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Abstract: Digital representatives of physical assets and process steps play a decisive role in analysing
properties and evaluating the quality of the process. So-called digital twins acquire all relevant
planning and process data, which provide the basis, for example, to investigate path accuracies in
manufacturing. Each single process step aims to perform an ideal machining after the speciőcation
of a target geometry. However, the practical implementation of a step usually shows deviations
from the targeted shape. The machine-learning based method of probabilistic Bayesian networks
enables the quality estimation of the holistic process chain as well as improvements by targeted
considerations of single steps and inŕuence factors. However, the handling of large-scale Bayesian
networks requires a high computational effort, whereas the processing with quantum algorithms holds
potential improvements in storage and performance. Based on the issue of path accuracy, this paper
considers the modelling and inŕuence estimation for a milling operation including experiments on
superconducting quantum hardware.

Keywords: manufacturing; path accuracy; digital twin; quantum circuit; quantum algorithm; Bayesian

networks

1 Introduction

In recent years, the design if quantum software as well as the construction of real quantum

hardware have experienced remarkable progress, which leads to an increasing awareness in

a broad range of őelds of application to investigate potential operational areas of quantum

technologies. The ambitious roadmaps for the upcoming years of major players in quantum

computing like IBM [GFW21] and IonQ [Ch20] underline the current dynamics in the

enhancements of quantum technologies.

One of these scopes of application is manufacturing, for which quantum computers may help

to improve simulations to design and test products, to analyse and work with new materials
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as well as to proceed risk and quality modeling in supply and process chains. One issue of

the latter topic is to analyse the accuracy of machining processes, to identify dependency

relations between the individual characteristics and to search for the decisive inŕuencing

factors, which case deviations of the work piece from a preset target geometry. These

considerations enable an estimation of the holistic quality of the holistic process chain as well

as improvements by considering single steps in a targeted manner. Probabilistic Bayesian

networks have proved as an appropriate methodology to reproduce such characteristics

of a system. However, with growing network size and complexity, the time required for

computations of the system increases exponentially. Especially for handling large-scale

networks, quantum algorithms offer a way of a compact representation and potential

computational advantages.

After providing an overview of some approaches for quality modeling and inŕuence detection

in manufacturing as well as related work in the context of Quantum Bayesian networks,

we brieŕy illustrate the methodology using conventional bit-based computer architecture

and how to transfer it to a quantum algorithm. Thereby, we supplement the modeling

of Quantum Bayesian networks by an estimator for strengths of inŕuences with the help

of SWAP-tests. Afterwards, the presented methods are implemented on superconducting

quantum computers based on an exemplary machining application of a milling operation.

We evaluate this scenario for a small and larger scale setup and őnally discuss on the results

obtained from current quantum hardware.

2 Related work

Various statistical and ML-based approaches have been proposed to proceed inŕuence

evaluation, deviation analysis and quality improvement of machining processes. For these

purposes, methods like regression and classiőcation models [Bu21], fault tree analysis

[YBA18] as well as design of experiment techniques [DDT20] are mainly used. These

approaches often require some advanced adjustments of the underlying physical process

(e.g. empirical formulas for regression). In contrast, Bayesian networks allow to make such

statements without previously describing the physics in-depth.

The construction and calculations of Bayesian networks as quantum computing algorithms

bases on a representation technique of conditional probabilities which is referred to as

qsample encoding [SP18]. The setup of quantum circuits and complexity analysis of qsample

encoding for Bayesian networks are described in [ORR13, YC14].

3 Modeling and inŕuence estimation using Bayesian networks

Bayesian networks are directed acyclic graphs, in which nodes model certain inŕuence

factors as random variables. If nodes are dependent on each other, they are connected
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by an edge, whose direction characterises the dependency relation (pointing from the

inŕuencing factor to the dependent variable). If a node is not dependent on any other factor,

the corresponding variable holds a probability distribution indicating the likelihood of

different status the variable can accept. For this purpose, both discrete as well as continuous

variables can be modeled. The dependency relations between the nodes are represented

by conditional probabilities. In case of discrete variables these dependencies are stored in

conditional probability tables (CPT). When using continuous values, the nodes are usually

assumed as normal random variables. Dependencies are modelled by Gaussian distributions,

which contain parent-related parameters [Jo01].

The considerations in this article will focus on Bayesian networks with discrete variables

for two reasons. Firstly, the inŕuence analysis investigates the impacts of process factors on

the basis of pre-deőned status, which requires a discretisation of continuous values at some

point of the modelling procedure. Secondly, discrete Bayesian networks are particularly

suitable for the transmission to quantum algorithmic. In the target application of inŕuence

estimations in multi-step machining processes, Figure 1 represents a network example with

different part programs of a process chain. In this case, each of the variables is assumed to be

binary with probability of P+ to hold a predeőned tolerance criterion for the manufacturing

quality resp. a probability of P− to not fulől the criterion. Exemplary, a deviation from

a target position with respect to a certain axis can be considered with a threshold value

respresenting the quality criterion.

Fig. 1: Example of a Bayesian Network with binary nodes

The structure of a Bayesian network can be obtained by expert knowledge or learned using

training data [Jo01]. A Bayesian network with nodes X = {𝑋1, . . . , 𝑋𝑚} reŕects a unique
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joint probability distribution P (X) which is ś in the case of using discrete nodes ś given

by the product of all conditional probability tables

P (X) =
𝑚∏
𝑖=1

P (𝑋𝑖 | Pa(𝑋𝑖)) . (1)

In equation (1), Pa(𝑋𝑖) describes the set of parent nodes of a variable 𝑋𝑖 , i.e. the set

of variables on which 𝑋𝑖 is dependent on. The single conditional probabilities between

dependent nodes are represented as the parameters of the Bayesian network. A parameter

𝜃𝑖 𝑗𝑘 = P (𝑋𝑖 = 𝑘 | Pa(𝑋𝑖) = 𝑗) 1 ≤ 𝑘 ≤ 𝑠𝑖 , 1 ≤ 𝑗 ≤ 𝑝𝑖

reŕects the probability of a child node 𝑋𝑖 to assume if the parent nodes show the status 𝑗

with 𝑠𝑖 depicting the number of different states of 𝑋𝑖 and 𝑝𝑖 specifying the number of status

combinations of Pa(𝑋𝑖).
Using classical computing, the parameters of a Bayesian network are commonly learned

using the expectation maximization algorithm [PW09]. Given a dataset with 𝑛 ∈ N samples

D = {𝐷1, . . . , 𝐷𝑛}, the goal of the parameter learning is to őnd the set of parameters

𝜃 =
{
𝜃𝑖 𝑗𝑘

}
, such that a sample taken from the network matches the data D best. The

Bayesian network can be used to estimate the strength of inŕuences in its dependency

relations by analysing the changes in the probability distribution P (𝑋𝑖) of a child node 𝑋𝑖

when setting evidence to their parent nodes status. The strength of inŕuence of a parent

node 𝑋par on a child 𝑋ch can be described as

I𝑋par
(𝑋ch) =

1√
2

𝑠par∑︁
𝑗=1

P
(
𝑋par = 𝑗

) √√ 𝑠ch∑︁
𝑙=1

( [
P

(
𝑋ch |𝑋par = 𝑗

) ]
𝑙
− [P (𝑋ch)]𝑙

)2

(2)

where 𝑠par is deőned as the number of different status of 𝑋par and 𝑠ch as the number of

status of 𝑋ch. Equation (2) shows the weighted sums of Eucleadian distances of P (𝑋ch)
and P

(
𝑋ch |𝑋par

)
of the different status conőgurations of the parent node 𝑋par ś normalised

to I𝑋par
(𝑋ch) ∈ [0, 1].

4 Processing Bayesian networks with quantum computing

The calculation of the strength of inŕuence values requires probabilistic inference, i.e. the

calculation of posterior distribution of variables when evidence is given by varying the states

of parent nodes. This demands a high computational effort in Bayesian networks including

a large number of nodes. In the light of the above, this paper focusses on the transfer of this

set-up to quantum computing. In a Quantum Bayesian network, each nodes is represented by

one or multiple qubits, at which a modelling of 𝑠 different status of a node requires ⌈log2 (𝑠)⌉
qubits. Using the technique of qsample encoding, the amplitude vector of a 𝑠-qubit quantum

state can be used to represent a classical discrete probability distribution. For a probability
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distribution of a node 𝑋 with 𝑠 different status P(𝑋) = 𝑝1, . . . , 𝑝𝑠 , (𝑠 = 2𝑛, 𝑛 ∈ N),
measuring the quantum state

|𝜓⟩ =
log2 (𝑠)∑︁
𝑙=1

√
𝑝𝑙 |𝑙⟩ (3)

in the computational basis is equivalent to sample from P(𝑋) [SP18]. The encoding of

probability distributions for 𝑠 = 2 is done via rotational gates

𝑅𝑌 (Θ) = ©­«
cos

(
Θ

2

)
− sin

(
Θ

2

)
sin

(
Θ

2

)
cos

(
Θ

2

) ª®¬
with Θ = 2 arcsin(√𝑝2) =: 𝑃Θ (𝑝2) to describe P(𝑋) = 𝑝1, 𝑝2 by the probabilities of

measuring the state |0⟩ or |1⟩, respectively, of the quantum state 𝑅𝑌 (Θ) |0⟩. Furthermore,

to model distributions for 𝑠 > 2, a combination of rotational and controlled rotational is

needed to interconnect the required number of qubits to a quantum state representing the

node’s probability distribution. For example, Figure 2 depicts the circuit to encode 𝑠 = 3

discrete status using the angles

Θ1 = 𝑃Θ (𝑃 (|10⟩)) , Θ2 = 0,Θ3 = 𝑃Θ

(
𝑃 ( |01⟩)

𝑃 ( |00⟩) + 𝑃 ( |01⟩)

)
.

Thereby, 𝑃 ( |00⟩) matches 𝑝1 in P(𝑋) = 𝑝1, 𝑝2, 𝑝3 and 𝑃 ( |01⟩) represents 𝑝2 as well as

𝑃 ( |10⟩) describes 𝑝3, respectively.

𝑅𝑌 (Θ1) • 𝑋 • 𝑋

𝑅𝑌 (Θ2) 𝑅𝑌 (Θ3)
Fig. 2: Quantum circuit to encode a discrete probability distribution with three status

The conditional probability tables of the dependent nodes of the Bayesian network are

assembled by a sequence of controlled rotational gates. The controls are the qubits

representing the parent nodes and the target is on the child node. Detailed examples of

how to proceed these dependency relations in Quantum Bayesian networks are described in

[Bo21].

Thus, in comparison with the classical counterpart, Quantum Bayesian networks offer a

bunch of advantages in context of memory complexity, itemised:

• compact representation of the network,

• the network’s parameters are directly encoded in the qubits representing the nodes,

• logarithmic scaling compared to classical implementation.
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Having discussed the build-up of Quantum Bayesian network, a measure for quantify strength

of inŕuences analog to the classical way (2) is required. For this purpose, the SWAP-test

procedure is suited. The SWAP-test states the certainty of two quantum states to be different

from each other. This statement can be transferred to a measure describing the distance

between both quantum states. Thereby, a distance of zero corresponds to a probability of 1

of both quantum states to be equal. This probability is given by measurements of ancillary

quantum state of the SWAP-test. The other way around, the probability of both quantum

states to be different is obtained measuring the ancillary

𝑃(anc = |1⟩) = 1

2
− 1

2
|⟨𝜓 |𝜙⟩|2 (4)

[Sa20]. Classically, the Euclidean distance between two vectors ®𝑥 and ®𝑦 representing

quantum states calculates as

dist (®𝑥, ®𝑦) = | ®𝑥, ®𝑦 | =
√︃
(®𝑥 − ®𝑦)2

=

√︃
| ®𝑥 |2 + |®𝑦 |2 − 2⟨®𝑥, ®𝑦⟩ =

√︁
2 − 2⟨®𝑥, ®𝑦⟩ (5)

since vectors representing quantum states are normalised vectors. Comparing both measures,

the Euclidean distance (5) correlates positively with the probability (4) of both quantum

states to differ from each other. Therefore, to estimate strength of inŕuences in Quantum

Bayesian networks, SWAP-tests are proceeded to determine the difference between a speciőc

node with and without giving evidence on parent nodes.

5 Transfer of Bayesian networks to production engineering

In this section, the concept of Quantum Bayesian network is applied to a 3-axis milling

operation as a data-driven approach of analysing inŕuence relations between the process

factors. The example provides the manufacturing of an aerospace component. The milling

operation consists of four processing steps: a face milling, a drilling, a contour milling and

end milling operation. The process is visualised in Figure 3 which also shows the assembled

number of data records for each single step.

For the setup of Bayesian networks, the following process variables are used

• the axis-speciőc jerks 𝑗𝑥 , 𝑗𝑦 , 𝑗𝑧 ,

• the axial and total position deviations Δ𝑥 ,Δ𝑦 ,Δ𝑧 ,Δtot,

• the axis-speciőc drive currents 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 ,

• the spindle load 𝐿𝑆 ,

• the cutting forces according to the Kienzle cutting force model [KV57].

Figure 4 depicts the structure of the corresponding Bayesian network which indicates the

dependency relations between the process variables. In [Se21], the results of the strength
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Fig. 3: Manufacturing steps of an aerospace component

of inŕuence estimation via classical Bayesian networks is described. For the evaluation of

the quantum computing approach, experiments on the IBM quantum systems are executed

using quantum simulators as well as real superconducting quantum hardware devices.

Fig. 4: Structure of the Bayesian network representing the milling application

Quantum Bayesian networks using 𝑠 = 2 and 𝑠 = 3 discrete status for each node were built

up. In the 𝑠 = 3 case, only a sub-network of the structure in Figure 4 was implemented in

the quantum circuit to be executable at least on IBM’s qasm simulator. Figure 5 provides an

overview of the calculations for the strength of inŕuence scores to compare the inŕuences

of single axial deviations on the spindle load based on (4).

Exemplary, this sub-network is evaluated for the contour milling part which provides the

widest variety of machining operations compared to the other sub-processes. In table 1,

the strength of inŕuence scores obtained by classical and Quantum Bayesian networks are

contrasted. Here, the individual scores can only be compared inside the respective approach,

since the positive correlation between the classical and the quantum distance measure does

not imply a speciőc scaling between both scores. Larger values indicate stronger inŕuences
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Fig. 5: Setup of the experiments on Quantum Bayesian networks for 3-status nodes

of the respective causal process variables. In both approaches, the inŕuence of the 𝑥- and

𝑦-axis are dominating the workload. This is in line with the expectations, since these axes

correspond to the feed direction of the milling operations.

Approach Δ𝑥 Δ𝑦 Δ𝑧

Classical Bayesian networks 0.245 0.200 0.161

Quantum Bayesian networks 0.070 0.071 0.059

Tab. 1: Inŕuence scores for process step of contour milling using classical and quantum networks

The execution of the circuits to build up Quantum Bayesian networks and calculating the

strengths of inŕuences on today’s real quantum computers faces the following device- and

circuit-speciőc problems:

• Real quantum, superconducting devices do not offer an all-to-all connectivity between

the physical qubits. To match the circuit with the coupling map of qubits, a transpiling

process is required, which increases the depth of the circuit.

• A reduced pool of available quantum gates on the device leads to decompositions of

operators, further increasing the circuit complexity.
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• The feasibility and accuracy of the circuit depends on the ődelity of the quantum

operations (errors of quantum operations).

• The complexity of generated quantum circuits (for example of 3-state-nodes: circuit

depth of 1174, width of 40 on IBM qasm_simulator).

6 Using Grover Search

Grover Search was initially framed as an algorithm for searching in unstructured databases

[Gr96]. However, at its core, it is a special case of an amplitude ampliőcation algorithm,

which can be used in Bayesian networks for interference. The original Grover Search

starts in a uniform superposition and searches for one bit-string. In the following years,

the algorithm was generalized to őnd more than one bit-string and to start in any given

distribution. Gilliam et al. have shown an extension to the algorithm, where we don’t even

need to know the searched bit-string. Their algorithm needs to know only if it is the smallest

or highest value [GWG20].

For the interference step of the Quantum Bayesian Network (QBN) we start with the

probability distribution given by the QBN. Afterward, we apply several Grover-Iterations.

A Grover-Iteration consists of an oracle and a diffusion operator. The oracle is a unitary

diagonal matrix, which multiplies all bit-strings, which we are looking for, with a −1 and

everything else with 1. For example, if we are looking for all bit-strings, where the second

qubit is 0 in a 3-qubit system, we need to multiply the following bit-strings by −1: ’000’,

’001’, ’100’, ’101’.

The second step in a Grover iteration is the diffusion operator, which resembles a reŕection

of all the amplitudes at their mean value. The operator consists of three steps. The őrst

one is the inverse of creating our initial probability distribution, namely the inverse of our

QBN. The third step is to execute the QBN in its natural form. And in between, we need

to multiply all amplitudes by −1 except the |0⟩𝑛 state. The complete diffusion operator is

illustrated in Fig. 6. After we have all of our tools together we can execute our interference

Fig. 6: Diffusor-Operator for a smaller example.

circuit in a hybrid manner. Meaning, that we start with a certain amount of iterations and

increase them as we go. We stop, when all of our undesired states are in the region of 0%

probability, as Fig. 7 shows. When we compare this approach to the inteference step using a

SWAP-Test in Sec. 4 we have a trade off. The implementation with Grover has a high depth,
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Fig. 7: Grover Serach example for a smaller QBN. The őgure shows őrst the Quantum Bayesian

Network as an gate. Afterwards the tool shows the probabilities of all possible states from |000⟩
to |111⟩. Then we apply in this example three Grover iterations, each consisting of the oracle and

the diffusion operator. After the iterations we see the new probabilities of all possible states, which

represents the queried result.

but does not require more qubits than the Quantum Bayesian Network itself. The inteference

step using a SWAP-test, however requires double the qubits (+1) and adds only three gates

in depth. Today, neither of both techniques could be executed on an existing quantum device

for the given problem. Further, it is expected, that the depth of Grovers algorithm requires a

fully fault-tolerant quantum computer. However, in the future, where we have fault-tolerant

quantum computers the approach with Grovers algorithm can simulate Bayesian networks

with double the size of the SWAP-test approach.

7 Conclusion and outlook

This article focuses on the setup of Quantum Bayesian networks and their application to

production engineering, were such networks can be used as a data-driven approach to

analyse dependency relations between factors and to estimate the corresponding strength of

inŕuences. Quantum computing allows a compact network representation. The discussed

potential runtime advantages cannot be proven using the current IBM quantum systems.

Even for smaller examples, like the QBN of Fig. 7 without the Grover Search, the circuit

depth exceeds the capabilities of current generation quantum computers. The main reason

is the multiple controlled 𝑅𝑌 -Gate, which needs to be decomposed into the basis gates of

the given quantum computer. Current and future research goals are to implement Quantum

Bayesian networks in a more efficient way, analyse further machining operations and to test

the developed circuits on a broader range of quantum hardware.
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