
HiSim: A Highly Extensible Large-Scale P2P Network
Simulator

Lukas Rupprecht Jessica Smejkal Angelika Reiser
Alfons Kemper

Fakultät für Informatik, Technische Universität München
Firstname.Lastname@in.tum.de

Abstract: The popularity of Peer-to-Peer networks is increasing rapidly but develop-
ing new protocols for P2P systems is a very complex task as testing and evaluating
distributed systems involves high effort. P2P simulators are being developed to tackle
this difficulty, to reduce cost and to speed up development. We describe HiSim, a
modular and highly scalable P2P network simulator based on the simulation frame-
work PeerSim which we use to simulate HiSbase, a P2P framework for efficient pro-
cessing of multidimensional data. Because of its modular design, HiSim can easily
be extended, e.g., to fit other application domains. Basic design problems, related to
query processing, are introduced in general and concretelysolved within HiSim. Ad-
ditionally, HiSim provides mechanisms to evaluate new protocols using an integrated
statistics component. We demonstrate the high scalabilityby performing simulations
of up to2 · 104 peers and2 · 107 queries.

1 Introduction

The popularity of Peer-to-Peer (P2P) networks is increasing rapidly [RD10]. Not only
filesharing protocols like, e.g., BitTorrent1 but also the science community is utilizing
them heavily. E-science communities form data grids to process huge amounts of data
(e.g. the Large Hadron Collider at Cern2) by combining their available resources using
P2P technology.

Developing new mechanisms and protocols for P2P systems is avery complex task as it
requires a distributed testing infrastructure to verify and evaluate the protocols. Such an
infrastructure should be as realistic as possible but, especially in the case of large-scale
P2P networks, this is hard to achieve as costs are increasingrapidly with higher numbers
of peers. The distributed testing process itself is very time-consuming and complex be-
cause each system needs to be monitored individually and thegathered data needs to be
combined and analyzed. Additionally, evaluating new protocols for a certain task implies
a complete distributed implementation of these protocols.Sometimes this is too costly or
not possible due to time limits, especially, if these protocols are only prototypes which
should only give a first impression if the desired approach isworking.

1www.bittorrent.com
2lhc.web.cern.ch/lhc

442

To overcome these problems, P2P network simulators are used. A simulator can run on
only one single workstation and provide a central interfaceto attach and detach protocols
easily. It allows faster and more clear testing as the whole P2P network runs centralized
and the testing data does not need to be combined from severalpeers. In this paper we
present HiSim, a highly scalable and easily extensible P2P network simulator based on the
PeerSim simulation engine [JMJV], which realizes all the above mentioned advantages.
We use the simulator to evaluateHiSbase, a P2P framework for managing and processing
multidimensional E-science data. However, because of its modular design, the simulator
can easily be extended to fit arbitrary application domains.The rest of the paper is struc-
tured as follows. Section 2 introduces the basics of HiSbase. Then the design of HiSim
is explained. In section 4 the extensibility of the simulator is demonstrated by some ex-
amples. The next section provides a scalability analysis and sections 6 and 7 give a short
overview of other simulator projects and summarize the mainaspects.

2 HiSbase

HiSbase is the P2P framework for which the simulator was built. The framework provides
functionality for data partitioning of multidimensional data and efficient query process-
ing with the focus on preserving data locality and processing range queries [SBG+07],
[SBM+09].

HiSbase is built upon the distributed hash table overlay structurePastry [RD01]. Pas-
try coordinates the communication between the peers (ornodes) and provides a routing
mechanism. It uses a one-dimensional ring topology where data and peers are mapped to.
Additionally, Pastry optimizes the routing by implementing a proximity neighbor selection
algorithm [CDHR03] which prefers physical neighbors when routing messages.

(a) Sample data (b) Buckets (c) Linearization (d) Peer mapping

Figure 1: A sample for data placement in HiSbase [SBG+07].

HiSbase deploys histograms to partition multidimensionaldata and to create buckets con-
taining approximately the same number of data elements (seeFigure 1(b)). It partitiones
the data recursively, using a quadtree, and maps the leaves (or regions) to the overlay ring
topology, using the Z-order (see Figure 1(c)). The combination of quadtrees and space-
filling curves handles data skew and preserves data localitywhen mapping n-dimensional
data to the 1-dimensional ring. Peers and regions are mappedto the key space by using

443

a hash function and regions are assigned to peers by their closest distance to peers (see
Figure 1(d)). These histograms enable efficient query processing of region-based queries
[SRK09]. Therefore a coordinating region is chosen from allregions covered by the query.
A special message is routed to the node (thecoordinator) responsible for this particular
region. The coordinator then sends messages to all queried regions, and the responsible
nodes look up the data in their local databases. They send thedata back to the coordinator
which combines all answers and sends the complete data back to the query initiator. As the
space-filling curve preserves locality, it is very likely that only few nodes are responsible
for the whole area covered by the query and that these nodes are neighbors in the ring.

3 The Simulator

We now introduce HiSim. We briefly present the deployed PeerSim API followed by
an overview of problems occurring, when simulating large-scale P2P networks. We pro-
vide solutions to these problems and explain the main designof the simulator. HiSim
is designed for HiSbase where we use it to conduct query simulations, create large-scale
networks, evaluate new protocols and gather statistics on network load distribution.

3.1 PeerSim

PeerSim is a P2P simulation environment, implemented in Java [MJ09]. Its simulation
engine provides the basic functionality for simulating andmanaging network connections
and passing messages. A network is represented as a list of nodes, each of them main-
taining a list of protocol objects. Additionally, initializer objects (executed before the
simulation) and control objects (passive simulation monitors executed periodically) exist.
PeerSim supports two main simulation approaches, cycle-driven and event-driven. In the
cyclic model, protocols are executed periodically while inthe event-driven case, protocol
execution is triggered by messages which are sent via the simulated transport layer. The
simulation is controlled by a configuration file which offersan easy way to set the different

Figure 2: A sample execution of a PeerSim simulation.

444

simulation parameters. The PeerSim engine itself is single-threaded and all events (peri-
odic and non-periodic) are written to one central event queue. The execution order of the
events is determined by a scheduler which schedules the events according to their internal
simulator timet (see Figure 2; isochromatic arrows indicate that the corresponding actions
are performed in one atomic step). We decided to use PeerSim as its scalability outnum-
bers other common used simulators [NLB+07] and its API is well-designed and provides
a good basis for extensibility. Additionally it is in wide use by the research community
(see [JMJV] for a list of publications).

3.2 Design Issues for Large-Scale P2P Networks

When designing a P2P simulator architecture, usually two basic design issues arise: the
choice between cycle- and event-based simulations and between single-threaded and com-
pletely parallel (one thread per node) execution.

Using a cycle- or an event-driven simulation approach heavily depends on the application.
A cyclic engine can be used to simulate gossiping mechanisms, swarm intelligence tech-
niques or to gather simulation statistics periodically. Event-driven scenarios involve the
simulation of messages or queries. PeerSim provides engines for both cases and even the
possibility to combine them. We use the event-based engine for simulating queries and ap-
ply the cyclic model to periodically gather statistics on the network load (see section 4.2).
We deploy the combined approach in one protocol which processes queries and performs
periodic checks on a node’s load (see section 4.1).

The choice between single- or multi-threaded takes severalaspects into account. The
single-threaded approach (as implemented in PeerSim) has certain advantages compared
to the multi-threaded one. A sequential simulator needs no scheduling by the operating
system and can be executed on standard single-core processors which limits the network
size only to main memory [MJ09]. Multi-threaded simulatorson the other hand need mas-
sive scheduling efforts or large high performance computing clusters to run. Otherwise,
the scheduling effort grows with the networks and limits scalability. Additionally, no par-
allelization techniques are needed when running a single-threaded simulator which makes
development and evaluation much easier. One disadvantage,however, is that sequential
simulators can not achieve true realistic behavior concerning aspects like throughput mea-
sures or modeling database lookups, as the particular nodesare not autonomous. Addi-
tionally, they run on only one single processor and hence, can not utilize the full available
power of common multi-core systems. Besides these two separate approaches, one could
also think of a hybrid approach, combining the features of single-threaded and multi-
threaded simulators. Such simulators could deploy the existing computational power by
running a certain number of peers on all available processorcores in parallel. Hence, each
core executes its peers sequentially, the scheduling effort stays low as the different cores
are running real parallel and multi-core architectures canbe used to boost the simulator
scalability. This approach could also be applied to HiSim. However, developing such sim-
ulators is much more complex than developing single-threaded simulators because hybrid
simulators need to be thread-safe and the particular cores have to be synchronized. Making

445

HiSim a hybrid simulator is subject to future work as we only present the basic simula-
tor here. In the following section we list some problems associated with single-threaded
simulations and propose solutions.

3.3 Achieve Realism in Single-Threaded Simulator Environments

In a P2P system like HiSbase a high ratio of processing time depends on the database
lookup of queried data. After receiving a query, a node looksup the queried data in its
database. While the other nodes keep on processing, this node waits until the lookup has
been completed before sending the corresponding answer. Ina parallel simulation, we
can stop the thread for a certain time to easily model the lookup. In a single-threaded
environment, we can not keep a node waiting as this would interrupt the whole simulation,
i.e. all other nodes. To solve this problem we manipulate thePeerSim event queue. Note
that in the following we omit network latencies and message delays caused by physical
factors due to clarity reasons. Assume that the lookup for queryi to nodek is scheduled at
positionp1 in the event queue. The submission of the corresponding answer is scheduled
at positionp2. Then,p2 = p1+q with q being the number of events, scheduled betweenp1
andp2 (see Figure 3(a)). Note that theseq events can be any kind of events triggered by any
node or control object and have nothing to do with the query and thus, do not model a delay.
They only lie betweenp1 andp2 because we operate in a single-threaded environment. In

(a) Model with no lookup delay (b) Model containing a lookup delay

Figure 3: Modeling query lookup delays in single-threaded environments.

a parallel simulation, they would be processed simultaneously by different threads. Figure
3(b) now shows how we model a delay. We simply add a valued to the time, when the
answer message would originally be scheduled. This postpones the message to the back
of the event queue byp positions and hencep′2 = p1 + q + p holds. Consequently, the
message arrives later at its target which represents our desired lookup. d can either be
chosen as a constant or determined dynamically according tothe amount of data the query
demands.

Another problem occurs if load aspects are analyzed by the simulator. In HiSbase, each
node maintains a FIFO query queue where incoming queries arelisted. Currently pro-
cessed queries are removed. The load of a node is defined by thenumber of queries,
waiting in this queue. Transferring this load definition to the simulator is not possible due

446

to the single-threaded environment. A query comes in, is processed and the answer is sub-
mitted, all in one computational step which means that during that time no other actions
can be performed by any other node and the whole simulator. Thus, no other queries can
queue at the node while it processes a query. As a result, the load of a node would at
most be1. This situation is shown in Figure 4(a) (recall, that isochromatic arrows repre-
sent atomic simulation steps). To overcome this problem we could scan the simulator’s

(a) Load model with load at most1 (b) Model with correct load values

Figure 4: Modeling load in single-threaded environments.

event queue, looking for queries which have been sent to a node and have already ar-
rived at their target. The resulting count would be the load.As the event queue can grow
very large for huge networks, this is no efficient solution. Our solution is to introduce a
DBLookupEvent (DBLE). Assume that a node’s query request is scheduled at position
p1 in the event queue. After receiving the request the node sends aDBLE to itself (sched-
uled by the PeerSim Scheduler atp2) but does not answer the query yet. The answer to
the query is not submitted until the correspondingDBLE is received. The node can now
queue additional query requests, scheduled at positions betweenp1 andp2 which makes
load values> 1 possible (see Figure 4(b)). This load now conforms to our load defini-
tion. Note that theDBLE event models the time, a query waits in a node’s query queue to
be processed. The actual lookup delay is realized with the above described mechanism.
Hence, the number ofDBLE events scheduled for a node corresponds to the load of this
node and the simulator time betweenp1 andp2 represents the time, the query waits in the
queue.

3.4 Modular Architecture

Besides extending the simulation framework with aspects ofquery evaluation and load,
our simulator is also characterized by its easy extensibility. PeerSim itself provides a solid
basis for extensibility but for the HiSbase application andto keep our simulator generic,
we added some new features.

For P2P systems built on top of overlay topologies, the question arises, which one to
choose. Protocol behavior might differ on various overlay structures and the most suitable
needs to be determined. To simplify this task, we provide theOverlayProtocol inter-
face (see Figure 5(a)). This interface partially coincideswith the KBR (key-based routing)
API, proposed in [DZD+03]. This API comprises several operations which should be pro-

447

(a) TheOverlayProtocol interface (b) TheQueryScenario interface

Figure 5: Interfaces for overlay networks and query simulations.

vided by structured overlays, including aroute operation. In HiSim, overlay topologies
can be implemented using this interface which requires eachoverlay protocol to provide
aroute() method for message routing. Top-level protocols can be built on this generic
overlay protocol by just deploying the genericroute() method from the underlying
overlay and hence, overlays can be exchanged simply by specifying them via the config-
uration file. As HiSbase is built upon Pastry, HiSim completely simulates the FreePastry3

layer, including join and routing mechanisms.

One major part of HiSbase is its query processing functionality. Thus, the query simulation
engine is an essential part of HiSim. When simulating queries, different scenarios are
possible. A query scenario defines, how a node reacts after itreceived the answer to a
previously sent query. One scenario might be that a node waits a random time period after
receiving an answer and then submits a random number of queries. Another imaginable
scenario is, when all nodes have batch-jobs ofn queries (maximum load scenario) which
they submit to the network always keepingm parallel queries in the network (MPL m).
After receiving an answer, a node immediately submits a new query to the network to
keep itsm queries within the network. With ourQueryScenario interface we provide
an easy way to add new scenarios and to switch between them. Scenarios are added by
implementing this interface and nodes only callhandleProcessedQuery after they
finished processing a query. The scenario then reacts accordingly. HiSim provides an
implementation of a maximum load scenario and a cyclic scenario where in each cycle, a
random number of queries is submitted from a random node.

4 Extensibility of HiSim

Different aspects can be thought of, when it comes to the extensibility of a given simulator.
For HiSim, we show how easily new protocols can be added, statistics can be collected and
additional functionalities, like storing and loading networks, can be realized.

4.1 A Sample Protocol for Dynamic Replication in HiSbase

As a first application, the simulator is used to evaluate a dynamic replication protocol
(DRP) for HiSbase. Basically, the DRP works as follows. A node’s current load is moni-

3http://www.freepastry.org/FreePastry/

448

tored periodically and if it increases above a specified level, it replicates parts of its data,
placing it on other nodes determined according to their interest in the data and their load.
If the load decreases again, the node revokes its replicas.

The DRP requires an extended query processing mechanism as it needs to take care of
replicas. This mechanism differs from the standard processing mechanism in HiSbase and
hence, we encapsulate it as one dedicated protocol. With theabove described interfaces we
can easily place it on top of our Pastry implementation and run it with the already imple-
mented query scenarios without the need of further adaption. As stated above, protocols
can combine the event- and cycle-driven approaches. We use this feature for the dynamic
replication to perform the periodic checks on a node’s load status and the query processing
in the same protocol. As a result we receive a completely autonomous protocol, selectable
via the configuration file and runnable instantly with different query simulation scenarios
on top of Pastry. Other protocols can be added in the same way which obviously is fast
and easy and keeps the design of the simulator clean. As a nexttask, we want to evaluate
the DRP by gathering statistics from the network.

4.2 Recording Simulator Statistics

For evaluating, comparing, and analyzing different protocols, monitoring and recording
statistics from the network is inevitable. We introduce a statistics component, imple-
mented as a control object (see section 2) which periodically collects network statistics.
We provide statistics on the total network load, on single node loads and on the number
of queries, submitted to a HiSbase histogram region. The output format of the statistics
files are tab separated values which allow convenient further processing, e.g., by using
gnuplot4. Figures 6(a) and 6(b) show examples of such plots and were created by just
passing the output files of the statistics observer to gnuplot. Adding further statistics as

 300000
 325000

 350000 0 1 2 3 4 5 6 7 8 9
 0

 40

 80

 120

lo
ad

 in
 #

qu
er

ie
s

Node loads

simulator time
node ID

(a) Statistics on node load

 0

 100

 200

 300

 400

 500

 600

 700

 300000 310000 320000 330000 340000 350000 360000

to
ta

l n
et

w
or

k
lo

ad
 in

 #
qu

er
ie

s

simulator time

Network load

(b) Statistics on network load

Figure 6: Sample statistics output.

e.g. a message counter, involves only low additional effort.

4http://www.gnuplot.info/

449

4.3 Saving and Loading Existing Network Configurations

As it is computationally intensive to create large-scale networks, our simulator provides
a store and load mechanism for already created network configurations. Each simulation
consists of a creation phasepc and a simulation phaseps. In ps, the main simulation
part, the query processing, is performed while inpc, the network is built by using the join
protocol of the specified overlay structure. When developing and evaluating new protocols
it is inevitable to execute runs with the exact same characteristics as the results should be
reproducible and comparable. With the store and load functionality, the state of a network
(consisting of all node states) afterpc and beforeps is retained and can be reused later.
Especially for large-scale networks of104 or more nodes, saving a network configuration
is very useful as creation time increases exponentially (see also section 5) and just reading
network configurations is more than 90% faster.

5 Scalability Analysis

To analyze the scalability we performed two types of measurements. At first we measured
how long network creation takes for different network sizes. We then simulated maximum
load scenarios (see section 3.4) with various numbers of queries, using the previously
created networks. All measures were performed on a workstation equipped with two Intel
Xeon quadcore processors (2.93 Ghz) and 64 GB RAM.

 0

 2000

 4000

 6000

 8000

 0 5000 10000 15000 20000

tim
e

in
 s

number of nodes

Jointimes

(a) Jointimes for up to2 · 10
4 nodes

 0

 100

 200

 300

 400

 500

10 100 500 1000 2000

tim
e

in
 m

in

number of queries per node

(b) Querytimes for104 nodes

Figure 7: Scalability results.

Figure 7(a) shows the times it takes to create a network of2 · 104 nodes. Times were
recorded each time 100 new nodes joined the network. We see that these times increase
exponentially with the number of nodes. This is due to the fact that the more nodes exist,
the more messages a node needs to send to join the network. Thus, creating a Pastry
network of size104 with HiSim takes about 15 minutes while2 · 104 nodes already take
about 2 hours. With our store-and-load functionality this effort only has to be taken once
and is thus reduced to a minimum.

450

To simulate the query batch-jobs, we used a query set of2 ·104 queries, collected from log
files on a real database, storing two-dimensional astrophysical data. We conducted runs
with 10, 100, 500, 1000 and 2000 queries per node. The querieswere picked randomly
and submitted to the network of104 nodes with an MPL of 10 (for the 10 and 100 queries
per node scenarios) resp. 100 (for the rest). The results in Figure 7(b) show the durations
of the complete simulations. They span from2.3 minutes for10 queries per node to481
minutes for2000 queries. Looking at the results, we observe that the query simulations
scale approximately linearly in the number of queries. The same setup was carried out
with 2 · 104 nodes and the results confirm the linear scalability.

The performance measures show that we can simulate large-scale networks with high
query load within a reasonable time period. The simulation durations are especially tol-
erable as we do not have the resources to set up such systems inreality. Additionally,
evaluating different new protocols is much easier when operating on a single workstation.
As a result we save a lot of time by deploying our simulator forthese tasks.

6 Related Work

Many different network simulators exist to investigate P2Psystems. HiSbase itself already
has an integrated simulator which uses the FreePastry simulation engine. This engine
allows simulating FreePastry code without any adaption butthe engine is very lightweight
as delays, message drops etc. are not modeled. Additionally, as the simulator is multi-
threaded, network sizes of only up to103 nodes are possible which brought up the need
for a new simulator. Other simulator examples are NS-2 [Ber], NeuroGrid [Jos03] or
GPS [YAg05] to mention only a few. NS-2 is a widely used simulator which simulates
the network layer on packet-level. This is useful to analyzenetworks on lower layers but
comes with the loss of scalability. It can be used on multiplemachines and runs in parallel.
GPS and NeuroGrid are two single-threaded simulation engines. NeuroGrid was initially
designed for comparative simulations between Freenet-, Gnutella- and NeuroGrid-based
systems. GPS is implemented in Java and completely driven bymessages. No cyclic
protocols are supported.

According to [NLB+07] most of the published research in P2P systems, conductedwith
the help of simulators, is based on custom software. This software does not deploy a
standard API like the ones mentioned above or simply does notmention the underlying
simulator architecture. P2PRealm [KVK+06], for example, is a simulator especially de-
signed for studying neural network algorithms. With HiSim,we present a simulator which
is built on a common basis and provides the extensibility to fit special applications.

7 Summary and Future Work

Our work was driven by the need of a P2P network simulator which can be easily extended
and provides high scalability to implement and evaluate newprotocols for HiSbase, a P2P

451

framework for handling multidimensional data. The presented HiSim meets these require-
ments. Its design allows adding and exchanging new protocols easily and thus, HiSim
can also be deployed in other domains. It is based on PeerSim,a highly scalable P2P
simulation framework which provides a single-threaded simulation engine. HiSim utilizes
PeerSim to manage low level tasks like passing messages and manage physical connec-
tions. Beyond that, HiSim provides functionality especially designed for query processing
applications built on top of overlay networks. The introduced design allows convenient
management of various query scenarios which can easily be executed on different overlay
structures. We showed that single-threaded engines are arbitrarily scalable in theory, be-
cause no thread limits caused by the operating system apply,but that other problems arise
from this fact. The key idea to solve these problems is to manipulate the simulator’s event
queue. HiSim presents solutions to query-related problemsoccurring in single-threaded
environments and can thus provide more realistic query behavior. With some examples we
demonstrated the possibilities to extend and adapt HiSim tofit many additional tasks. We
analyzed the scalability by running simulations with different node and query numbers.
The results show that network creation time increases exponentially but we can reduce
that effort to a minimum with the provided store-and-load mechanism. Additionally we
demonstrated that the query simulation time scales linearly in the number of queries.

Future work will include more specific analyses which will compare real time system runs
and simulation runs. These tests will help to determine optimal parameter settings for the
query delay and for the lookup delay. We will also add new protocols and evaluate them to
improve and extend the HiSbase system itself. Another majortask is to equip HiSim with
multi-core support.

References

[Ber] Berkeley/LNBL/ISI. The NS-2 Network Simulator. http://www.isi.edu/nsnam/ns/.

[CDHR03] M. Castro, P. Druschel, Y.C. Hu, and A. Rowstron. Topology-aware routing in struc-
tured peer-to-peer overlay networks. InFuture Directions in Distributed Computing,
pages 103–107. Springer-Verlag, 2003.

[DZD+03] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common API
for structured peer-to-peer overlays.Peer-to-Peer Systems II, pages 33–44, 2003.

[JMJV] Márk Jelasity, Alberto Montresor, Gian Paolo Jesi,and Spyros Voulgaris. The Peersim
Simulator.http://peersim.sf.net.

[Jos03] S. Joseph. An extendible open source P2P simulator.P2P Journal, 1:1–15, 2003.

[KVK +06] N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, and J. Vuori. P2PRealm - peer-to-peer
network simulator. In2006 11th Intenational Workshop on Computer-Aided Modeling,
Analysis and Design of Communication Links and Networks, pages 93–99, 2006.

[MJ09] A. Montresor and M. Jelasity. Peersim: A scalable p2psimulator. InProceedings of
the 9th International Conference on Peer-to-Peer (P2P’09), pages 99–100, 2009.

452

[NLB+07] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and D. Chalmers. The
state of peer-to-peer simulators and simulations.ACM SIGCOMM Computer Commu-
nication Review, 37(2):98, 2007.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems. InIFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), volume 11, pages 329–350, 2001.

[RD10] Rodrigo Rodrigues and Peter Druschel. Peer-to-peersystems. Commun. ACM,
53(10):72–82, 2010.

[SBG+07] T. Scholl, B. Bauer, B. Gufler, R. Kuntschke, D. Weber, A. Reiser, and A. Kemper.
HiSbase: histogram-based P2P main memory data management.In Proceedings of
the 33rd international conference on Very large data bases, pages 1394–1397. VLDB
Endowment, 2007.

[SBM+09] T. Scholl, B. Bauer, J. Müller, B. Gufler, A. Reiser, and A. Kemper. Workload-aware
data partitioning in community-driven data grids. InProceedings of the 12th Interna-
tional Conference on Extending Database Technology: Advances in Database Technol-
ogy, pages 36–47. ACM, 2009.

[SRK09] T. Scholl, A. Reiser, and A. Kemper. Collaborative query coordination in community-
driven data grids. InProceedings of the 18th ACM international symposium on High
performance distributed computing, pages 197–206. ACM, 2009.

[YAg05] Weishuai Yang and Nael Abu-ghazaleh. GPS: a generalpeer-to-peer simulator and its
use for modeling BitTorrent. InProc. IEEE/ACM MASCOTS05, pages 425–432, 2005.

453

	Vorwort

	Inhaltsverzeichnis
	Eingeladene Vorträge
	SanssouciDB: An In-Memory Database for Processing Enterprise Workloads
	The Web as the development platform of the future
	The Power of Declarative Languages: From Information Extraction to Machine Learning

	Wissenschaftliches Programm
	Verarbeitung großer Datenmengen
	MapReduce and PACT - Comparing Data Parallel Programming Models
	Parallel Sorted Neighborhood Blocking with MapReduce
	PigSPARQL: Übersetzung von SPARQL nach Pig Latin

	Datenströme
	Koordinierte zyklische Kontext-Aktualisierungen in Datenströmen
	Tracking Hot-k Items over Web 2.0 Streams
	Flexible and Efficient Sensor Data Processing - A Hybrid Approach
	Feature-Based Graph Similarity with Co-Occurence Histograms and the Earth Mover's Distance

	Vorhersagemodelle
	Lightweight Performance Forecasts for Buffer Algorithms
	Offline Design Tuning for Hierarchies of Forecast Models
	Online Hot Spot Prediction in Road Networks

	DB-Implementierung
	Advanced Cardinality Estimation in the XML Query Graph Model
	Efficient In-Memory Indexing with Generalized Prefix Trees
	Stets Wertvollständig! - Snapshot Isolation für das Constraint-basierte Datenbank Caching

	Anfrageverarbeitung
	A generalized join algorithm
	View Maintenance using Partial Deltas
	Cloudy Transactions: Cooperative XML Authoring on Amazon S3

	Informationsextraktion
	Conceptiual Views for Entity-Centric Search: Turning Data into Meaningful Concepts
	A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases
	Efficient Interest Group Discovery in Social Networks using an Integrated Structure/Quality Index
	Filtertechniken für geschützte biometrische Datenbanken

	Benchmarking & Simulation
	Benchmarking Hybrid OLTP&OLAP Database Systems
	Simulating Multi-Tenant OLAP Database Clusters
	SSD != SSD – An Empirical Study to Identify Common Properties and Type-specific Behavior
	HiSim: A Highly Extensible Large-Scale P2P Network Simulator

	Probabilistische und inkonsistente Daten
	Operators for Analyzing and Modifying Probabi listic Data - A Question of Efficiency
	Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases
	QSQL^p: Eine Erweiterung der probabilistischenMany-World-Semantik umRelevanzwahrscheinlichkeiten

	Maßgeschneiderte DB-Anwendungen
	Generierung maßgeschneiderter Relationenschemata in Softwareproduktlinien mittels Superimposition
	SIMPL – A Framework for Accessing External Data in Simulation Workflows
	Einsatz domänenspezifischer Sprachen zur Migration von
Datenbankanwendungen

	Dissertationspreis
	XML Query Processing in XTC

	Industrieprogramm
	Complex Event Processing und Reporting
	An Integrated Data ManagementApproach to Manage Health Care Data
	Involving Business Users in the Design of Complex Event
Processing Systems
	Fast and Easy Delivery of Data Mining Insights to
Reporting Systems

	Rund um OLAP
	Technical Introduction to the IBM Smart Analytics Optimizer for DB2 for System z
	Architecture of a Highly Scalable Data Warehouse Appliance Integrated to Mainframe Database Systems
	Interactive Predictive Analytics with Columnar Databases

	In-Memory und Cloud
	An In-Memory Database System for Multi-Tenant
Applications
	Available-To-Promise on an In-Memory Column Store
	Cloud Storage: Wie viel Cloud Computing steckt dahinter?

	Panel
	Panel: “One Size Fits All”: An Idea Whose Time Has Come and Gone?

	Demonstrationsprogramm
	Improving Service Discovery through
Enriched Service Descriptions
	StreamCars – DatenstrommanagementbasierteVerarbeitung von Sensordaten im Fahrzeug
	NexusDSEditor — Integrated Tool Support for the DataStream Processing Middleware NexusDS
	AIMS: An SQL-based System for Airspace Monitoring
	PROOF: Produktmonitoring im Web
	ProCEM Software Suite - Integrierte Ablaufsteuerung und -überwachung auf Basis von Open Source Systemen
	Demonstration des Parallel Data Generation Framework
	Measuring Energy Consumption of a Database Cluster
	Snowfall: Hardware Stream Analysis Made Easy
	MOAW: An Agile Visual Modeling and Exploration Tool
for Irregularly Structured Data
	Touch it, Mine it, View it, Shape it
	Metadata-driven Data Migration for SAP Projects

	Ende

