HiSim: A Highly Extensible Large-Scale P2P Network
Simulator

Lukas Rupprecht Jessica Smejkal Angelika Reiser
Alfons Kemper

Fakultat fur Informatik, Technische Universitat Milemn
Firstname.Lastname@in.tum.de

Abstract: The popularity of Peer-to-Peer networks is increasingdigfut develop-
ing new protocols for P2P systems is a very complex task aéimgeand evaluating
distributed systems involves high effort. P2P simulatoesteeing developed to tackle
this difficulty, to reduce cost and to speed up developmene déscribe HiSim, a
modular and highly scalable P2P network simulator basedersimulation frame-
work PeerSim which we use to simulate HiSbase, a P2P frankelapefficient pro-
cessing of multidimensional data. Because of its modulargte HiSim can easily
be extended, e.g., to fit other application domains. Bass@deproblems, related to
query processing, are introduced in general and concrstdled within HiSim. Ad-
ditionally, HiSim provides mechanisms to evaluate newquols using an integrated
statistics component. We demonstrate the high scalabyitgerforming simulations
of up to2 - 10* peers an@ - 107 queries.

1 Introduction

The popularity of Peer-to-Peer (P2P) networks is increpsapidly [RD10]. Not only
filesharing protocols like, e.g., BitTorrénbut also the science community is utilizing
them heavily. E-science communities form data grids to process huge amounts of data
(e.g. the Large Hadron Collider at Cé&yrby combining their available resources using
P2P technology.

Developing new mechanisms and protocols for P2P systemsédsyacomplex task as it
requires a distributed testing infrastructure to verifyl @valuate the protocols. Such an
infrastructure should be as realistic as possible but,asihein the case of large-scale
P2P networks, this is hard to achieve as costs are increegind)y with higher numbers
of peers. The distributed testing process itself is verettonsuming and complex be-
cause each system needs to be monitored individually angatiered data needs to be
combined and analyzed. Additionally, evaluating new perots for a certain task implies
a complete distributed implementation of these protocetsnetimes this is too costly or
not possible due to time limits, especially, if these proteare only prototypes which
should only give a first impression if the desired approacstoieking.

Iwww.bittorrent.com
2lhc.web.cern.ch/lhc

442

To overcome these problems, P2P network simulators are #ssi@mulator can run on
only one single workstation and provide a central interfacattach and detach protocols
easily. It allows faster and more clear testing as the whal ietwork runs centralized
and the testing data does not need to be combined from seeam&. In this paper we
present HiSim, a highly scalable and easily extensible R2®ark simulator based on the
PeerSim simulation engine [JMJV], which realizes all thexabmentioned advantages.
We use the simulator to evaluatShase, a P2P framework for managing and processing
multidimensional E-science data. However, because of @dutar design, the simulator
can easily be extended to fit arbitrary application domaimee rest of the paper is struc-
tured as follows. Section 2 introduces the basics of HiSbabken the design of HiSim
is explained. In section 4 the extensibility of the simutatodemonstrated by some ex-
amples. The next section provides a scalability analydissaations 6 and 7 give a short
overview of other simulator projects and summarize the raapects.

2 HiSbase

HiSbase is the P2P framework for which the simulator wag.bliile framework provides
functionality for data partitioning of multidimensionahth and efficient query process-
ing with the focus on preserving data locality and procassamge queries [SB&)7],
[SBM*09].

HiSbase is built upon the distributed hash table overlayctiire Pastry [RDO1]. Pas-
try coordinates the communication between the peersddes) and provides a routing
mechanism. It uses a one-dimensional ring topology whetieatad peers are mapped to.
Additionally, Pastry optimizes the routing by implemeigtenproximity neighbor selection
algorithm [CDHRO3] which prefers physical neighbors whentmg messages.

01234567 01234567 0

0le <] 0|o | ——
1 o| [o 1 _— 6 1
2 [e) 2 o) P
3 o of 3 [e) o
4 4
5 o 5 o = 1 5 2
6 6
7 o [¢] 7 [e] % 3

(a) Sample data (b) Buckets (c) Linearization (d) Peer mapping

Figure 1: A sample for data placement in HiSbase [SB@|.

HiSbase deploys histograms to partition multidimensialaah and to create buckets con-
taining approximately the same number of data elementsHigere 1(b)). It partitiones
the data recursively, using a quadtree, and maps the leaves)ions) to the overlay ring
topology, using the Z-order (see Figure 1(c)). The comipmadf quadtrees and space-
filling curves handles data skew and preserves data loeefign mapping n-dimensional
data to the 1-dimensional ring. Peers and regions are mappeé key space by using

443

a hash function and regions are assigned to peers by thegstldistance to peers (see
Figure 1(d)). These histograms enable efficient query [msing of region-based queries
[SRKO09]. Therefore a coordinating region is chosen fromeajions covered by the query.
A special message is routed to the node @bardinator) responsible for this particular
region. The coordinator then sends messages to all querigains, and the responsible
nodes look up the data in their local databases. They serthtadack to the coordinator
which combines all answers and sends the complete datad#duwkdquery initiator. As the
space-filling curve preserves locality, it is very likelatronly few nodes are responsible
for the whole area covered by the query and that these nodesahbors in the ring.

3 The Simulator

We now introduce HiSim. We briefly present the deployed PeerSPI followed by
an overview of problems occurring, when simulating largaks P2P networks. We pro-
vide solutions to these problems and explain the main desighe simulator. HiSim
is designed for HiSbase where we use it to conduct query atiouak, create large-scale
networks, evaluate new protocols and gather statisticeebmark load distribution.

3.1 PeerSim

PeerSim is a P2P simulation environment, implemented ia Jé\09]. Its simulation
engine provides the basic functionality for simulating amahaging network connections
and passing messages. A network is represented as a liste$neach of them main-
taining a list of protocol objects. Additionally, initiaer objects (executed before the
simulation) and control objects (passive simulation marsiexecuted periodically) exist.
PeerSim supports two main simulation approaches, cydkerdand event-driven. In the
cyclic model, protocols are executed periodically whiléhie event-driven case, protocol
execution is triggered by messages which are sent via theaied transport layer. The
simulation is controlled by a configuration file which offarseasy way to set the different

Event Queue Event i Event j Event k

‘ Controller

write j to Queue write k to Queue co

write i to Queue

trigger Event k (t2) c1

Scheduler

trigger Event
Protl Protl Protl j (tl) ([Protl Protl
Prot@® Proto Proto Proto trigger Event i (t0) Proto Proto

Network Node © [Node 1| Node 2| Node 3 e Node n-1f Node n

Protocols

Figure 2: A sample execution of a PeerSim simulation.

444

simulation parameters. The PeerSim engine itself is sitigkaded and all events (peri-
odic and non-periodic) are written to one central event qudine execution order of the
events is determined by a scheduler which schedules thésasverording to their internal
simulator timet (see Figure 2; isochromatic arrows indicate that the cpmeding actions
are performed in one atomic step). We decided to use PeersSits scalability outnum-
bers other common used simulators [NL@7] and its API is well-designed and provides
a good basis for extensibility. Additionally it is in wide @i®y the research community
(see [IMJV] for a list of publications).

3.2 Design Issues for Large-Scale P2P Networks

When designing a P2P simulator architecture, usually tvgichdesign issues arise: the
choice between cycle- and event-based simulations andbatsingle-threaded and com-
pletely parallel (one thread per node) execution.

Using a cycle- or an event-driven simulation approach Hgadeipends on the application.
A cyclic engine can be used to simulate gossiping mechaniswerm intelligence tech-
niques or to gather simulation statistics periodically.efivdriven scenarios involve the
simulation of messages or queries. PeerSim provides enfpnéoth cases and even the
possibility to combine them. We use the event-based engirgrfiulating queries and ap-
ply the cyclic model to periodically gather statistics oa tietwork load (see section 4.2).
We deploy the combined approach in one protocol which psesequeries and performs
periodic checks on a node’s load (see section 4.1).

The choice between single- or multi-threaded takes sewas@édcts into account. The
single-threaded approach (as implemented in PeerSim)drtsrcadvantages compared
to the multi-threaded one. A sequential simulator needscheduling by the operating
system and can be executed on standard single-core progesgsoh limits the network
size only to main memory [MJ09]. Multi-threaded simulatorsthe other hand need mas-
sive scheduling efforts or large high performance compgutinisters to run. Otherwise,
the scheduling effort grows with the networks and limitslabdity. Additionally, no par-
allelization techniques are needed when running a sifgkatied simulator which makes
development and evaluation much easier. One disadvartiageyer, is that sequential
simulators can not achieve true realistic behavior conngraspects like throughput mea-
sures or modeling database lookups, as the particular ravdasot autonomous. Addi-
tionally, they run on only one single processor and henagenca utilize the full available
power of common multi-core systems. Besides these two aepapproaches, one could
also think of a hybrid approach, combining the features pgls-threaded and multi-
threaded simulators. Such simulators could deploy thdiegisomputational power by
running a certain number of peers on all available process®s in parallel. Hence, each
core executes its peers sequentially, the schedulingteffays low as the different cores
are running real parallel and multi-core architectureslmamsed to boost the simulator
scalability. This approach could also be applied to HiSirowidver, developing such sim-
ulators is much more complex than developing single-tredadmulators because hybrid
simulators need to be thread-safe and the particular caxesth be synchronized. Making

445

HiSim a hybrid simulator is subject to future work as we onfggent the basic simula-
tor here. In the following section we list some problems aisged with single-threaded
simulations and propose solutions.

3.3 Achieve Realism in Single-Threaded Simulator Environrants

In a P2P system like HiSbase a high ratio of processing tinpemds on the database
lookup of queried data. After receiving a query, a hode lomighe queried data in its
database. While the other nodes keep on processing, théswaaits until the lookup has
been completed before sending the corresponding answea.phrallel simulation, we
can stop the thread for a certain time to easily model thedpoln a single-threaded
environment, we can not keep a node waiting as this wouldrinéthe whole simulation,
i.e. all other nodes. To solve this problem we manipulatePtberSim event queue. Note
that in the following we omit network latencies and messaglay$ caused by physical
factors due to clarity reasons. Assume that the lookup fergjto nodek is scheduled at
positionp; in the event queue. The submission of the correspondingearisvgcheduled

at positionps. Then,ps = p; + ¢ with ¢ being the number of events, scheduled betwgen
andps (see Figure 3(a)). Note that thegevents can be any kind of events triggered by any
node or control object and have nothing to do with the quedthuas, do not model a delay.
They only lie betweem; andp, because we operate in a single-threaded environment. In

pl a p2 pl q p p2'

write
answer i

query i
answer

query i
answer

Event Queue | query i query i

‘ Event Queue

write

answer j
schedule

query i

schedule

query i schedule

answer i
answer i

trigger answer trigger answer
forgﬁuery i Prot Protocols |prote fwgguery i Prot

Node k ‘ ‘ Network Node © ‘ Node k ‘ ‘

Scheduler Scheduler schedule

Protocols

Network Node ©

(a) Model with no lookup delay (b) Model containing a lookup delay
Figure 3: Modeling query lookup delays in single-threadedrenments.

a parallel simulation, they would be processed simultaskyday different threads. Figure
3(b) now shows how we model a delay. We simply add a vdlte the time, when the
answer message would originally be scheduled. This postpthre message to the back
of the event queue by positions and hencg, = p; + ¢ + p holds. Consequently, the
message arrives later at its target which represents oineddeokup. d can either be
chosen as a constant or determined dynamically accordiihg tamount of data the query
demands.

Another problem occurs if load aspects are analyzed by thalator. In HiSbase, each
node maintains a FIFO query queue where incoming querielséed. Currently pro-
cessed queries are removed. The load of a node is defined bwthker of queries,
waiting in this queue. Transferring this load definitionhe simulator is not possible due

446

to the single-threaded environment. A query comes in, isggsed and the answer is sub-
mitted, all in one computational step which means that dytfrat time no other actions
can be performed by any other node and the whole simulatars, o other queries can
queue at the node while it processes a query. As a resultp#itedf a node would at
most bel. This situation is shown in Figure 4(a) (recall, that isamrhatic arrows repre-
sent atomic simulation steps). To overcome this problem evgdcscan the simulator’s

pl pL pL+ 1 p2

query i query j
uer)
queryJ answer answer ‘ query Ji ...

receive query j receive query j
> inc load answer query i receive query i -> inc load
receive query i -> decremen S -> inc load
-> increment load
load] write
answer query j
Protocols [prote -> dec load Protocols [proto

Network Node 0 ‘

Event Queue | query i ... Event Queue | query if ...

receive DBLE
for query i

swer query
-> decrement
load

Network Node © ‘

(a) Load model with load at mogt (b) Model with correct load values
Figure 4: Modeling load in single-threaded environments.

event queue, looking for queries which have been sent to @ aad have already ar-
rived at their target. The resulting count would be the lo&slthe event queue can grow
very large for huge networks, this is no efficient solutiorur@olution is to introduce a
DBLookupEvent (DBLE). Assume that a node’s query request is scheduled at positio
p1 in the event queue. After receiving the request the nodessebBLE to itself (sched-
uled by the PeerSim Schedulera) but does not answer the query yet. The answer to
the query is not submitted until the correspondbi}E is received. The node can now
queue additional query requests, scheduled at positiamsebap, andp, which makes
load values> 1 possible (see Figure 4(b)). This load now conforms to oud ldefini-

tion. Note that thédBLE event models the time, a query waits in a node’s query queue to
be processed. The actual lookup delay is realized with tlogeadescribed mechanism.
Hence, the number d®BLE events scheduled for a node corresponds to the load of this
node and the simulator time betwegnandp, represents the time, the query waits in the
queue.

3.4 Modular Architecture

Besides extending the simulation framework with aspectgugfry evaluation and load,
our simulator is also characterized by its easy extensibHeerSim itself provides a solid
basis for extensibility but for the HiSbase application amd¢teep our simulator generic,
we added some new features.

For P2P systems built on top of overlay topologies, the dguestrises, which one to
choose. Protocol behavior might differ on various overlayctures and the most suitable
needs to be determined. To simplify this task, we providexher | ayPr ot ocol inter-
face (see Figure 5(a)). This interface partially coincidéh the KBR (key-based routing)
API, proposed in [DZD 03]. This API comprises several operations which shouldrbe p

447

<<interface>> <<interface>>
OverlayProtocol QueryScenario
+route(node,msg,objectID,protocol): boolean +handleProcessedQuery(nodeID): void
(@) TheOver | ayPr ot ocol interface (b) TheQuer yScenari o interface

Figure 5: Interfaces for overlay networks and query sinioifest

vided by structured overlays, including aut e operation. In HiSim, overlay topologies
can be implemented using this interface which requires eaehay protocol to provide

arout e() method for message routing. Top-level protocols can be bnithis generic

overlay protocol by just deploying the generiout e() method from the underlying
overlay and hence, overlays can be exchanged simply byfgpmecthem via the config-

uration file. As HiSbase is built upon Pastry, HiSim comgiesimulates the FreePastry
layer, including join and routing mechanisms.

One major part of HiSbase is its query processing functityndlhus, the query simulation
engine is an essential part of HiSim. When simulating qeeriifferent scenarios are
possible. A query scenario defines, how a node reacts aftecdfved the answer to a
previously sent query. One scenario might be that a nodewadndom time period after
receiving an answer and then submits a random number ofeguetinother imaginable
scenario is, when all nodes have batch-jobs gueries (maximum load scenario) which
they submit to the network always keepingparallel queries in the networfAPL m).
After receiving an answer, a node immediately submits a nearyjto the network to
keep itsm queries within the network. With o@Quer yScenar i o interface we provide
an easy way to add new scenarios and to switch between theemagas are added by
implementing this interface and nodes only d&indl ePr ocessedQuer y after they
finished processing a query. The scenario then reacts aegtyrd HiSim provides an
implementation of a maximum load scenario and a cyclic steméhere in each cycle, a
random number of queries is submitted from a random node.

4 Extensibility of HiSim

Different aspects can be thought of, when it comes to thaensiidity of a given simulator.
For HiSim, we show how easily new protocols can be addedsstatcan be collected and
additional functionalities, like storing and loading netks, can be realized.

4.1 A Sample Protocol for Dynamic Replication in HiSbase

As a first application, the simulator is used to evaluate aadyin replication protocol
(DRP) for HiSbase. Basically, the DRP works as follows. A@edurrent load is moni-

Shttp://www.freepastry.org/FreePastry/

448

tored periodically and if it increases above a specifiedlJéveeplicates parts of its data,
placing it on other nodes determined according to theiréstein the data and their load.
If the load decreases again, the node revokes its replicas.

The DRP requires an extended query processing mechanistmesds to take care of
replicas. This mechanism differs from the standard praegssechanism in HiSbase and
hence, we encapsulate it as one dedicated protocol. Witihthvee described interfaces we
can easily place it on top of our Pastry implementation amdtrwith the already imple-
mented query scenarios without the need of further adapfisnstated above, protocols
can combine the event- and cycle-driven approaches. Wenissieature for the dynamic
replication to perform the periodic checks on a node’s Idatlis and the query processing
in the same protocol. As a result we receive a completelyreuntmus protocol, selectable
via the configuration file and runnable instantly with diéat query simulation scenarios
on top of Pastry. Other protocols can be added in the same Wwashwbviously is fast
and easy and keeps the design of the simulator clean. As dasixtwve want to evaluate
the DRP by gathering statistics from the network.

4.2 Recording Simulator Statistics

For evaluating, comparing, and analyzing different protscmonitoring and recording
statistics from the network is inevitable. We introduce atistics component, imple-
mented as a control object (see section 2) which periogicallects network statistics.
We provide statistics on the total network load, on singldetwads and on the number
of queries, submitted to a HiSbase histogram region. Theubdibrmat of the statistics
files are tab separated values which allow convenient fugihecessing, e.g., by using
gnuplot. Figures 6(a) and 6(b) show examples of such plots and weadeat by just
passing the output files of the statistics observer to griugldding further statistics as

700

Newvdrk load ‘

Node loads

600

500

400

300

200

load in #queries
total network load in #queries

100 |

0

300000 310000 320000 330000 340000 350000 360000
simulator time

(a) Statistics on node load (b) Statistics on network load

Figure 6: Sample statistics output.

e.g. a message counter, involves only low additional effort

“http://iwww.gnuplot.info/

449

4.3 Saving and Loading Existing Network Configurations

As it is computationally intensive to create large-scalevoeks, our simulator provides
a store and load mechanism for already created network emafigns. Each simulation
consists of a creation phage and a simulation phase;. In ps, the main simulation
part, the query processing, is performed whilginthe network is built by using the join
protocol of the specified overlay structure. When develgpind evaluating new protocols
it is inevitable to execute runs with the exact same chariatitss as the results should be
reproducible and comparable. With the store and load fanatity, the state of a network
(consisting of all node states) aftey and beforep, is retained and can be reused later.
Especially for large-scale networks tii* or more nodes, saving a network configuration
is very useful as creation time increases exponentially &0 section 5) and just reading
network configurations is more than 90% faster.

5 Scalability Analysis

To analyze the scalability we performed two types of meanerdgs. At first we measured
how long network creation takes for different network si2é% then simulated maximum
load scenarios (see section 3.4) with various numbers ofi@gjeusing the previously
created networks. All measures were performed on a worstatjuipped with two Intel
Xeon quadcore processors (2.93 Ghz) and 64 GB RAM.

8000 T T T 500 T T T T
Jointimes
6000 |- - 400 - i
£
é’ £ 300 B
‘s 4000 |- - £
£ g 200 -
2000 7 100 + B
1 1 O j —
0 5000 10000 15000 20000 10 100 500 1000 2000
number of nodes number of queries per node
(a) Jointimes for up t@ - 104 nodes (b) Querytimes for 0% nodes

Figure 7: Scalability results.

Figure 7(a) shows the times it takes to create a network -of0* nodes. Times were

recorded each time 100 new nodes joined the network. We se¢hiise times increase
exponentially with the number of nodes. This is due to théthaat the more nodes exist,
the more messages a node needs to send to join the networls, diieating a Pastry

network of sizel0* with HiSim takes about 15 minutes whike 10* nodes already take

about 2 hours. With our store-and-load functionality tHfem only has to be taken once
and is thus reduced to a minimum.

450

To simulate the query batch-jobs, we used a query settf* queries, collected from log
files on a real database, storing two-dimensional astrogdlydata. We conducted runs
with 10, 100, 500, 1000 and 2000 queries per node. The queses picked randomly
and submitted to the network ®0* nodes with an MPL of 10 (for the 10 and 100 queries
per node scenarios) resp. 100 (for the rest). The resultginé7(b) show the durations
of the complete simulations. They span fr@m minutes forl0 queries per node to81
minutes for2000 queries. Looking at the results, we observe that the quemylations
scale approximately linearly in the number of queries. Témme setup was carried out
with 2 - 104 nodes and the results confirm the linear scalability.

The performance measures show that we can simulate laadesetworks with high
query load within a reasonable time period. The simulatiorations are especially tol-
erable as we do not have the resources to set up such systesdiin Additionally,
evaluating different new protocols is much easier whenatjrgg on a single workstation.
As aresult we save a lot of time by deploying our simulatortf@se tasks.

6 Related Work

Many different network simulators exist to investigate BgBtems. HiShase itself already
has an integrated simulator which uses the FreePastry aimlengine. This engine
allows simulating FreePastry code without any adaptiorifiengine is very lightweight
as delays, message drops etc. are not modeled. Additipaalhe simulator is multi-
threaded, network sizes of only up 163 nodes are possible which brought up the need
for a new simulator. Other simulator examples are NS-2 [BduroGrid [Jos03] or
GPS [YAgO05] to mention only a few. NS-2 is a widely used sintalavhich simulates
the network layer on packet-level. This is useful to analye®vorks on lower layers but
comes with the loss of scalability. It can be used on multipéehines and runs in parallel.
GPS and NeuroGrid are two single-threaded simulation esgiNeuroGrid was initially
designed for comparative simulations between Freenetdfdla- and NeuroGrid-based
systems. GPS is implemented in Java and completely drivemdssages. No cyclic
protocols are supported.

According to [NLB*07] most of the published research in P2P systems, conduitied
the help of simulators, is based on custom software. Thisvaoé does not deploy a
standard AP like the ones mentioned above or simply doesneaition the underlying
simulator architecture. P2PRealm [KVK6], for example, is a simulator especially de-
signed for studying neural network algorithms. With HiSing present a simulator which
is built on a common basis and provides the extensibilityttegfecial applications.

7 Summary and Future Work

Our work was driven by the need of a P2P network simulator wban be easily extended
and provides high scalability to implement and evaluate petocols for HiSbase, a P2P

451

framework for handling multidimensional data. The presdiiiSim meets these require-
ments. Its design allows adding and exchanging new pragceasily and thus, HiSim
can also be deployed in other domains. It is based on PeeeShighly scalable P2P
simulation framework which provides a single-threadedsation engine. HiSim utilizes
PeerSim to manage low level tasks like passing messages amalge physical connec-
tions. Beyond that, HiSim provides functionality espdgidesigned for query processing
applications built on top of overlay networks. The introddalesign allows convenient
management of various query scenarios which can easilydmited on different overlay
structures. We showed that single-threaded engines aiteaait» scalable in theory, be-
cause no thread limits caused by the operating system dpjtlthat other problems arise
from this fact. The key idea to solve these problems is to maate the simulator’s event
gueue. HiSim presents solutions to query-related problkeenarring in single-threaded
environments and can thus provide more realistic query\iehaVith some examples we
demonstrated the possibilities to extend and adapt HiSifib teany additional tasks. We
analyzed the scalability by running simulations with diffiet node and query numbers.
The results show that network creation time increases expally but we can reduce
that effort to a minimum with the provided store-and-loadchemnism. Additionally we
demonstrated that the query simulation time scales lipégathe number of queries.

Future work will include more specific analyses which wilhgpare real time system runs
and simulation runs. These tests will help to determinenogitparameter settings for the
query delay and for the lookup delay. We will also add newqxrots and evaluate them to
improve and extend the HiSbase system itself. Another magris to equip HiSim with
multi-core support.

References

[Ber] Berkeley/LNBL/ISI. The NS-2 Network Simulator. httfwww.isi.edu/nsnam/ns/.

[CDHRO03] M. Castro, P. Druschel, Y.C. Hu, and A. Rowstron.pdlmgy-aware routing in struc-
tured peer-to-peer overlay networks. Foture Directions in Distributed Computing,
pages 103-107. Springer-Verlag, 2003.

[DzDT03] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and licstoTowards a common API
for structured peer-to-peer overlay2eer-to-Peer Systems |1, pages 33—44, 2003.

[IMIV] Mark Jelasity, Alberto Montresor, Gian Paolo Jesid Spyros Voulgaris. The Peersim
Simulator.ht t p: / / peer si m sf. net.

[Jos03] S. Joseph. An extendible open source P2P simuR@6rJournal, 1:1-15, 2003.

[KVK T06] N.Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, and J.ovis P2PRealm - peer-to-peer
network simulator. 2006 11th Intenational Workshop on Computer-Aided Modeling,
Analysis and Design of Communication Links and Networks, pages 93-99, 2006.

[MJ09] A. Montresor and M. Jelasity. Peersim: A scalable pRpulator. InProceedings of
the 9th International Conference on Peer-to-Peer (P2P’09), pages 99-100, 2009.

452

[NLB07]

[RDO1]

[RD10]

[SBG'07]

[SBMT09]

[SRKO9]

[YAQO5]

S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, |. \&falan, and D. Chalmers. The
state of peer-to-peer simulators and simulatioh6M S GCOMM Computer Commu-
nication Review, 37(2):98, 2007.

A. Rowstron and P. Druschel. Pastry: Scalable, ithisted object location and routing
for large-scale peer-to-peer systems. |FhP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), volume 11, pages 329-350, 2001.

Rodrigo Rodrigues and Peter Druschel. Peer-to-pgstems. Commun. ACM,
53(10):72-82, 2010.

T. Scholl, B. Bauer, B. Gufler, R. Kuntschke, D. Weber, Aider, and A. Kemper.
HiSbase: histogram-based P2P main memory data managerreftroceedings of
the 33rd international conference on Very large data bases, pages 1394-1397. VLDB
Endowment, 2007.

T. Scholl, B. Bauer, J. Miller, B. Gufler, A. Reiser, andkemper. Workload-aware
data partitioning in community-driven data grids. Pnoceedings of the 12th Interna-
tional Conference on Extending Database Technology: Advances in Database Technol-
ogy, pages 36—-47. ACM, 2009.

T. Scholl, A. Reiser, and A. Kemper. Collaboratiwgety coordination in community-
driven data grids. IfProceedings of the 18th ACM international symposium on High
performance distributed computing, pages 197-206. ACM, 2009.

Weishuai Yang and Nael Abu-ghazaleh. GPS: a gergrat-to-peer simulator and its
use for modeling BitTorrent. IRroc. [IEEE/ACM MASCOTS05, pages 425-432, 2005.

453

	Vorwort

	Inhaltsverzeichnis
	Eingeladene Vorträge
	SanssouciDB: An In-Memory Database for Processing Enterprise Workloads
	The Web as the development platform of the future
	The Power of Declarative Languages: From Information Extraction to Machine Learning

	Wissenschaftliches Programm
	Verarbeitung großer Datenmengen
	MapReduce and PACT - Comparing Data Parallel Programming Models
	Parallel Sorted Neighborhood Blocking with MapReduce
	PigSPARQL: Übersetzung von SPARQL nach Pig Latin

	Datenströme
	Koordinierte zyklische Kontext-Aktualisierungen in Datenströmen
	Tracking Hot-k Items over Web 2.0 Streams
	Flexible and Efficient Sensor Data Processing - A Hybrid Approach
	Feature-Based Graph Similarity with Co-Occurence Histograms and the Earth Mover's Distance

	Vorhersagemodelle
	Lightweight Performance Forecasts for Buffer Algorithms
	Offline Design Tuning for Hierarchies of Forecast Models
	Online Hot Spot Prediction in Road Networks

	DB-Implementierung
	Advanced Cardinality Estimation in the XML Query Graph Model
	Efficient In-Memory Indexing with Generalized Prefix Trees
	Stets Wertvollständig! - Snapshot Isolation für das Constraint-basierte Datenbank Caching

	Anfrageverarbeitung
	A generalized join algorithm
	View Maintenance using Partial Deltas
	Cloudy Transactions: Cooperative XML Authoring on Amazon S3

	Informationsextraktion
	Conceptiual Views for Entity-Centric Search: Turning Data into Meaningful Concepts
	A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases
	Efficient Interest Group Discovery in Social Networks using an Integrated Structure/Quality Index
	Filtertechniken für geschützte biometrische Datenbanken

	Benchmarking & Simulation
	Benchmarking Hybrid OLTP&OLAP Database Systems
	Simulating Multi-Tenant OLAP Database Clusters
	SSD != SSD – An Empirical Study to Identify Common Properties and Type-specific Behavior
	HiSim: A Highly Extensible Large-Scale P2P Network Simulator

	Probabilistische und inkonsistente Daten
	Operators for Analyzing and Modifying Probabi listic Data - A Question of Efficiency
	Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases
	QSQL^p: Eine Erweiterung der probabilistischenMany-World-Semantik umRelevanzwahrscheinlichkeiten

	Maßgeschneiderte DB-Anwendungen
	Generierung maßgeschneiderter Relationenschemata in Softwareproduktlinien mittels Superimposition
	SIMPL – A Framework for Accessing External Data in Simulation Workflows
	Einsatz domänenspezifischer Sprachen zur Migration von
Datenbankanwendungen

	Dissertationspreis
	XML Query Processing in XTC

	Industrieprogramm
	Complex Event Processing und Reporting
	An Integrated Data ManagementApproach to Manage Health Care Data
	Involving Business Users in the Design of Complex Event
Processing Systems
	Fast and Easy Delivery of Data Mining Insights to
Reporting Systems

	Rund um OLAP
	Technical Introduction to the IBM Smart Analytics Optimizer for DB2 for System z
	Architecture of a Highly Scalable Data Warehouse Appliance Integrated to Mainframe Database Systems
	Interactive Predictive Analytics with Columnar Databases

	In-Memory und Cloud
	An In-Memory Database System for Multi-Tenant
Applications
	Available-To-Promise on an In-Memory Column Store
	Cloud Storage: Wie viel Cloud Computing steckt dahinter?

	Panel
	Panel: “One Size Fits All”: An Idea Whose Time Has Come and Gone?

	Demonstrationsprogramm
	Improving Service Discovery through
Enriched Service Descriptions
	StreamCars – DatenstrommanagementbasierteVerarbeitung von Sensordaten im Fahrzeug
	NexusDSEditor — Integrated Tool Support for the DataStream Processing Middleware NexusDS
	AIMS: An SQL-based System for Airspace Monitoring
	PROOF: Produktmonitoring im Web
	ProCEM Software Suite - Integrierte Ablaufsteuerung und -überwachung auf Basis von Open Source Systemen
	Demonstration des Parallel Data Generation Framework
	Measuring Energy Consumption of a Database Cluster
	Snowfall: Hardware Stream Analysis Made Easy
	MOAW: An Agile Visual Modeling and Exploration Tool
for Irregularly Structured Data
	Touch it, Mine it, View it, Shape it
	Metadata-driven Data Migration for SAP Projects

	Ende

