
Towards Applying Model-based Testing in Test Case Migration

Ivan Jovanovikj1, Baris Güldali2, Marvin Grieger1
1s-lab – Software Quality Lab, Paderborn University

2S&N CQM Consulting & Services GmbH, Paderborn
Email: {ijovanovikj, mgrieger}@s-lab.upb.de, baris.gueldali@sn-cqm.de

1 Introduction
After performing migration of a software system, it
must be proved that the migrated system still be-
haves like the legacy system regarding the function-
ality. As a technique to validate the migrated sys-
tem, software testing is being used. According to [1],
testing in software migration projects is a costly en-
deavor. For that reason, when existing test cases are
available, their reuse should be considered. Two main
things motivate their reuse: costs save and knowledge
reuse. They come from the fact that the functional-
ity of the system after the migration must stay un-
changed. Hence, the existing test cases are valuable
source of information about the functionality of the
legacy system and consequently for the migrated sys-
tem as well.

Reusing test cases in a software migration scenario
introduces several challenges. For example, the qual-
ity of the test cases needs to be assessed, because
they might have become legacy due to the evolution-
ary development. The existing test case set may con-
tain duplicate, obsolete or even erroneous test cases.
Another example is the changes that happen to the
system (language, framework or architectural change)
may influence the existing test cases [2]. Reflecting
these changes to the test cases is an important pre-
requisite in enabling a test case set that could vali-
date the migrated system. Dealing with such changes
on the level of test cases could be difficult and there-
fore we assume that abstracting from test cases and
extracting test models, could ease this task.

Motivated by the idea of model-driven software
migration, we envision a novel test case migration
method that combines reverse engineering and model-
based testing. Model-based testing(MBT) is a testing
technique that relies on abstract models, which are
used to derive test cases for an implementation [3]. In
the literature, several different scenarios have been in-
troduced depending on the origin of the test model [3,
4]. From our perspective, the scenario where the test
models are reverse engineered from existing test cases
(known as ’Models from Test Cases’ in [4]) is the most
interesting one.

Following the model-driven software migration
horseshoe1, we first extract test models out of the
test cases, then we restructure the test models by re-
flecting the changes from the software migration, and
finally, we generate test cases for the migrated sys-
tem. On the one hand, it could be seen as a test case
re-engineering method that enables migration and co-
evolution of test cases. On the other hand, from the
model-based testing perspective, it could be seen as a
new scenario which is an extension of the previously
mentioned scenario ’Models from Test Cases’.

In this paper, we first discuss the field of model-
based testing and reverse engineering and thereafter
we sketch our method and discuss how it extends the
existing model-based scenario. At the end, we discuss
the requirements that model-based testing imposes on
our method.

2 Background
Model-based testing is a software testing technique
which derives (manually or automatically) test cases
from models that describe the desired functionality of
the system under test. Regarding the origin of the
models, six different scenarios have been identified so
far [3, 4]. In the context of test case migration, most
interesting scenario is the scenario ’Models from Test
Cases’ where the test models are reverse engineered
from the existing test cases.

This scenario assumes that an existing set of test
cases contains relevant information about the system
under test as well as about the test inputs and ex-
pected results. The existing test cases are basically
reused and by using reverse engineering techniques,
the test models are automatically derived from these
test cases. This scenario is described as useful in case
of migration from classical to model-based testing [4].
After applying reverse engineering, the obtained test
models could be used for generation of new test cases.

Reverse Engineering is the the enabling part in
the previously mentioned scenario. According to [5],
reverse engineering is "the process of analyzing a sub-
ject system to create representations of the system in
another form or at a higher level of abstraction". In

1adm.omg.org Architecture-Driven Modernization

the model-based testing context, the test cases are the
artifacts being reverse engineered and the result of the
reverse engineering process are the test models. Ex-
isting reverse engineering techniques for test cases are
based on machine learning algorithms [6, 7], parallel
composition (synthezis) [8], process mining [9] etc.

3 Solution Idea
Aiming to reuse test cases in software migration sce-
nario, we envisioned a solution that employs model-
based testing. Generally, it represents an extension of
the previously discussed scenario and could be seen as
a new model-based scenario in the context of software
migration.

Our method, as shown in Fig. 1, consists of six
steps: 1) quality assessment of the existing tests cases;
2) reverse engineering of the test cases; 3) establish-
ment of relation between the test model and system
model; 4)refactoring of the test models; 5) restruc-
turing of the test models; 6) forward engineering of
test cases i.e. the actual test case generation; 7) qual-
ity assessment of test cases, i.e., the validation of the
migration of test cases.

The first step, the quality assessment of test cases,
is performed to decide whether eventual reuse of test
cases would be beneficial. Based on a quality model
for test cases and appropriate metrics [10], a check
of quality characteristics of test cases is performed.
Quality characteristics like effectiveness, understand-
ability, structuredness, traceability between test cases
and system or code components or test coverage are
checked. This step could be seen as an extension of
the model-based testing scenario.

The second step is the reverse engineering of the
test cases. Since any test level may be needed during
migration of test cases, the reverse engineering phase
has to provide support for all test levels. Furthermore,
the selected techniques have to be able to cope with
non-automated and in natural language described test
cases (mainly system tests). For these purposes, exist-
ing reverse engineering techniques from model-based
testing could be re-used [8, 6, 7, 9], or, in case of spe-
cific requirements (non-automated test cases, differ-
ent levels of granularity), a new technique may be de-
veloped. Fig. 2 shows an example of how integration
tests can be represented using a component diagram,
whereas Fig. 3 show an example of a test model of
system tests using an activity diagram.

After this step, we establish a relation between the
reverse engineered test models and the models of the
system in order to discover eventual inconsistencies
between the models as well as to enable later reflection
of relevant system changes to our test models. Estab-
lishing relationships between the test models and sys-

Legacy
System

Migrated
System

Legacy
Model

Migrated
Model

Legacy
Test Cases

Migrated
Test Cases

Legacy Test
Model

Migrated
Test Model

Quality
assesement

Reverse
Engineering

Forward
Engineering

Refactoring

Relation

Restructuring

Restructuring

1

4

3

5

Reverse
Engineering
2 6 Forward

Engineering

 Model from Test Cases
scenario specific activity

General activity in
any MBT scenario

Quality
Assessment
7

Figure 1: Model-driven method for migrating test
cases

tem models is a challenging task since different model-
ing notations may be used, or the models may be at
different levels of abstraction. Fig. 2 shows an exam-
ple how a test model and a model of the system can
be related. The relations(represented as blue dashed
lines) are established between corresponding elements
in the model of the system and the test models.

Once the relation between the test models and the
models of the system is established, refactoring is per-
formed. We analyze our test models to identify even-
tual inconsistencies with the models of the system,
which could be a consequence of obsolete or erroneous
test cases. Due to the evolutionary development of the
system as well as the test cases, it may happen that
non-existing interfaces (integration testing, Fig. 2) or
paths in the system (system testing, Fig. 3) are being
tested. Based on the previously established relations,
potential inconsistencies can be discovered.

A

TC1: test_A_to_B_S1

TC2: test_A_to_B_S2
BS2

S1
A BS2

S1

Existing test cases Integration test model Model of the system

S3
TC2: test_A_to_B_S3

Figure 2: Relating an integration test model and a
model of a system

The next step is the step of restructuring of the
test models. This step is actually a consequence of
the changes that happen in the system during its re-
structuring phase. Since these changes may be rele-
vant for the test models, our idea is to use the previ-
ously established relation between the models of the
system and the test models in order to do a reflection
of the relevant changes. Let us assume that the model
of the system in Fig. 2 initially was same as the in-
tegration test model, i.e., the system was consisted of
the components A and B, and the interfaces S1, S2
and S3. The system was so restructured that the in-
terface S3 was removed. After it was restructured, it
looks as presented in Fig. 2. This change should be
reflected on the integration test model as well, since
the interface S3 does not have to be tested anymore.

TC1: do_A; do_B; do_E

TC2: do_A; do_C; do_E

TC3: do_A; do_D; do_E

A

CB D

E

Existing test cases
(just test steps)

System test model
System test model

(refactored)

A

CB

E

Figure 3: Detection of an obsolete test case

The last step is the the step of forward engineering
of test cases where the restructured test models are
actually used for test case generation. At the very end,
a quality assessment is performed in order to validate
the migration of the test cases. For example, a test
coverage is checked and it should be at least as high as
it was before the migration. Similarly, other quality
attributes from the quality model [10] may be checked
as well.

4 Discussion
In the previous section, going step by step through our
method, we have shown how our approach extends the
existing model-based scenario. Therefore, the over-
all method could be seen as a new model-based sce-
nario in the context of software migration. Due to the
specifics of the context, it has some additional activ-
ities like quality assessment, relation, refactoring and
resructuring based on reflection of the system changes
to the test cases.

Additionally, model-based testing imposes some
specific requirements as well. As mentioned in [3], a
big concern in model-based testing is the abstraction
level of the test models, i.e., should the test models
be more abstract or with more details. This require-
ment would directly influence the reverse engineering
activity of our method.

According to the taxonomy presented in [11], sev-
eral other requirements could be derived regarding the
test model, test generation and test execution. The
redundancy dimension in the test models is very im-
portant. Since the origin of the models in our case are
the existing test cases, which we assume that in the
case of legacy system are designed independently in
a conventional way, we ensure high redundancy com-
pared to the development models. Furthermore, the
reverse engineered test models could be used as a de-
tailed specification of the old system and be useful in
the migration process. Another requirement is regard-
ing the model characteristics, namely the nondeter-
minism of the models. The modeling paradigm used
to describe the test models has also direct influence
on the reverse engineering of test models.

The requirements regarding the test generation,
influence the forward engineering activity of our

method. First, the test coverage has to be speci-
fied on the reverse engineered and restructured test
models as well as the technique used for test case
generation. In the case of software migration, high
automation of test case generation is desired. The
last requirement is about the test execution, which
could be either on-line or off-line. In principle, re-
gression testing is used in software migration scenar-
ios. Therefore, the offline scenario would be the more
suitable one.

We believe that our initial idea is a good start-
ing point in providing a test case migration frame-
work which is applicable in different contexts, i.e., dif-
ferent types of system migration projects. The pro-
posed model-driven method is still on a conceptual
level and our further steps would be to concertize each
of the steps by applying concrete methods and tech-
niques. Once concretized, the method can be evalu-
ated against a real set of test cases in a real software
migration context.

References
[1] H. M. Sneed, “Risks involved in reengineering

projects,” 1999.

[2] M. Grieger, B. Güldali, S. Sauer, and M. Mly-
narski, “Testen bei migrationsprojekten,” OB-
JEKTspektrum, September 2013.

[3] A. Pretschner et al., “Methodological issues in
model-based testing,” 2004.

[4] B. Güldali et al., “Effort comparison of model-
based testing scenarios,” 2010.

[5] E. Chikofsky et al., “Reverse engineering and
design recovery: A taxonomy,” IEEE Software,
1990.

[6] E. Werner and J. Grabowski, “Model Reconstruc-
tion: Mining Test Cases,” 2011.

[7] H. Hungar, T. Margaria, and B. Steffen, “Test-
based model generation for legacy systems,”
2003.

[8] A. Jääskeläinen et al., “Synthesizing Test Models
from Test Cases,” 2009.

[9] D. Xu, W. Xu, B. K. Bavikati, and W. E. Wong,
“Mining executable specifications of web applica-
tions from selenium ide tests.,” 2012.

[10] H. M. Sneed, “Measuring the effectiveness of soft-
ware testing,” 2004.

[11] M. Utting et al., “A taxonomy of model-based
testing approaches,” 2012.

