profile for expressing DoDAF/MoDAF concepts

[OMG13, p.17]. Furthermore, UPDM provides a mapping to SysML, which provides a

starting point for model driven analysis of EA models created with UPDM.

CIMOSA and ARIS are frameworks for creating and managing enterprise architectures,

which both provide a process-oriented modeling language for expressing enterprise ar-

chitectures. Particularly, ARIS provides the well known Event Process Chain (EPC) lan-

guage [STA05].

While the above mentioned frameworks and languages may provide a starting point for

different analyses, they provide few guidelines for adaptation to a particular EA analysis.

Dealing with different levels of detail, or how to instantiate SysML models for analyses, is

not further specified. This is also true for EPC. While various formalizations of EPC exist

in academic literature, they typically remain on a detailed workflow level. Thus, how to

deal with the different enterprise perspectives required to do an enterprise wide analysis

(e.g. strategic goals or computational resources) , or how to deal with different levels of

detail, remains - to the best of our knowledge - underresearched for EPC models.

In summary: while various EA modeling languages provide a good starting point for anal-

ysis they remain just that: a starting point.

2.2 Model quality

Work on model quality provides us with hints on how to assess the fitness of a language for

a particular purpose. Here frameworks evaluate the general quality of a model [KSJ06], for

example if the syntax of a model is appropriate for the modeling task at hand. Furthermore,

some model quality frameworks focus on evaluating a particular type of model, such as

UML activity diagrams [GFSN+11].

However, as emphasized by [Moo05], the field of model quality is still immature. In par-

ticular, a multitude of academic propositions for model quality exist, but few have been

extensively validated in practice [Moo05]. Furthermore, there is no agreement on what dif-

ferent model quality characteristics mean. The latter is more recently reflected in [HFL12],

who try to build a consensus around the model quality attribute “understandability”. Fur-

1DoDAF and MoDAF are frameworks that provide a standard way for planning and managing enterprise

architectures, but are not languages.



27

thermore, to the best of our knowledge, no model quality work exists pertaining to assess-

ing the fitness of a model for analysis purposes. Yet we expect at least some characteristics

to be specific for model based analysis, such as the level of formality of a model.

2.3 Enterprise analysis

As mentioned before there exist several instances of model driven enterprise wide analysis,

e.g. [JIV+14, JI09, dBBJ+04, QSL12]. These analyses often require models to express

the enterprise at different levels of detail. Particularly, this is illustrated by the profitability

analysis exposed in [JIV+14].

[JIV+14] introduces an approach for reasoning under uncertainty about profitability anal-

ysis of to-be business networks, by extending the net present value calculations from the

e3value modeling language with probabilities on the occurrence of future scenarios.

In line with the e3value language, [JIV+14] performs a profitability analysis based on the

value exchanges of the actors participating in the business network. Thus they remain at

a high level of abstraction. However, [JIV+14, p.25] admits that many of the details to

do a in-depth, substantial profitability calculation require them to “zoom in” on various

modeled elements of the business network. They then go on to argue that such details

could typically be obtained by relating their business network profitability approach to

approaches for enterprise architecture cost analysis and prediction, prominently [JI09].

Yet, in contrast to [JIV+14], [JI09] remains at a very detailed level of abstraction. For

example, their insurance case analyzes business processes such as “store damage report”,

as supported by a “report scanning application” (see [JI09, p.66]). Thus here there is

an apparent gap in level of detail between the two types of analyses, which needs to be

addressed by language engineers if one wants to perform an in-depth profitability analysis.

Dealing with such differing levels of detail in a controlled manner is not a straightforward

task to achieve, as mentioned in the introduction. We actually observed the problem of

dealing with different levels of abstraction in our own work, particularly regarding an

experiment on bridging the value modeling technique e3value with ArchiMate via the

transaction modeling technique DEMO [KGP12]. Here, a key idea behind this experiment

is to use DEMO transaction patterns to analyze what business process steps are required

to realize economic transactions stemming from e3value, and to subsequently use these

business processes as a starting point for ArchiMate modeling. Yet, applying the DEMO

transaction patterns yielded detailed process models focused on communication acts, such

as “send an acknowledgment receipt”. As a result the produced process models were not

fully suitable for ArchiMate, which typically expresses process models at a high level of

abstraction. As a result, as part of future work, [KGP12] suggests to assess the fitness of

connecting DEMO and ArchiMate due to their differing level of detail, and how to deal

with this connection. This is actually one instance of the more general problem statement

described in this paper.



28

2.4 Model driven language engineering

Model Driven Engineering (MDE) is an engineering discipline where models are system-

atically used as the primary artifacts throughout the engineering lifecycle. A model is a

sound abstraction of an original, being a software system or an enterprise for example,

allowing predictions or inferences to be made [Küh06]. Models are expressed in modeling

languages. The definition of a modeling language consists of the specification of the fol-

lowing components: abstract syntax, concrete syntax and semantics, as well as mappings

between them. Model Driven Language Engineering (MDLE) applies MDE to language

engineering [Kle09]. More specifically, models are exploited to capture all the compo-

nents of a language specification. The mapping between these artifacts are established by

model transformations. Models used to define languages are referred to as metamodels,

namely, models of models [Küh06, OMG03].

The main contributions of the proposed approach, namely (1) the definition of the notion

of level of detail and the evaluation of a candidate EA modeling language for a targeted

analysis purpose, (2) the techniques to adapt languages towards the right level of detail, and

(3) the support to balance EA model communication capability and the presence of extra

complexity, will be largely following the mindset from MDLE. Various types of (meta-

)models and model transformation techniques will be identified, defined, and exploited for

achieving our goals.

2.5 Language adaptation

Adapting a candidate EA modeling language towards the right level of detail to serve a

given analysis purpose involves two directions of manipulations: to remove unnecessary

details, and to introduce missing details.

For the former, existing works on metamodel pruning provide inspiration. The idea is to

eliminate unnecessary details of a modeling language and obtain a minimal set of mod-

eling elements containing a required subset of elements of interest. Metamodel pruning

techniques have been investigated for various purposes such as the construction of model

transformations [SMBJ09]. In our own previous work, we developed a generic (meta-

)model decomposition technique and applied it to the Eclipse Modeling Framework to im-

prove language comprehension [MKG13]. However, analysis oriented purposes that we

will address in adapting languages have not yet been considered by pruning techniques.

For the latter, language integration techniques provide methods to actually enrich current

EA modeling languages with analysis capabilities. Such techniques allow for capitalizing

on the complementary strengths of languages by (1) merging two languages, or subsets

thereof, into a new language. [KBJK03, ZKK07] propose example techniques for this;

(2) keeping a federated set of languages, thus establishing links between metamodels of

individual languages, but leaving the original metamodels untouched. An exemplar set

of federated enterprise models is MEMO [Fra02], which consists of a set of models that

each express a relevant perspective on the enterprise; (3) having an intermediate enterprise



29

modeling language (a “hub”), through which different enterprise modeling languages (the

“spokes”) are linked. The Unified Enterprise Modeling Language (UEML) [Ver02] is a

prominent example of this strategy.

Furthermore, given the model-driven nature of the proposed approach, we can also exploit

existing model composition techniques and aspect-oriented modeling techniques when

missing details need to be introduced. Examples of such techniques include [BBDF+06,

WS08, ODPRK08, SSK+07, KM10].

Yet, current language integration techniques do not sufficiently deal with tensions between

languages existing at differing levels of detail, neither do they take care not to sacrifice the

communication capability of a language while integrating it with others.

3 Research Objectives

Our objective is to develop an approach for adapting the level of detail of EA modeling

languages to cope with different enterprise analyses in a controlled manner.

This section rationalizes such as an approach. We do so by breaking down our main

objective into four sub objectives, that we subsequently discuss in further detail.

1. Define the level of detail of a modeling language.

Different persons may have a different interpretation of abstract vs detailed granu-

larity. Consider two example languages: the Business Process Modeling Notation

(BPMN) and ArchiMate. Here, one may argue that ArchiMate is more detailed

than BPMN because, syntactically, it allows one to express the IT applications and

physical IT infrastructure, in addition to business processes. However, one may also

argue that BPMN is more detailed than ArchiMate because, semantically, the pro-

cesses captured in BPMN express more specific temporal dependencies (e.g. task A

finishes before task B starts).

The above example illustrates that there is a need to clarify the term “level of detail”

so that we can assess languages accordingly. Moreover, we consider that at least

syntax and semantics are two important dimensions.

2. Provide a diagnosis of the level of detail of EA languages along different dimensions

with respect to an analysis task.

A language might not be detailed enough for one type of analysis, but sufficient for

another. Consider cost management for two stakeholders: an enterprise architect,

and a process manager. On the one hand, the enterprise architect concerns himself

with having a global overview of costs. To arrive at the global costs overview,

he requires syntactical details to capture an enterprise holistically. ArchiMate is

an example language having the required level of detail. On the other hand, the

process manager is concerned with finding out the costs of each step in a process,

and for computing the cost of a process within a time frame. To achieve these, he

requires both syntactical details to capture the structure of the business process and



30

semantical details to capture the dynamic behavior of the process. Languages such

as BPMN would be more appropriate candidates to consider than ArchiMate.

The above example shows a need to assess the fitness of a language for performing

a particular analysis in terms of level of detail. Furthermore, in case of mismatches,

one should also pinpoint discrepancies.

3. Adapt the level of detail of EA languages pertaining to a particular type of analysis.

Following up on the diagnosis of fitness of a language for an analysis, we need

a systematic approach to language adaptation. As we observed from the exist-

ing work, languages adapted in an ad-hoc manner have the following shortcom-

ings [MLM+13]: (1) unnecessary details might be introduced which makes the re-

sulting models too complex; (2) necessary details might be overlooked which pre-

vents the provisioning of analysis results relevant to end users; (3) inconsistency

might emerge in the adapted language as a result of introducing concepts that over-

lap and/or conflict with existing ones. Hence, we need techniques to adapt EA

languages in a controlled manner towards the right level of detail and meanwhile

following guidelines to avoid unnecessary complexity.

4. Balance extra level of detail required for analysis with communication.

In line with [MLM+13] facilitating communication is deemed important for indus-

try uptake and use of architecture modeling languages. Yet, [MLM+13] also shows

that the focus on analysis for languages - as predominant in academia - has at least

partly hindered their communicability. Hence, while designing our approach for

currently used EA modeling languages we should take care not to sacrifice commu-

nicability of the models for the sake of analysis.

4 How to adapt

Now that we have discussed the objectives for and rationale behind an analysis driven

approach for adapting enterprise architecture languages, we discuss a first version of the

envisioned approach. Particularly, we envision that our approach will consist of the fol-

lowing three parts: (1) a granularity scale framework, (2) an analysis-driven language

adaptation method, (3) techniques and tools for balancing between a model’s level of de-

tail and its communication capability.

1. Granularity scale framework We define a framework to clarify the notion of level

of detail of EA modeling languages and to assess the fitness of an EA modeling language

with respect to an analysis task.

Based upon previous work on enriching enterprise modeling languages with analysis capa-

bilities, e.g., [JI09, QSL12, BBJ+05], we initially identify three dimensions along which

EA modeling languages can be adjusted, namely the syntax, the semantics and the level

of formality. The first two dimensions are aligned with the components of a language



31

Stakeholder Concerns Analysis Description Required Information
Language Evaluation

ArchiMate BPMN

Enterprise

Architect

To find out the

costs of all

enterprise level

components

Examples of enterprise level components include:

products and services, business processes, IT

applications, and physical infrastructure.

The cost of a component can influence the cost of

another due to the interdependency between them.

For example, the cost of purchasing and maintaining

an IT asset should find its way to the costs of

business processes supported by the asset,

proportionally to their execution.

Products and services, and their costs 1 0

Business processes, and their costs 1 1

IT applications, and their costs 1 0

Physical infrastructure, and their costs 1 0

Interdependency among enterprise level

components
1 0

Process

Manager

To find out the

cost of a process

within a time

frame

The cost of a process depends upon the costs of

each step in the process, and how often they are

executed, which is influenced by the frequency of

process execution and probability of branch choice.

FineMgrained business process model 1 2

Business process execution semantics 0 1

Cost of carrying out a process activity 0 0

Table 1: Granularity scale for cost management analysis with ArchiMate and BPMN. Scoring: 0)
no support, 1) partial support, 2) full support.

specification in model driven language engineering, and the last dimension determines the

analysis capability of a language as witnessed by [MLM+13]. These three dimensions

together constitute a so called 3D “granularity scale” that will be used by the framework

to frame the level of detail of EA modeling languages.

With the granularity scale, the framework will follow a method to assess the fitness of

EA languages along different dimensions with respect to an analysis task. For the design

of such a method, the procedural methods proposed for assessing model quality [KSJ06,

Moo05] provide us with a useful starting point. Furthermore, we seek inspiration from

guidelines proposed by ontology mapping literature [CSH06] to identify syntactical and

semantical heterogeneity between ontologies2 for the purpose of pinpointing various types

of mismatches along all the dimensions.

The envisioned framework takes as input an EA modeling language and a given analysis

task, and produces a qualitative “fitness for purpose” diagnosis elaborated along the three

dimensions. Note that, since we aim at focusing our effort on the level of detail, we

consider a language’s concrete syntax out of scope for our approach.

An early version of such a granularity scale framework is presented in Table 1. Here

we see the cost management analysis example for two languages, ArchiMate and BPMN,

discussed in Sect. 3, analyzed on: (1) the involved stakeholders, (2) their analysis concerns,

(3) the information required for addressing the concerns, and (4) the fitness of a language

with respect to the required information. At this point in time, we aggregate the fitness

status on our three dimensions into a single score ranging from 0 (no support) to 2 (full

support). For example: we see that an enterprise architect requires information on different

enterprise components, and that ArchiMate is more suitable in expressing this information

than BPMN. This is reflected in the scores: 1 versus 0 (note: ArchiMate natively does not

support expression of costs, hence we score it as 1 instead of 2).

2Here ontology refers to a formal ontology: “a formal specification of a shared conceptualization” [BAT97].

Similar to a modeling language, ontologies are usually specified in terms of concepts and their interrelations, and

are formalized to the point that a computer can process them. Furthermore, discrepancies between ontologies are

analyzed in typical modeling language terms, prominently syntax and semantics.



32

2. Analysis-driven language adaptation In line with the “fitness for purpose” diag-

nosis, we develop adaptation techniques to integrate EA modeling languages at different

levels of detail.

We mainly consider two types of language integration techniques: loosely coupled, i.e.,

federating a set of languages in coherence by mapping the concepts from different lan-

guages; tightly coupled, i.e., decompose existing languages into language fragments then

compose the fragments into a Domain Specific Language (DSL) with the right level of

detail. An exemplar set of federated enterprise models is MEMO [Fra02], which consists

of a set of models that each express a relevant perspective on the enterprise. The Uni-

fied Enterprise Modeling Language (UEML) [Ver02] is another prominent example of this

strategy. For the DSL based approach, we need techniques in two directions, namely: to

remove unnecessary details, and to introduce missing details. For the former, we explore

techniques such as metamodel pruning [SMBJ09], model slicing [BLC08, BCBB11] and

model decomposition [MKG13] which help in identifying the part of the language rel-

evant for the analysis at hand. For the latter, we explore techniques such as language

merging [KBJK03, ZKK07] and model composition [KM10].

We reason that the federation based approach is light-weight in the sense that instead of

cutting them off, unnecessary details are simply hidden and the original languages remain

untouched. As a consequence, existing tools and models of these languages can be reused.

Moreover, in cases where the users are already familiar with the individual languages

(which remain untouched), the learning curve of the adapted language might be less steep.

However, these advantages come at a price. For example, for automated analysis, extra ef-

forts in terms of model transformations are needed to filter and gather relevant information

from original models.

On the contrary, we posit that the DSL based approach calls for more efforts at the lan-

guage adaptation and EA modeling stage. However, it enjoys all the advantages a DSL

brings about compared to a general purpose language [MHS05], being gains in domain

expressiveness, ease of use, etc. Moreover, by definition, once created, the DSLs are pre-

cisely at the right level of detail for the targeted analyses.

In order to be generic, we will support both approaches and provide guidelines in selecting

the appropriate techniques.

3. Balancing communication and level of detail We develop guidelines to control

model complexity, and model visualization techniques, implemented into a software tool,

to facilitate communication of EA models.

On the one hand, the proposed guidelines aid language engineers during the language

adaptation process. Particularly, we aim at controlling model complexity when enriching

a language with analysis capabilities. To this end, we can capitalize on literature pertaining

to (1) the design principles behind the ArchiMate language [LPJ10], which are explicitly

aimed at model complexity reduction through, e.g., conceptual integrity principles, (2)

more generally, design principles for engineering complex systems (e.g. [Bro87]) such as

“do not introduce what is irrelevant”.

On the other hand, the model visualization techniques, and corresponding tools, aid in hid-



33

ing a model’s complexity while communicating. More specifically, we aim to exploit (1)

model de-composition, which subdivides models into smaller relevant models to hide un-

necessary complexity [MKG13], (2) model complexity management techniques [Moo09],

which provides a means to construct a visual notation that does not overload the human

mind.

5 Conclusions and outlook

In this paper, we have argued for an approach that assists language engineers in systemat-

ically adapting EA languages to make them fit for various enterprise wide analysis. Fur-

thermore we provided an overview of what we consider to be the key elements for such an

approach.

We are aware of the ambition level of this research effort. In line with this we foresee the

following more concrete research challenges for each of our three key language adaptation

elements:

Concerning the granularity scale framework we have to clarify further how we actually

assess the fitness of a language for a particular analysis purpose. One challenge here is

to decide on objective versus subjective measuring, the difference being that (1) with ob-

jective measuring, one assesses language fitness by analyzing a language specification in

the light of the analysis purpose, whereas (2) with subjective measuring, one assesses lan-

guage fitness by eliciting stakeholder opinions on the fitness of a language for the analysis

purpose at hand. Furthermore, we should elaborate on the grading scale compared to the

initial version in Table 1, in particular regarding the derivation of scores along each of the

three granularity scale dimensions: syntax, semantics, and level of formality.

Concerning the analysis-driven language adaptation, we should exhaustively and system-

atically compare existing language enriching approaches, so as to provide for a road map

for selecting a suitable language enrichment approach. To the best of our knowledge such

a systematic overview, that covers multiple fields (enterprise modeling, model driven en-

gineering, ontology mapping), does not yet exist.

Finally, concerning the balancing of analysis and communication, we should further an-

alyze literature on the design of complex systems. In addition, in testing a model’s com-

municability, we should ultimately involve model end users, such as enterprise architects

with a modeling background. We plan on involving them in case studies, which will be

the primary means for practical validation of our proposed approach.

References

[AW09] Stephan Aier and Robert Winter. Virtual decoupling for IT/business alignment–
conceptual foundations, architecture design and implementation example. Business
& Information Systems Engineering, 1(2):150–163, 2009.



34

[BAT97] Pim Borst, Hans Akkermans, and Jan Top. Engineering ontologies. International
Journal of Human-Computer Studies, 46(2):365–406, 1997.

[BBDF+06] Jean Bézivin, Salim Bouzitouna, Marcos Del Fabro, Marie P. Gervais, Frédéric
Jouault, Dimitrios Kolovos, Ivan Kurtev, and Richard F. Paige. A Canonical Scheme
for Model Composition. In Proceedings of the 2nd European Conference on Model
Driven Architecture - Foundations and Applications (ECMDA-FA 2006), volume 4066
of Lecture Notes in Computer Science, pages 346–360, 2006.

[BBJ+05] F. S. de Boer, M. M. Bonsangue, J. Jacob, A. Stam, and L. van der Torre. Enter-
prise Architecture Analysis with XML. In Proceedings of the 38th Annual Hawaii
International Conference on System Sciences - Volume 08, HICSS ’05, pages 222.2–,
Washington, DC, USA, 2005. IEEE Computer Society.

[BCBB11] Arnaud Blouin, Benoı̂t Combemale, Benoit Baudry, and Olivier Beaudoux. Modeling
Model Slicers. In Proceedings of the ACM/IEEE 14th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2011), pages 62–76,
2011.

[BLC08] Jung Ho Bae, KwangMin Lee, and Heung Seok Chae. Modularization of the UML
Metamodel Using Model Slicing. Fifth International Conference on Information Tech-
nology: New Generations, 0:1253–1254, 2008.

[Bro87] F.P. Brooks Jr. No silver bullet: essence and accidents of software engineering. IEEE
Computer, 20(4):10–19, April 1987.

[CSH06] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A Survey on Ontology Mapping. SIG-
MOD Rec., 35(3):34–41, September 2006.

[dBBJ+04] Frank S de Boer, Marcello M Bonsangue, Joost Jacob, Andries Stam, and L Van der
Torre. A logical viewpoint on architectures. In Enterprise Distributed Object Com-
puting Conference, 2004. EDOC 2004. Proceedings. Eighth IEEE International, pages
73–83. IEEE, 2004.

[FDP+12] Christophe Feltus, Eric Dubois, Erik Proper, Iver Band, and Michaël Petit. Enhancing
the ArchiMate Standard with a Responsibility Modeling Language for Access Rights
Management. In Proceedings of the Fifth International Conference on Security of
Information and Networks, SIN ’12, pages 12–19, New York, NY, USA, 2012. ACM.

[Fra02] Ulrich Frank. Multi-perspective enterprise modeling (MEMO) conceptual framework
and modeling languages. In System Sciences, 2002. HICSS. Proceedings of the 35th
Annual Hawaii International Conference on, pages 1258–1267. IEEE, 2002.

[GFSN+11] Marcela Genero, Ana M Fernández-Saez, H James Nelson, Geert Poels, and Mario Pi-
attini. Research review: a systematic literature review on the quality of UML models.
Journal of Database Management (JDM), 22(3):46–70, 2011.

[HFL12] Constantin Houy, Peter Fettke, and Peter Loos. Understanding Understandability of
Conceptual Models. What Are We Actually Talking about? In Paolo Atzeni, David
Cheung, and Sudha Ram, editors, Conceptual Modeling, volume 7532 of Lecture
Notes in Computer Science, pages 64–77. Springer Berlin Heidelberg, 2012.

[IJLP12] M.-E. Iacob, H. Jonkers, Mark M. Lankhorst, and Henderik A. Proper. ArchiMate 2.0
Specification. The Open Group, 2012.

[JI09] Henk Jonkers and Maria-Eugenia Iacob. Performance and cost analysis of service-
oriented enterprise architectures. IGI Global, Hershey, PA, 2009.



35

[JIV+14] Pontus Johnson, MariaEugenia Iacob, Margus Välja, Marten Sinderen, Christer Mag-
nusson, and Tobias Ladhe. A method for predicting the probability of business network
profitability. Information Systems and e-Business Management, pages 1–27, 2014.

[KBJK03] Harald Kühn, Franz Bayer, Stefan Junginger, and Dimitris Karagiannis. Enterprise
Model Integration. In Kurt Bauknecht, AMin Tjoa, and Gerald Quirchmayr, editors,
E-Commerce and Web Technologies, volume 2738 of Lecture Notes in Computer Sci-
ence, pages 379–392. Springer Berlin Heidelberg, 2003.

[KGP12] Sybren de Kinderen, Khaled Gaaloul, and Henderik A. Proper. Bridging value mod-
elling to ArchiMate via transaction modelling. Software & Systems Modeling, pages
1–15, 2012.

[Kle09] Anneke Kleppe. Software Language Engineering: Creating Domain-specific Lan-
guages Using Metamodels. Addison-Wesley, 2009.

[KM10] Pierre Kelsen and Qin Ma. A Modular Model Composition Technique. In David S.
Rosenblum and Gabriele Taentzer, editors, FASE, volume 6013 of Lecture Notes in
Computer Science, pages 173–187. Springer, 2010.

[KSJ06] John Krogstie, Guttorm Sindre, and Håvard Jørgensen. Process models representing
knowledge for action: a revised quality framework. European Journal of Information
Systems, 15(1):91–102, 2006.

[Küh06] Thomas Kühne. Matters of (Meta-)Modeling. Software and System Modeling,
5(4):369–385, 2006.

[KVZ99] Kurt Kosanke, F Vernadat, and Martin Zelm. CIMOSA: enterprise engineering and
integration. Computers in industry, 40(2):83–97, 1999.

[Lea13] Marc Lankhorst and et al. Enterprise Architecture at Work: Modelling, Communica-
tion and Analysis. Springer Publishing Company, Incorporated, 3rd edition, 2013.

[LJH10] Robert Lagerström, Pontus Johnson, and David Höök. Architecture analysis of enter-
prise systems modifiability–models, analysis, and validation. Journal of Systems and
Software, 83(8):1387–1403, 2010.

[LJJ+06] Åsa Lindström, Pontus Johnson, Erik Johansson, Mathias Ekstedt, and Mårten Si-
monsson. A survey on CIO concerns - do enterprise architecture frameworks support
them? Information Systems Frontiers, 8(2):81–90, 2006.

[LPJ10] M.M. Lankhorst, H.A. Proper, and H. Jonkers. The Anatomy of the ArchiMate Lan-
guage. International Journal of Information System Modeling and Design (IJISMD),
1(1):1–32, 2010.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain-specific Languages. ACM Comput. Surv., 37(4):316–344, December 2005.

[MKG13] Qin Ma, Pierre Kelsen, and Christian Glodt. A Generic Model Decomposition Tech-
nique and its Application to the Eclipse Modeling Framework. Software & Systems
Modeling, 2013.

[MLM+13] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and Antony
Tang. What industry needs from architectural languages: A survey. Software En-
gineering, IEEE Transactions on, 39(6):869–891, 2013.



36

[Moo05] Daniel L Moody. Theoretical and practical issues in evaluating the quality of con-
ceptual models: current state and future directions. Data & Knowledge Engineering,
55(3):243–276, 2005.

[Moo09] Daniel L Moody. The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. Software Engineering, IEEE Transactions
on, 35(6):756–779, 2009.

[ODPRK08] Audrey Occello, Anne-Marie Dery-Pinna, Michel Riveill, and Günter Kniesel. Man-
aging Model Evolution Using the CCBM Approach. In Proceedings of 15th Annual
IEEE International Conference and Workshop on the Engineering of Computer Based
Systems (ECBS-MBD workshop), pages 453–462. IEEE Computer Society, 2008.

[OMG03] OMG. MDA Guide v1.0.1, June 2003.

[OMG13] OMG. Unified Profile for DoDAF and MoDAF (UPDM), version 2.1, August 2013.

[OPW+08] M. Op ’t Land, H.A. Proper, M. Waage, J. Cloo, and C. Steghuis. Enterprise Ar-
chitecture – Creating Value by Informed Governance. Enterprise Engineering Series.
Springer, Berlin, Germany, 2008.

[QSL12] Dick Quartel, Maarten WA Steen, and Marc M Lankhorst. Application and project
portfolio valuation using enterprise architecture and business requirements modelling.
Enterprise Information Systems, 6(2):189–213, 2012.

[SMBJ09] Sagar Sen, Naouel Moha, Benoit Baudry, and Jean-Marc Jézéquel. Meta-model Prun-
ing. In Andy Schürr and Bran Selic, editors, MoDELS, volume 5795 of Lecture Notes
in Computer Science, pages 32–46. Springer, 2009.

[SN00] August-Wilhelm Scheer and Markus Nüttgens. ARIS Architecture and Reference
Models for Business Process Management. In Wil Aalst et al., editor, Business Process
Management, volume 1806 of Lecture Notes in Computer Science, pages 376–389.
Springer Berlin Heidelberg, 2000.

[SSK+07] Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner Rets-
chitzegger, Manuel Wimmer, and Gerti Kappel. A Survey on Aspect-Oriented Model-
ing Approaches. Technical report, E188 - Institut für Softwaretechnik und Interaktive
Systeme; Technische Universität Wien, 2007.

[STA05] August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Process modeling using
event-driven process chains. Process-Aware Information Systems, pages 119–146,
2005.

[Ver02] F. Vernadat. UEML: Towards a unified enterprise modelling language. International
Journal of Production Research, 40(17):4309–4321, 2002.

[WS08] Ingo Weisemöller and Andy Schürr. Formal Definition of MOF 2.0 Metamodel Com-
ponents and Composition. In MoDELS ’08: Proceedings of the 11th international
conference on Model Driven Engineering Languages and Systems, pages 386–400,
Berlin, Heidelberg, 2008. Springer-Verlag.

[ZKK07] S. Zivkovic, H. Kuhn, and D. Karagiannis. Facilitate modelling using method integra-
tion: An approach using mappings and integration rules. In proceedings of the 15th
European Conference on Information Systems (ECIS), 2007.


