Assessing and Interpreting Object-Oriented Software
Complexity with Structured and Independent Metrics

Roland Neumann*

Dennis Klemann®

Hasso-Plattner-Institute for Software Systems Engineering GmbH
at the University of Potsdam, Germany

Abstract: Object-oriented software complexity is difficult to assess due to its mani-
fold influences from cognition science or algorithmic complexity theory. A practical
process for a structured complexity assessment is presented in this paper. It starts with
considerations for measurement and data preparation. Using mathematical transfor-
mation techniques, independent complexity metrics are gained. With these results,
complexity aspects of a software system can be defined. This makes a complexity
comparison through system classes possible, which helps getting an overview on large
systems. These process steps are then illustrated with an industrial example.

1 Introduction and Metrics Selection

Software functions increasingly replace specialized hardware in embedded systems. Since
these functions grow in numbers, the importance for assuring quality rises additionally.
The main quality aspect is correctness (prevention of faults). Faults are human based due
to a possible lack of understanding of the complex software structure.

Cognitive complexity in this context means the difficulty to understand the system’s be-
haviour, even when all system parts are known [Nor89]. The decomposition into com-
plexity aspects enables deeper insights. A possible aspect structure for object-oriented
software has been presented in [Neu04], which is used in this paper.

These complexity aspects first have to become measurable through application of software
metrics. Software metrics assign numbers to various system properties. They have to
comply to certain criteria [Wal90] for further mathematical inspections [Zus91]. The most
important one is the reproducibility, assuring the same metrics value independent of the
method or the time of measurement. To measure complexity aspects, at least one metric
explaining every aspect has to be chosen. Metrics and their meanings for object-oriented
software can be found in [LK94] or [Whi97].

This paper describes a practical way proposing process steps for assessing complexity

*roland.neumann @hpi.uni-potsdam.de
T dennis@klemann.org

133

aspects. Using these aspects, system classes can be compared and selected for further
inspection leading to a better system overview. The first step in assessing complexity is
measurement [BEG00] and preparation of data, which is described in the next section.
Techniques for generating independent variables for assessing complexity are presented in
the third section. It also includes interpretation possibilities for defining each complexity
aspect. The fourth section presents an industrial example using these techniques, followed
by conclusions giving prospects and a paper overview.

2 Preparation of Empirical Metrics Data in Practice

There are many software tools generating object-oriented software measures. When using
these tools, these measures might have missing or erroneous data rows or values for vari-
ous reasons (e.g. faulty measurement algorithm) in practice. Therefore empirical research
starts with inspection of raw data before usage and conclusions drawn. Techniques to over-
come these problems [SW99] are described in this section, as the following mathematical
analysis steps are designed for complete data sets in most cases. Missing data labels either
values that are completely absent or can be clearly seen as invalid (like a negative LOC
count). E.g. a missing value (interpreted as Zero) decreases an average value in the data
row. This influences all further techniques, like standard deviation or correlation.

2.1 Techniques to Deal with Missing Data

The easiest way is just to skip all data rows with missing data (called List Deletion -
LD) [SEMO1]. This may result in an immense loss of information, as there typically
are comparatively few data rows in a software project. List Deletion also affects several
properties of the data like mean value or correlation, which results in a biased data with
a general loss of significance for further analyzes. This applies especially when the data
loss is not stochastic, like no measurement at project start or for ”bad” classes.

There are more sophisticated Missing Data Techniques (MDT) to cope with the problem of
missing data without losing that much information or changing characteristics of the data
(all techniques [MSOO01]). Which technique serves best greatly depends on the relation of
metrics and data rows and the pattern of the missing data. The imputed number should be
as low as possible since all imputed values are synthetic and may differ from the original.

The most basic MDT, Mean Imputation (MI), replaces gaps with the mean value of the
according variable. As a result, the standard deviation of the output data set is significantly
decreased. Additionally, if the chance of a missing value is related to the value itself, this
technique will add a severe bias to the data set. As the imputation inserts constant values
only within a metric, it will possibly weaken existing correlations to other metrics.

Regression Imputation (RI) does a regression analysis of the available data and fills in
predicted values from the regression. This method depends on the ability to find a fitting

134

regression for the data. If it cannot be found, the results will greatly vary from the values
that would have been originally measured. As the regression will most likely include some
kind of correlation between the metrics, RI might influence the correlation of the imputed
data set.

Similar Response Pattern Imputation (SRPI) fills the missing data with the value of the
nearest data row, found by the least-squares method. This implies a certain relation be-
tween the different metrics, as the missing value is solely imputed by the other metrics.
Thus, this technique increases the correlation between the metrics. This should be consid-
ered if the following steps focus on correlation.

Furthermore, this technique has the disadvantage that, in case of multiple missing values
in one data row, the chosen nearest data set may be in reality not anywhere near if the
original data row would be complete. This gets more severe the less metrics are measured.

2.2 Results after Data Preparation

The methods mentioned above have the additional drawback that it is not possible to decide
whether a value is original or imputed by solely looking at the resulting data set. A way
to circumvent this problem is called Multiple Imputation. Here, several filled data sets
get imputed, using a randomized algorithm, e.g. filling in a value of this variable from a
random other data row. Assuming that the further processing steps involve an appropriate
tool, it is possible to spot the imputed values as well as the underlying uncertainty.

Some of these techniques leave gaps after application. In this case, these data rows can
be left out (LD). The resulting quality loss will be considerably lower than before. After
having applied a fitting MDT, one can use the imputed data set for the next processing
steps.

3 Factorization: Making the Metrics Independent

Having metric values for all complexity aspects as described in the first section, and gained
complete data sets from the last section, there is still an upcoming problem when draw-
ing complexity conclusions. The interrelation between data rows of metrics (correlation)
prevents good conclusions [CG93]. When your survey points to some high complexity
values due to large class sizes, these classes cannot be separated into an inheritance struc-
ture without increasing communication between classes. Thus, drawing conclusions from
correlated metrics is difficult. Techniques to remove these correlations are described be-
low.

135

3.1 Techniques for De-Correlating Variables

There are several multivariate techniques available that fulfill the reduction of variables:
Discriminant Analysis, Cluster Analysis, Factor Analysis, Principal Components Analysis.

Cluster analysis tries to partition the data set into clusters. As the original variables are
affected by a multitude of underlying factors, this method is not suitable for our needs.
Discriminant analysis reduces the variable set, but only concentrates on the “most im-
portant” variables. Thus, the underlying structure does not get clear at all. With Factor
analysis (FA), the explanation for variances is not as focused on the first factor/component
as this is the case with Principal Components Analysis (PCA). Because FA is concerned
with explaining common variance and not total variance [Dun89], we prefer PCA over FA
as uncorrelated variables were also an important requirement.

3.2 Using Principal Component Analysis

PCA tries to identify the underlying components of a variable set using a covariance or
correlation analysis of the (normalized) original data set. Completely correlated variables
are removed. Afterwards, new variables (principal components) are computed' in a way
that the first component accounts for the maximum variance of the data set. In an n-
dimensional space, it points in direction of maximum variance from all metrics. The next
component maximally accounts for the remaining variance and so on. Each component is
defined by an Eigenvector describing the influence from the original variables (with factor
loadings), and an Eigenvalue explaining the accounting for the total variance.

The PCA also converts the data set to Factor Scores, which are the mappings of the mea-
surements from the original variables to the principal components. Thus, through linear
combination of the Factor Scores and the Eigenvectors it is possible to recalculate the
original data set. Geometrically, one can imagine a variable set (x1, 3, x3) as the axis of
a three-dimensional space. PCA finds the line (respectively the plane) where most of the
measured points lie in.

These new found axes are the Eigenvectors, their lengths are given by their Eigenvalues.
What PCA basically does is a rotation of the base coordinates onto the coordinate system
specified by the Eigenvectors. The Factor Scores show the measured variables in the new
coordinate system. An additional positive aspect of PCA besides the de-correlation is the
reduction of the number of variables. The least important components (based on their
Eigenvalues) can be neglected with minimal information loss. This decreases interpreta-
tion and further modelling effort. With the reduced, uncorrelated variable set, interpreting
and further processing has been considerably simplified.

A good tool support for statistical techniques is available from AddinSoft www.xlstat.com

136

3.3 Interpreting PCA Results

The resulting components are all linearly independent and thus can be interpreted sepa-
rately. The analysis also points out to which extend every principal component captures
the information of the original variable set. That way one can focus one’s investigation on
the few most important components.

To interpret the models, the meaning of the input variables has to be known. These inter-
pretations are a prerequisite to draw conclusions from the established models. A principal
component consists of a sum of metrics weighted with factor loadings. When adjusted
with their mean, variance and the factor’s Eigenvalue, they can be transformed to their
percentage proportion. As the definitions of the metrics are known, the factor loadings
indicate their proportion and their positive or negative influence on each factor.

In the following short example, principal component C' consists of 4 metrics
(LOC, DIT, NOM,CBO). LOC is representing the number of code lines, DIT the max-
imum depth of the inheritance tree to the class, NOM counts the method number and CBO
the coupling count between the classes. This component C' is mainly formed by LOC
(40 % influence) and NOM (50 % influence). Since these measures are size related, this
component can be used as an abstract size metric. The size is dependent from the line and
method count. The inheritance depth of a class hardly influences the size, but coupling
(measured by CBO metric) requires invocated methods and attributes. These involve more
program lines increasing the size which is reflected by its auxiliary influence.

Since the metrics are normalized, the factor loading can also be negative. A metric with
a negative factor for a component describes a negative influence. As an example, a high
metric value counting the number of classes in a system would implicate a smaller size
of each class for the same functionality of the system. This would be represented by a
negative factor loading for a class size component.

C LOC DIT NOM CBO
factor loading 1.1 0.2 0.9 0.4
contribution [%] 40 2 50 13

Concluding this section, the presented technique (PCA) removes interrelations construct-
ing independent components. This reduces effort for further computation. Interpretation
of these components enables drawing conclusions for possible class inspection.

The PCA and its interpretation leads to a set of independent and abstract complexity met-
rics. These metrics can be used for comparison of aspect values to spot outlier classes or
to form complexity top lists for the whole system. This contributes to information about
the most important (e.g. complex cooperating) classes for test and reengineering.

137

4 Practical Results of Factorization: Measuring Complexity

Thoughts and hypotheses of software complexity accompany software development.
Functional concepts only considered structural or algorithmic complexity like McCabe’s
cyclomatic number [McC76] or Halsteads Software Science [Hal77]. A broader view on
cognitive complexity including also communication aspects comes from theoretical ap-
proaches [CJHS92] [HK84] and recent empirical results using PCA [BW02] [BMWO02].
For giving an insight into the benefits of our structured process, own empirical results are
presented in this section. The empirical data comes from a component of a large com-
mercial railway operation interlocking system. Due to its immanent risks, this system has
to comply to high safety and availability requirements. Therefore there is a high need to
inspect and reduce complexity in system classes.

Fifteen metrics were selected and measured based on the complexity classification scheme.
Their raw data set was inspected for outliers and missing values. After usage of PCA, one
metric was removed due to full correlation to another metric in this data set (no additional
information). The interpreted results of complexity aspects are shown in Fig. 1 where
only components with an Eigenvalue greater than 0.5 were selected, losing only 4.5% data
variance.

0% 34% 54% 67% 77% 87% 92% 96%
Size Inheritance from Usage of Parent | Own pt. Pt. Dir.
ancestors priv. attrib.. | attributes | attr. use | attr. | inh.

Figure 1: Complexity aspects and their proportions

The first aspect (K1) describes size related to methods, lines, public attributes. The second
aspect (K2) is inheritance with its width (direct parents), depth and usage. K3 can be in-
terpreted as usage of private attributes according to their access count and span. The usage
of attributes from parent classes compared with the usage of class attributes describes K4.
K5 describes the access span of protected class variables minus the further inheritance.
So the class uses its protected variables itself but they are not this much used by child
classes. This can be a sign for a class separable into an inheritance structure. K6 explains
the access span of protected class variables with regard to inherited methods, perhaps from
passing these variables as parameters to ancestor methods. The last component considered
here is K7, describing the direct inheritance width to ancestor and child classes. It can be
seen as multiple inheritance.

After this interpretation, prospective classes can be selected by comparing their factor
scores with the majority. The interpretation of the components explains the direction of
closer inspection, e.g. a large class (size related K1 greater than most classes) can be
separated. Though these attributes characterize only one part of the system, they do give
an impression about possible results of the presented technique. This process is concluded
in the next section.

138

5 Conclusions

This paper has presented a process for structured and practical assessment of software
complexity. Using this process, it is possible to generate independent complexity metrics
covering important complexity aspects. With the metrics values, classes can be selected
for further inspection or reengineering. The process steps include:

1. Define a complexity decomposition into adequate aspects
2. Select at least one metric to assess each aspect

3. Measure your software system using a metrics tool
Analyse raw data and cope with missing data

Perform Principal Components Analysis and interpret components

SANE

Compare component values through classes and assess outliers

Since this describes only a broad overview, there is still a need for a discussed and suf-
ficient complexity classification structure. Suitability and choice of the metrics for this
structure have to be proven. With empirical results of many systems, a complexity frame-
work can be constructed to justify each new class upon. Comparison of classes between
systems is a prerequisite for this framework. This enables design guidelines for early
identification and prevention of complexity based faults.

References
[BEGOO] S. Benlarbi, K. EIEmam, and N. Goel.S.Rai. Thresholds for object-oriented measures.
NRC-CNRC report 43652, 2000.

[BMWO02] L.C. Briand, W.L. Melo, and J. Wiist. Assessing the applicability of fault-proneness
models across object-oriented software projects. [EEE trans. Software Engineering,
28(7):706-720, 2002.

[BW02] L.C.Briand and J. Wiist. Empirical studies of quality models in object-oriented systems.
1IEEE Computers, 56, 2002.

[CG93] R.E. Courtney and D. Gustafson. Shotgun correlations in software measure. Software
engineering journal, pages 5—13, 1993.

[CJHS92] S.N. Cant, D.R. Jeffrey, and B. Hendersson-Sellers. A conceptual model of cognitive
complexity of elements of the programming process. TR Centre for information tech-
nology research, (57):52-63, 1992.

[Dun89] G. Dunteman. Principal Component Analysis. SAGE Publications, 1989.

[Hal77] M.H. Halstead. Elements of Software Science. Elsevier, New York, 1977.

139

[HK84]

[LK94]
[McC76]

[MSO01]

[Neu04]

[Nor89]

[SEMO1]

[SW99]

[Wal90]

[Whi97]
[Zus91]

S. Henry and D. Kafura. The evaluation of software system’s structure using quantitative
software metrics. Software - Practice and Experience, 14(6):561-573, 1984.

M. Lorenz and J. Kidd. Object-oriented software metrics. Prentice-Hall, 1994.

T. J. McCabe. A Complexity Metric. IEEE Transaction on Software Engineering, SE-
2:308-320, 1976.

I. Myrtveit, E. Stensrud, and U. Ohlsson. Analysing data sets with missing data: An
empirical evaluation of imputation methods and likelihood-based methods. IEEE Trans.
SW-Eng., 27(11):999-1013, 2001.

R. Neumann. A categorisation for object oriented software metrics in fault prediction.
Proc. Software measurement European Forum, pages 287-296, Jan. 2004.

D. Norman. Dinge des Alltags: Gutes Design und Psychologie fiir Gebrauchsge-
genstdnde. Campus, Frankfurt / New York, 1989.

K. Strike, K. EIEmam, and N. Madhavji. Software cost estimation with incomplete data.
IEEE Trans. Software Eng., 27(10):890-900, 2001.

N.D. Singpurwalla and S. Wilson. Statistical Methods in Software Engineering.
Springer, New York, 1999.

E. Wallmiiller. Software-Qualitditssicherung in der Praxis. Hanser, Miinchen / Wien,
1990.

S. Whitmire. Object-Oriented Design Measurement. Wiley, 1997.

H. Zuse. Software Complexity. DeGruyter, 1991.

140

