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Improvement of Iris Recognition based on Iris-Code

Bit-Error Pattern Analysis

Christian Rathgeb , Christoph Busch1 1

Abstract: In this paper an advanced iris-biometric comparator is presented. In the proposed scheme
an analysis of bit-error patterns produced by Hamming distance-based iris-code comparisons is per-
formed. The lengths of sequences of horizontal consecutive mis-matching bits are measured and a
frequency distribution is estimated. The difference of the extracted frequency distribution to that of
an average genuine one obtained from a training set is used as a second comparison score. This
score is then used together with the fractional Hamming distance in order to improve the recognition
accuracy of an iris recognition system. In experimental evaluations relative improvements of approx-
imately 45% and 10% in terms of false non-match rate at a false match rate of 0.01% are achieved
on the CASIAv4-Interval and the BioSecure iris databases, respectively.
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1 Introduction

Generic iris recognition systems comprise four major components: (1) image acquisition,

(2) segmentation, (3) feature extraction and (4) comparison. Based on Daugman’s appro-

ach [Da04], the first three processing steps are performed on a reference iris image during

enrolment to create a two-dimensional binary feature vector, i.e. iris-code. At the time

of authentication an iris-code is extracted from a probe iris image and compared against

a database of enrolled reference iris-codes. In the comparison stage Hamming distance

(HD) scores between pairs of iris-codes and corresponding noise masks are estimated.

Hence, the binary data representation of iris-codes enables a rapid comparison (and com-

pact storage) achieving millions of comparisons per second per CPU core [Da04]. Circular

bit shifts are applied to iris-codes and HD scores are estimated at different shifting positi-

ons, i.e. relative tilt angles caused by uncontrolled head poses. The minimal obtained HD,

which corresponds to an optimal alignment, represents the final score.

Besides the Daugman de-facto standard for comparing iris-codes, different alternative

comparators have been suggested in past years, see Sect. 2. The majority of proposed

schemes aims at replacing the aforementioned HD-based algorithm by a modified compa-

rator in order to improve the recognition performance. In most schemes findings obtained

from a deeper analyses of the nature of the iris-code bits are utilized by those comparators.

A prominent example for such an improvement is the assignment of weights to each bit

position in an iris-code according to their expected reliability, e.g. in [ZD08, DST11].
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In this work we analyse entire bit-error patterns produced by HD-based iris-code compari-

sons, going beyond a local estimation of bit-errors. The presented approach measures the

plausibility of an obtained bit-error pattern by comparing it to a pre-estimated model of

genuine bit-error patterns. In particular, the frequency distribution of sequences of hori-

zontal, i.e. circumferential, consecutive mis-matching bits is measured and its difference

from the genuine model is used as secondary feature. This score can be interpreted as ad-

ditional score, which can be estimated to achieve a more reliable decision for a distinct

range of HD scores, e.g. [0.35,0.45]. Hence, in contrast to most proposed comparators,

our approach is designed to have negligible impact on comparison speed. For different

iris databases it is shown that a weighted score-level fusion of the proposed score and the

HD score improves the recognition accuracy of an iris recognition system, in particular at

practical low false match rates.

The remainder of this paper is organized as follows: Sect. 2 briefly summarizes related

works with respect to iris-biometric comparators. In Sect. 3 the proposed system is des-

cribed in detail and evaluated. Finally, conclusions are drawn and potential future research

directions are pointed out in Sect. 4.

2 Related Works

In the recent past numerous improved iris-biometric comparators have been proposed.

Some of these require the processing of multiple reference samples during enrolment.

In [ZD08] a weight map, which indicates the stability of iris-code bits, is obtained from

several iris-codes by performing a weighted majority voting. Similar approaches based

on personalized weight maps have been presented in [DST11, HSH17]. In these schemes

comparison scores are estimated as a weighted sum of mis-matching bits. Note that for

these modified comparators one can not expect that the comparison speed of a Hamming

distance-based comparator is maintained. In [HBF09] so-called fragile bits, i.e. bits which

exhibit a higher probability than others to flip their value during a genuine comparison,

are detected by comparing several iris-codes obtained from a single eye instance. Since

filters employed in the feature extraction stage set iris-code bits by the sign of obtained

filter responses, these bits correspond to coefficients close to zero. That is, such bits can

also be detected in a single iris-code [Da16]. It was shown that the recognition accuracy

is improved, if detected fragile bits are incorporated into noise masks extracted in the iris

segmentation stage. Moreover, masks encoding fragile bits can be employed as additional

comparison sore to improve the performance of an iris recognition system [HBF11].

Further works utilize training sets to obtain statistics about iris-codes which are utilized

by the comparator. In [RUW10] a static weight map indicating the reliability of each iris-

code bit position, which is defined as the mean of discriminativity and stability, is esti-

mated from a training set. During authentication most reliable bits are compared first to

achieve a fast rejection of non-matching iris-codes in an identification scenario. A similar

approach based on static masks has been presented in [Pr15]. Reported results suggest that

static weight maps might vary depending on the used sensor or environmental conditions.

In [RUW12] the progression of genuine comparison scores across all considered shifting
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(a) CASIAv4-Interval (b) BioSecure

Fig. 1: Sample pairs of iris images of both datasets used in experimental evaluations.

Tab. 1: Overview of training and testing sets of employed datasets.

Database
Training set (left eye images) Testing set (right eye images)

No. eyes Gen. comp. Imp. comp. No. eyes Gen. comp. Imp. comp.

CASIAv4-Interval 198 4,454 19,503 197 4,343 19,306

BioSecure 210 1,260 21,945 210 1,260 21,945

positions are modelled by an inverse Gaussian of which the parameters are estimated from

a training set. At authentication the deviation of comparison scores from the trained Gaus-

sian is combined with the minimum HD score.

Given a single pair of iris-codes, in [RUW11] it is suggested to combine the minimum and

the maximum HD score across shifting positions. Since genuine pairs of iris-codes can

get out of phase in case of drastic mis-alignment exceptionally large HD scores become an

indicator for a genuine comparison. More recently, a binary search technique which aims at

accelerating the alignment process during iris-code comparisons was presented in [Ra16].

It is shown that, if the amount of considered shifting positions can be reduced, recognition

accuracy is generally improved since HD scores of impostor comparisons remain higher.

3 Proposed System

3.1 Baseline System and Experimental Setup

In the employed iris recognition system, the iris of a given sample image is detected and

transformed to a normalized rectangular texture of 512×64 pixels. The normalized iris tex-

ture is divided into texture stripes to obtain 10 one-dimensional signals, each one averaged

from adjacent texture rows. A row-wise convolution with a Log-Gabor wavelet is per-

formed on each signal and the real part of phase information is encoded to generate an

iris-code consisting of 512×10 bits. Examples of generated iris-codes are depicted in Fig.

2. Implementations of the employed segmentation and feature extraction are available in

[US17] and described in detail in [RUW13].

The fractional Hamming distance (HD) between a pair of iris-codes, codeA, codeB, and

their according noise masks, maskA, maskB is defined as [Da04],
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Fig. 2: Examples of iris-codes produced by four different iris images of used datasets.

(a) HD = 0.16836 (b) HD = 0.17031

(c) HD = 0.20957 (d) HD = 0.24316

Fig. 3: Examples of bit-error patterns produced by four genuine iris-code comparisons.

(a) HD = 0.45117 (b) HD = 0.46152

(c) HD = 0.47461 (d) HD = 0.49004

Fig. 4: Examples of bit-error patterns produced by four impostor iris-code comparisons.

HD =
‖(codeA⊕ codeB)∩maskA∩maskB‖

‖maskA∩maskB‖
. (1)

Experiments are conducted on the CASIAv4-Interval [CA17] and the BioSecure [Or10]

iris database. Example images of both datasets are depicted in Fig. 1. An overview of

the used training sets (left eye images) and testing sets (right eye images) is shown in

Table 1. In experiments training and testing will be performed within and across both used

databases.

3.2 Iris-Code Bit-Error Pattern Analysis

It is well known that bits in iris-codes are not mutually independent [Da04]. This is due

to the internal spatial correlations within iris textures and the nature of employed filters

[Da16]. Mis-matching bits between genuine iris-codes have been found to occur at boun-

daries of consecutive 0-bit or 1-bit sequences [HBF09, Da16]. That is, even for large HD

scores lengths of sequences of consecutive mis-matching non-masked bits are expected to
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Fig. 5: Bit-error sequence lengths of bit-error patterns obtained from training sets.

be low. In contrast, for impostor comparisons these lengths tend to be higher. This is due

to the facts that iris-codes of different eyes are uncorrelated and adjacent bits in iris-codes

exhibit high correlation. Hence, the neighbouring bits of each non-matching bit have a

high probability of being non-matching, too.

In our experiments left eye images of each database are processed in the training stage.

Based on the training sets we perform all possible genuine comparisons and impostor

comparisons based on the first image of each eye. Examples of bit-error patterns obtai-

ned by genuine and impostor comparisons are depicted in Fig. 3 and Fig. 4 (green pixels

indicate matching bits; red pixels indicate non-matching bits). The lengths of horizontal

sequences of consecutive mis-matching non-masked bits of genuine and impostor com-

parisons are counted and stored in separate histograms. For the training sets of the used

datasets the obtained histograms are shown in Fig. 5. We observe that the frequency dis-

tributions for genuine and impostor comparisons are similar for both databases. Focusing

on impostor distributions, in Fig. 5 it can be seen that, sequences of up to five consecutive

mis-matching bits are almost equiprobable (also see Fig. 4). The similarity of distributions

across both databases suggests that these mainly depend on the employed feature extractor

(as will be shown in experimental evaluations).

3.3 Improved Comparator

Given a pair of iris-codes, codeA and codeB, the HD score between them is estimated

and the frequency distribution of sequences of consecutive mis-matching non-masked bits

is stored in a histogram, histAB. This histogram is then compared against the average

genuine model obtained during the training stage, histGen, by estimating the Chi square

(χ2) distance between both histograms,
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Fig. 6: Scores obtained from testing sets with training performed on CASIAv4-Interval.
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Fig. 7: Scores obtained from testing sets with training performed on BioSecure.

χ2(histAB,histGen) = 1/2k
k

∑
i=1

(histABi −histGeni)
2/(histABi +histGeni). (2)

It has been found that the χ2 distance is a suitable method for the proposed comparator.

Alternatively, other similar methods could be employed to compare pairs of histograms,

e.g. [PW10]. Note that only bit-error patterns obtained from genuine comparisons are used.

No significant improvements were obtained for applying the proposed procedure to bit-

error patterns produced by impostor comparisons.

Fig. 6 and Fig. 7 show scatter plots of HD scores and corresponding χ2 distances for

using different training sets. It can be observed that some large genuine HD scores still

yield small χ2 distances. Also, rather low genuine HD scores result in large χ2 distance

due to the small amount of bit-errors. However, as mentioned earlier, it is suggested to
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Tab. 2: Performance rates (in %) obtained from the testing sets.

Comparator Training
CASIAv4-Interval BioSecure

FNMR0.01 FNMR0.001 FNMR0 FNMR0.01 FNMR0.001 FNMR0

HD – 3.48 3.83 3.85 7.38 8.26 8.34

HD+χ2 CASIAv4- 1.98 2.69 2.79 6.89 7.54 7.62

0.55HD+0.45χ2 Interval 1.96 2.65 2.72 6.75 7.39 7.62

HD+χ2

BioSecure
1.94 2.69 2.70 6.59 7.16 7.17

0.55HD+0.45χ2 1.92 2.63 2.65 6.56 6.99 7.14

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.00001 0.0001 0.001 0.01

F
N

M
R

FMR

HD

HD+Chi
2

(model: BioSecure)

0.55HD+0.45 Chi
2

(model: BioSecure)

HD+Chi
2

(model: CASIAv4)

0.55HD+0.45Chi
2

(model: CASIAv4)

(a) CASIAv4-Interval

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.00001 0.0001 0.001 0.01

F
N

M
R

FMR

HD

HD+Chi
2

(model: BioSecure)

0.55HD+0.45Chi
2

(model: BioSecure)

HD+Chi
2

(model: CASIAv4)

0.55HD+0.45Chi
2

(model: CASIAv4)

(b) BioSecure

Fig. 8: Detection error trade-off curves obtained from the testing sets.

estimate the χ2 distance only for a distinct range of obtained HD scores, e.g. [0.35,0.45].
As can be seen in Fig. 6 and Fig. 7, in such a range a diagonal line would achieve the

best separation of genuine and impostor scores. That is, for a pre-defined interval the χ2

distance is estimated as an assisting score and combined with the HD scores employing

a weighted score-level fusion using the sum-rule. Further, we observe χ2 distances of

impostors are generally larger if the model obtained from the BioSecure training set is

employed. This is because in the histogram of the BioSecure training set sequences of

small lengths are weighted higher compared to the histogram of the CASIAv4-Interval

database (see Fig. 5). Also, it can be seen that χ2 distances of genuine as well as impostors

are slightly larger on the BioSecure testing set. This might suggest that this database is

more noisy than the CASIAv4-Interval database, which is also reflected by the obtained

performance rates.

In accordance to the ISO/IEC IS 19795-1 [Int11] biometric performance is estimated in

terms of false non-match rate (FNMR) at a targeted false match rate (FMR), denoted by

FNMRFMR. Obtained FNMRs at FMRs of 0.01%, 0.001% and 0% are listed in Table 2. The

resulting detection error trade-off (DET) curves are shown in Fig. 8. Across considered

FMRs the recognition accuracy is generally enhanced by the fusion of HD scores and

χ2 distances, which is performed within the HD score interval of [0.35,0.45]. Due to the
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fact that the histograms of bit-error sequences are similar for both databases, no significant

performance drops are observed if the training is be performed on a different dataset. When

using a weighted fusion only small improvements can be achieved. As an alternative to the

simple (weighted) sum-rule fusion support vector machines (SVMs) could be trained to

separate genuine from impostor scores.

4 Conclusions and Future Work

In this work we presented an advanced iris-biometric comparator to improve the biome-

tric performance in an iris recognition system. In contrast to many published works, we

propose an analysis of bit-error patterns produced by iris-code comparisons. In particu-

lar, we construct a model for the expected frequency distribution resulting from a genuine

comparison based on a training set of iris-codes. The difference of an obtained bit-error

pattern to that of the pre-trained one can be used as a second comparison score in combi-

nation with the fractional Hamming distance. At practical false match rates the recognition

accuracy has be significantly improved on different databases. Reported preliminary im-

provements motivate further investigations of bit-error patterns of iris-code comparisons.

Models of bit-errors could be, (1) constructed for different intervals of HD scores to im-

prove the robustness of the proposed comparator, (2) extended to also analyse vertical, i.e.

radial, correlations of bit-errors, (3) constructed for different regions of iris textures, since

entropy has been found to vary significantly across iris texture regions.

Building a model for genuine bit-error patterns might be of interest for other research

fields. In particular, models of bit-error patterns produced by iris-code pairs could be em-

ployed in presentation attack detection techniques [GGB16]. Moreover, machine learning

techniques, e.g. convolutional neuronal networks, could be used to reliably identify error

patterns produced by genuine iris-code comparisons.

Acknowledgements

This work was partially supported by the German Federal Ministry of Education and Re-

search (BMBF) as well as by the Hessen State Ministry for Higher Education, Research

and the Arts (HMWK) within the Center for Research in Security and Privacy (CRISP).

References

[CA17] CASIA: , Chinese Academy of Sciences’ Institute of Automation – Iris Image Database
V4.0 – Interval. http://biometrics.idealtest.org, 2017.

[Da04] Daugman, J.: How iris recognition works. Trans. on Circuits and Systems for Video
Technology, 14(1):21–30, 2004.

[Da16] Daugman, J.: Information Theory and the IrisCode. Trans. on Information Forensics and
Security, 11(2):400–409, Feb 2016.



Improvement of Iris Recognition based on Iris-Code Bit-Error Pattern Analysis 49

[DST11] Dong, W.; Sun, Z.; Tan, T.: Iris Matching Based on Personalized Weight Map. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 33(9):1744–1757, 2011.

[GGB16] Galbally, J.; Gomez-Barrero, M.: A review of iris anti-spoofing. In: Proc. Int’l Workshop
on Biometrics and Forensics (IWBF’16). pp. 1–6, 2016.

[HBF09] Hollingsworth, K. P.; Bowyer, K. W.; Flynn, P. J.: The Best Bits in an Iris Code. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 31(6):964–973, 2009.

[HBF11] Hollingsworth, K. P.; Bowyer, K. W.; Flynn, P. J.: Improved Iris Recognition through
Fusion of Hamming Distance and Fragile Bit Distance. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 33(12):2465–2476, Dec 2011.

[HSH17] Hu, Y.; Sirlantzis, K.; Howells, G.: A novel iris weight map method for less constrained
iris recognition based on bit stability and discriminability. Image and Vision Computing,
58:168 – 180, 2017.

[Int11] International Organization for Standardization. ISO/IEC 19795-1:2006. Information
Technology - Biometric performance testing and reporting – Part 1: Principles and fra-
mework, 2011.

[Or10] Ortega-Garcia, J.; Fierrez, J.; Alonso-Fernandez, F.; Galbally, J.; Freire, M. R. et al.: The
Multiscenario Multienvironment BioSecure Multimodal Database (BMDB). IEEE Trans.
on Pattern Analysis and Machine Intelligence, 32(6):1097–1111, 2010.

[Pr15] Proença, H.: Iris Recognition: What Is Beyond Bit Fragility? IEEE Trans. on Information
Forensics and Security, 10(2):321–332, 2015.

[PW10] Pele, O.; Werman, M.: The Quadratic-Chi Histogram Distance Family. In: 11th European
Conf. on Computer Vision (ECCV’10). pp. 749–762, 2010.

[Ra16] Rathgeb, C.; Hofbauer, H.; Uhl, A.; Busch, C.: TripleA: Accelerated Accuracy-
preserving Alignment for Iris-Codes. In: Proc. of the 9th IAPR/IEEE Int’l Conf. on
Biometrics (ICB’16). pp. 1–8, 2016.

[RUW10] Rathgeb, C.; Uhl, A.; Wild, P.: Incremental Iris Recognition: A Single-algorithm Serial
Fusion Strategy to Optimize Time Complexity. In: Proc. of the 4th IEEE Int’l Conf. on
Biometrics: Theory, Application, and Systems 2010 (IEEE BTAS’10). pp. 1–6, 2010.

[RUW11] Rathgeb, C.; Uhl, A.; Wild, P.: Shifting Score Fusion: On Exploiting Shifting Varia-
tion in Iris Recognition. In: Proc. of the 26th ACM Symposium on Applied Computing
(SAC’11). pp. 1–5, 2011.

[RUW12] Rathgeb, C.; Uhl, A.; Wild, P.: Iris-Biometric Comparators: Exploiting Comparison Sco-
res towards an Optimal Alignment under Gaussian Assumption. In: Proc. of the 5th
IAPR/IEEE Int’l Conf. on Biometrics (ICB’12). pp. 1–6, 2012.

[RUW13] Rathgeb, C.; Uhl, A.; Wild, P.: Iris Recognition: From Segmentation to Template Secu-
rity, volume 59 of Advances in Information Security. Springer Verlag, 2013.

[US17] USIT: , University of Salzburg Iris Toolkit. http://www.wavelab.at/sources/
Rathgeb16a Version 2.0.x, 2017.

[ZD08] Ziauddin, S.; Dailey, M. N.: Iris recognition performance enhancement using weighted
majority voting. In: 15th Int’l Conference on Image Processing (ICIP’08). pp. 277–280,
2008.




