Concept and Implementation of an Ontological
Document Management System

Eric Simon, Iulian Ciorascu and Kilian Stoffel
Information Management Institute
University of Neuchatel, Switzerland
{eric.simon|iulian.ciorascu|
kilian.stoffel}@unine.ch

Abstract

In this paper we describe a new architecture and implementation
that allows the integration of a Document Management System
with ontological support into a Web CMS. The architecture is
motivated by the needs we identified in several real world projects.
Our system is based on accepted open standards allowing anyone
to replicate it or to use our system without restriction.

1. Introduction

Document Management Systems (DMS) are the basis of almost all business
and management information systems. They are sustaining the pyramid of a
company's internal knowledge. These systems facilitate the organizational
learning and knowledge creation. They are designed to provide rapid document
retrieval to knowledge workers, reduce error rates, control documents access,
and significantly improve business performance. Document Management
Systems try to give the user control over their companies' institutionalized
knowledge.

Recent developments such as ODMA (Open Document Management API
[ODMA 2005]) for simplifying the integration and interoperability of standard
desktop applications with Document Management Systems, as well as standards
for representing knowledge in open formats (e.g. OWL for ontologies
[McGuinness 2004]) change the way DMS are perceived. They evolve from
sophisticated search to more and more complex knowledge creation,
management, control and distribution systems. The available knowledge has to
be integrated into the companies business processes, products and services. This
helps companies become more innovative and agile providers of high quality
products and customer services.

This leads us to the third aspect important to the work described in this paper.
Companies web sites are often alimented by content provided by a DMS.
Especially Web sites targeting user support are based upon the companies
internal DMS. This is of course also true for intranets providing up to date

404 Business INFormation Systems — BIS 2006

information to the companies collaborators. Most of the intra- and extranets are
based on some form of Content Management Systems (CMS) [Cooper 2004,
Latteier 2001]. The goal of these systems is of course the collaborative creation
of documents and other forms of content. This process is very closely related to
document management. On the one hand the content created in a CMS is often
based on existing documents and on the other hand a CMS often provides new
documents that should be integrated into the DMS. Therefore a tight integration
of these two systems (DMS and CMS) is very important for an efficient
management of the overall information and knowledge of a company.

In this paper we describe a new practical architecture and its implementation
that allows the integration of the three main components mentioned above, i.c. a
DMS with ontological support to structure the data that is integrated directly into
a CMS. The architecture was motivated by the needs we identified in several
projects in direct collaboration with institutions working in the health,
bioinformatics, security, and linguistics domains. The goal was to find a system-
architecture that is as open as possible in order to integrate new components as
smoothly as possible. From an implementation's point of view we based our
system on accepted open standards that would allow anyone interested in a
similar system to replicate it or to use our system without restriction.

The remainder of the paper is structured in the following way. In the next
section we describe the overall architecture of the proposed system. In the third
chapter we show how the integration of ontologies can greatly improve the
structuring capacity of a DMS. Chapter 4 describes how within our architecture
we can deal with security issues. In Chapter 5 and Chapter 6 we will describe the
implementation of the system followed by an illustrative application. Finally we
will conclude and give some further directions.

2. The Architecture

There are two main reasons for defining an architecture such as the one
presented here. Namely, openness (offering the possibility to integrate any
existing tool) and the ease of the integration of the system into an existing
information management infrastructure.

As outlined in the Introduction the rough architecture of the proposed system
will resemble the structure of a CMS as shown in Figure 1. On one side the
system is connected to all internal and external document sources such as DMSs,
file systems, data bases or other data repositories storing documents. This
information is internally restructured using ontologies in order to give the user
more rapid and more accurate access to their documents. The access to the
system is guaranteed through a web interface as shown in Figure 1.

This architecture in three layers facilitates the integration of existing
document resources through the different access mechanisms offered by each
system. The integration of the system itself into an existing infrastructure is
facilitated as the third layer allows a standard http-integration. In the following

OnroLoGicAL DocuMENT MANAGEMENT SYSTEM 405

we will give some further details on each layer. The implementation details will
be given in Chapter 5.

HTML XML AP
Integration Layer
T

Cntelogical Layer

Document Resources

RDBMS| |Fi|e5y5.| File 5ys.| | DMS | L‘
Figure 1. Overall architecture.

The first layer essentially provides the data integration functionality. This is
done in two different ways.

One consists of an internal database that is part of our system. If documents
are uploaded and they do not belong to any existing Document Management
System, then they will be stored in the system's internal store. The functionality
provided by this store corresponds roughly to that of an object oriented data
base. The overall architecture is independent of the choice of this data base
system. If any preferences for a given data base system exist then this system can
casily be integrated as all interactions with the store are realized through
standard APIs.

The other way consists of the integration of existing Document Management
Systems. Our system provides an interface to integrate these systems. However,
they have to provide an access mechanism to the documents and our system
provides an interface to specify them. Once these specifications are given, the
integration into the system is seamingless. In the upload procedures the user can
specify in which store he wants to have his documents and in the search process
it is possible to restrict searches to certain data bases. These are the only two
places where the different stores are visible.

The second layer is the heart of the system. It provides all the semantics that is
added to the system through the use of ontologies. The ontologies are used to
fulfill mainly three tasks. Firstly, they are used to classify documents that are
added to the system. Secondly, they are used to filter the data in the system, and
finally they are used to formulate queries and present the results.

The third layer is constructed in such a way that it can easily be integrated
into an existing Business Information System. The integration can be realized

406 Business INFormation Systems — BIS 2006

through a standard web interface or through a web service. These are the two
mechanisms currently offered. Other mechanisms can easily be added.
As one can see this architecture is very close to a standard 3-tiers architecture.

3. The Ontologies

Using ontologies for the meta data repositories provides several advantages
over classical approaches used in Document Management Systems:

a) Better organization of the data - Ontologies are inherently structured, and
they add a semantic layer over the document repository, replacing classical
keyword-like meta data annotation of documents with semantic annotations and
contexts. This allows a better, more powerful organization of the documents, and
facilitates scalability.

b) Increased expressiveness of the query language - The ontological layer
also acts as a semantic index to enhance the expressiveness of the query
language. One of the principal reasons for the popularity of ontologies over the
last couple of years is their potential use for creating a semantic index for the
web [Fensel 2003]. The basic idea for a semantic Document Management
System remains the same as the one used for the web. It is however much easier
to realize as the content of the document data base is known.

¢) Humane readable presentation of search results - The results of the
search queries are presented using the ontological relations, which allows for a
presentation in context. This presentation facilitates the navigation within the
results and facilitates quick drill downs. The time necessary for finding relevant
documents is greatly reduced.

d) Easier analysis of the documents - Often the analysis of some
characteristics of documents is necessary for applying techniques of document
clustering or text mining. The semantic annotation enabled by ontologies can be
very useful in disambiguating terms and increasing the overall performance of
these techniques. As the size of the document corpora are constantly growing
text mining is becoming increasingly important and therefore it is crucial to
provide efficient support for these techniques.

3.1. Detailed explanation of ontology usage

Document Management Systems typically use RDBMS as an underlying
technology for meta data storage, and indexes for efficient search. While
sufficient in many cases, usually when the structure of the data does not go
beyond a tree-like classification and/or the search requirements are of a keyword
based kind, this approach presents limitations as soon as the interrelations
between elements are more complex or the user wants to browse the data using
advanced filtering techniques. As soon as more relations between words such as
synonyms, meronyms, hyponyms, are used, ontological support is needed.

OnroLoGicAL DocuMENT MANAGEMENT SYSTEM 407

Typically, the most important aspect of a Document Management System is to
allow the users to quickly and efficiently find and retrieve the documents, based
on different techniques:

a) Keyword search - This is the most obvious way of searching for
information, and works very well when the user knows quite precisely what he's
trying to find and the related keywords to use [Pepe 2005]. The idea here is to
sufficiently narrow the results using a combination of keywords, so that the user
can pick the desired document from a small enough list at a single glance. The
problems with this technique are two-fold: first the user has to have a very
precise knowledge of the representation of the meta data and the domain, and the
amount of documents has to be quite small and very well categorized using the
corresponding keywords. Techniques such as synonyms, pruning, ranking etc.
are able to improve the results, but within limits.

b) Repository browsing - If the amount of document is sufficiently small,
and very well structured in form of a tree, it is then sometimes easier to just
browse through the entire structure to find the required document. This is
typically what a computer user does when searching for a document on a file
system. The problem with such an approach is well known, as some documents
tend not to be easily categorized in only one branch of a tree, and the vast
amount of documents typically used in a Document Management System is
usually much too large for this technique to be applicable.

¢) Keyword filtering and browsing - This is a combined technique aimed at
narrowing down the number of presented documents by first filtering the results
based on a number of keywords, or more complex expressions if necessary, and
presenting the information in context, typically a tree with contextual relations
(representing a portion of a graph), to allow browsing and more efficiently
finding the required information. This is where ontologies are the most relevant,
mostly due to points a, b and c outlined above, as they provide the necessary
semantic context in addition to the keyword index to present the data in a form
suitable for browsing.

The approach we propose to use ontologies in this context is to replace the
traditional indexes by an ontology layer, described in Section 3.2. This has the
advantage to be simple in design and easy to use, while retaining the classical
structure of the data itself (the documents), thus allowing to build on top of
existing repositories or provide compatibility with other methods.

3.2. The Ontology Layer

Meta data is represented as attributes of a node in a graph. A node can be a
“data node”, a document for example, or an “index node”, a node of any index
structure built from the data. The first type of node is straightforward, it is
simply an avatar of an actual entity (document), that can be structured as a tree
like in a file system. The second type of node contains supplemental information
built from the data, for instance an index or another ontological structured
semantical information.

408 Business INFormation Systems — BIS 2006

This way of structuring the information adds the power of inheritance of
attributes and properties given by ontologies to the basic operations allowed by
classical indexes. For instance, when a search is issued on a keyword index
structure and the word is not found in any attribute of nodes in the corresponding
level, it will be searched in all more general concepts of the structure, allowing
to bring as result a superclass of documents. It is obvious how the expressiveness
of the search can be increased using this technique.

Another big advantage of using ontologies is for maintainability and
scalability of the overall system. Editing documents, adding new documents,
coming up with new index entries can be easily envisaged, operations that are
time consuming and error prone in a non hierarchical structure. Also, importing
and exporting data is facilitated by the very structure of an ontological
representation of meta data, which is a great advantage for the development of
web services for example.

4. The Security Management

Like every system where the public (could be only a limited set of users) can
access information that may or may not be sensible, sooner or later restrictions
on what a user is allowed or denied to do must be imposed. We propose a role-
based security model which is the most elegant way of giving permissions to a
user, based not on who he is, but on what role he plays in the system.
Furthermore, the model is well known [Abadi 1993] and implemented in Zope,
the framework we used (see Section 5.2, page 11).

To formalize the security model we need four different notions:

User, Role, Permission, Location

A User is a unique name given to an agent (real person or application) that
interacts with the system. His possible actions are grouped into Permissions (like
read/write/add or even more specific ones, like add document). The possible
places or contexts where the User actions are applied are called Locations. A
Permission by itself is not valid without a location where it is supposed to be
allowed or denied. While these three notions are sufficient to have a complete
security model it is a very complex and rigid one. To maintain such a system is
impractical even with a small user base. A new abstraction has to be added,
namely Roles that are used to group together multiple (Permissions,Locations)
pairs. It can be viewed as an abstract user or a group of users.

Each user is then given one or several Roles. All permissions given to a Role
are in fact given to all Users that have that role, now or in the future. Therefore
the definition of a security policy for the system is split in two parts:

1. defining Roles
2. defining Users and assign Roles to them.

Defining Roles is done at the application design level and not at runtime. It
depends on the logic of the application and should be carefully designed and
tested before the system goes into production. Designing good Roles within a
system ensures that a user having that role has the freedom to do what is

OnroLoGicAL DocuMENT MANAGEMENT SYSTEM 409

supposed to do but at the same time he is also restricted to exactly these
operations.

However, managing Users and their Roles is not done at the application
design level but at runtime. Of course, having a good definition of Roles at the
application level is not sufficient and it does not ultimately protect sensitive data
if Role assignment is not correctly executed by the systems managers.

There is another important aspect of security management: authentication. It
treats the problem of relating a user in the system to an actual user in the real
world by some mechanism such as login/password. That part, although it can be
quite complex, is not covered in this article: we will focus primarily on Roles
used in a Document Management System.

4.1. Example
We will identify several Roles in a Document Management System. These
enumeration is by no means complete, it is just to exemplify the Role concept we
defined.

* Guest user (normal user)
He can browse/search the repository (or a part of it), make personal notes,
personal virtual folders, etc. There could be different categories of guest
users, depending on what they can see, and how restrictive the repository is.
In the most cases, the guest users can see the whole repository. Depending
on the repository it may be that guest users could have also write access on a
“personal” part of the repository.

Editor (user with limited write access)
Like a guest user, he can search/browse the repository, add new documents,
update documents.

Supervisor (user with full write access)
This role has all the rights of an editor, plus they could change/update the
ontological structure of the repository.

Of course this is a very simple view on the security of a Document
Management System, every role can be further refined upon the needs of the
system.

5. The Implementation
In this chapter we will show some of the implementation details of the system
we described.

5.1. The Implementation Platform

To implement a Semantic Document Management System we used a Content
Management Framework, Zope [Latteier 2001]. A system could be built from
scratch of course, but we found that Zope provides several important parts that
we need to create our system. Zope's underlying object oriented storage was
already used successfully in related systems such as Indico [Baron 2004].

410 Business INFormation Systems — BIS 2006

Here are some of the reasons for using Zope CMF:

* Web interface application/service - Since we are targeting a web
interface for our system, the natural choice is a web-based CMF. It
provides its own dynamic XML-based web language that makes it very
easy to create dynamic web interfaces.

+ Integrated security - Instead of redesigning and implementing the
security model from scratch we can use the already proven and tested
security model provided by Zope CMF.

* Object oriented storage - Zope storage and object model follows an
object oriented model and the ontological data can be mapped as such to
the Zope storage model.

* Scripting language — The Zope CMF uses a scripting language for
doing almost all of the dynamic content generation. The scripting
language, Python, is widely used and greatly facilitates the integration
of external resources written in other programming languages.

* Open source - Last but not least Zope is an Open Source product and
therefore allows the development and installation of test systems
without important up front investments. Also, it's supporting
community makes it a very reliable environment.

There are several versions of Zope. At the time of the writing of this article,
the stable tree is 2.x and the new redesigned development tree 3.x. We used the
production version, keeping in mind the upcoming version 3 during the design
phase, so that when version 3 will become production-stable, it will be very easy
to port the system to it.

5.2. Semantic Document Management System Zope Product

The Zope way of creating deployable, self-contained web portals is by using
Zope Products [Latteier 2001]. There are two ways to create a product, one is by
using the management interface provided by Zope and the other one is creating
the product by using Python classes and functions.

The first method is easier to use when creating small projects but it becomes
quickly unmanageable when more than one person develop the system. Zope's
own ,,undo* feature does not match a fully featured Versioning System. So we
decided to create the product as a python module.

The base class used to keep the document repository and the classification
ontologies is derived from ZCatalog and performs all the indexing of the
repository. There are also two other important classes, one to keep an ontological
object (classification) and another class to define a Document entity with all
meta data and its ontological classification. Real file documents are simple Zope
file objects that belongs to this Document entity.

Web interface pages are written using the Zope Page Template Language and
DTML.

The entry page of the web interface shows a main categorization of
documents using a tree-like ontology (see Figure 2, page 13). For every node all
documents that are related to it are shown.

OnroLoGicAL DocuMENT MANAGEMENT SYSTEM 411

If there is more than one ontological categorization the user is given the
possibility to browse the documents using all available ontologies. Depending on
the ontology structure it can be mapped into a tree, or a list used in filtering. If a
user is authenticated and has the Editor role, he has the possibility to create new
document entities, or edit existing documents. By editing existing document
entities he can reclassify it, change their description, meta data, or even
add/delete document files. However, he cannot change the ontological
classification structure unless he has the Supervisor role.

Changing the ontological classification structure will consist in most cases in
adding new categories, and further refining existing ones. The categories nodes
don't have any associated documents. If a category is refined the user can use
filters and searches to assign the documents from the general category to the
more specific categories.

It may be possible however to delete a classification node. This is a case that
needs to be treated with special care because all the documents from that
category should be reclassified.

Indexing and Searching

For the search engine we used the Zope's built-in class ZCatalog that we
extended in the main product class. We used several indexes with different types.
Some of them we enumerate here:

— text based index to index the documents

— text based index for descriptions (of ontological nodes, documents)

— field based index for meta data (author, date, owner and other attributes)

The search engine uses the text based indexes to search in the documents from
the repository or in their description. It will return as result a ,,rank-ordered™ list
of documents. However we used the search engine also to find specific ontology
entities and afterwards show all documents belonging (or related) to this entity.
The results are classified and presented using their ontological context thus
giving the user more information for the documents (e.g. If a user has 20
documents as a result and they are in totally different categories he can easily
choose the correct subset of documents by clicking on the category). However, if
the result set is large, by showing the context he can narrow the search by
restricting the result to only one or any other subset of categories.

The metadata indexes are also used to filter documents shown in a page.

This case differs from the search only by interpretation, it uses the same
mechanism.

Security Implementation

Zope's internal security model includes all we described above and provides
even some further functionalities. In Zope the users cannot be assigned
individual permissions. Zope users acquire permissions by using Roles. A Role
can be assigned different permissions. Zope comes bundled with several
predefined roles, however, for our project we created new roles: Guest, Editor,
Supervisor just as described in the previous chapter. Zope's security model

412 Business INFormation Systems — BIS 2006

allows for further refinement by using ,,local roles®, i.e. allowing a user to have
different roles depending on the location.

We also need to define permissions for the possible actions, like View, Create
Document, Edit Document, Edit Ontology and assign these permissions to the
corresponding roles.

We also considered using built in authentication and rely on the product logic
to implement this part of the security model. But this approach is error prone
and if a user succeeds in exploiting a bug in the application he would have full
access to the database.

Using the underlying security model ensures data privacy on a lower level
(base level) and even if a bug is found in the application, the data is still
protected by Zope security model.

6. An Example

This architecture has already been used in web applications using the
described implementation. These applications were mandates by various
companies and are confidential, but one implementation is being developed as a
collaboration within our university and is described shortly below.

The system, called Zenodotus, is a knowledge repository for modern French,
aimed at creating a kind of encyclopedia of articles about various aspects of the
language. If we refer to Figure 1, the user interface consists as already mentioned
in a web application, the ontological layer refers to the supplied classifications of
concepts of modern French (see below) and the document resources are the
actual documents, text and sound, or notices for bibliographical references.

The important part here is the classification, which is two-fold:

1. An actual table of content of all the concepts.
2. A grammatical structure, which can be further separated in two
subcategories: empirical properties and description of the concepts.

The interface allows filtered browsing in the sense explained in Section 3.1,
using keywords and filtering over the grammatical structure to narrow down the
number of results in the table of content (see Figure 2). Furthermore, one can
have a look at what the main ontologies look like for this system, namely in the
two boxes on the top part and the tree in the navigation part at the bottom. The
ontology is actually more than a tree, but information about other links is then
represented in context when the user selects a node, to ease the readability.

The user management is very basic in this case, with only a few users allowed
to submit or modify new documents and notices. There is a mechanism of
retaining the owner of a particular document to allow tracking changes, and
some privileged managers have rights over the whole content.

OnroLoGicAL DocuMENT MANAGEMENT SYSTEM 413

filtras
champs prapridtis
ke gk

on ou démems ce céfinton | [Modées en prssenc:
Spkcimens Aspents oroblEmargaes
Al Mfozecs ouamiatifs { statisticuzs | Objects towigues
Mz sy widée
Aoty disthrnoique Uhspeects sovcho-Enpustigses
Lavures de wonndissaroe

FREAMELULE
MLE TEXTE
Paurusi le bexe
Oral vs e
Syatbmes sériotiquss inledénents | hypothiess Comblen da codes erkeant, combien da svatémes * Rapports entre alonaodfous, poncuston, mise anpags...
Déraupages ct amagites : Pamgraping, porctiatcn...
Pargpaciives | Examsn dee dbeDunagas mielant, [dives modélas)
i i iquas - Nos méd a nas chad.

DRANDES DIVISIONS
LAMCROSYNTAKE

symiagmes :

- paids leurd, léger)
- szt clifigus et uniiés non omparabies
dizeantingiti e corting synlagmes 1o . pou,
- placement ds clifouss, ramamée des imerngatis. .
La nafien e 2ane | 7)

La pamdigmarigue - dnuméraions, coordnatisng

Lo rcpaurs, {#émers 26

Actonis ot cancordances

Los phéncménes de pore

Sruciures appositives, [Ldapasitiang

Lo phénoménes da syrhématission

LES CATEGORIES ET LEURS MICRO-GRAMVAIRES

Figure 2: The main interface

The interface to add and edit notices and documents is straightforward, but
fixed. There will certainly be the need to allow for adding new structural
information (new categories) inside the interface, but currently this is done
outside the system.

7. Conclusion and Future Work

We presented in this paper a new architecture that allows an easy integration
of a semantic layer into a company's Document Management System. The
semantics is added to the system through domain ontologies. The architecture is
designed in such a way that the integration of existing Document Management
Systems as well as other document resources is done through their own access
mechanisms. On the other hand the system itself can easily be integrated in the
companies information system infrastructure using open standards.

Furthermore we have presented an implementation (proof of concept) of the
system using an open source framework (Zope). This implementation is used in
several of our projects and is available on our web site.

As currently several implementations are being evaluated, the further
improvements will essentially be based on the user feedback. Developments that
have currently started are mainly dealing with two aspects, namely the
improvement of the user/security management and the adaptation of our
architecture for other platforms such as .NET.

Based on the experience gathered so far we know that the integration of
existing document sources into our system is easy to realize and the integration
of the system itself into an existing information infrastructure poses no major

414 Business INFormation Systems — BIS 2006

problems. For the project where domain ontologies were available already, the
expressiveness of the DMS was greatly improved in a very short amount of time.
Using standards such as OWL was of great help as large libraries of ontologies
exist already. As conclusion one can say that the proposed architecture and
implementation seems to overcome several of the major drawbacks of classical
DMSs and can easily be integrated into en existing infrastructure.

8. Acknowledgments
This work was supported by the Swiss National Science Foundation, project
number 200021-103551/1.

9. References

[Abadi 1993] M. Abadi, M. Burrows, B. Lampson and G. Plotkin, 4
Calculus for Access Control in Distributed Systems, ACM Transactions on
Programming Languages and Systems, 15(4):706--734, Oct. 1993.

[Sutton 1996] Michael Sutton, Document Management for the Enterprise:
Principles, Techniques, and Applications, John Wiley & Sons, New York,
1996.

[Fensel 2003] D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster (eds.):
Spinning the Semantic Web: Bringing the World Wide Web to its Full
Potential, MIT Press, Boston, 2003.

[ODMA 2005] AIIM International, ODMA 2.0 Specifications and Software,
http://ODMA.info, 2005.

[McGuinness 2004] Deborah L. McGuinness, Frank van Harmelen, OWL
Web Ontology Language W3C Recommendation 10 February 2004.

[Cooper 2004] Cameron Cooper, Building Websites With Plone, PACKT,
UK, 2004.

[Latteier 2001] Amos Latteier, Michel Pelletier, The Zope Book, New
Riders, 2001.

[Ciorascu 2005] I. Ciorascu, E. Simon, K. Stoffel, “An Ontological
Document Management System in Zope”, Technical Report, University of
Neuchatel, 2005.

[Klischewski 2003] Ralf Klischewski, “Towards an Ontology for e-
Document Management in Public Administration— the Case of Schleswig-
Holstein”, Proceedings of the 36th Hawaii International Conference on
System Sciences (HICSS’03), IEEE, 2002.

[Pepe 2005] A. Pepe, T. Baron, M. Gracco, J.-Y. Le Meur, N. Robinson, T.
Simko, M. Vesely, “CERN Document Server Software: the integrated
digital library”, ELPUB 2005 conference, Heverlee (Belgium), 2005.

[Baron 2004] T. Baron, J.B. Gonzalez, J-Y. Le Meur, H. Sanchez, V. Turne,
”INDICO - the software behind CHEP 2004”, In CHEP 04, Switzerland,
2004.

