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Abstract

We report on our experiences and observations from
the automotive industry on a multi-year evolution of
a complex telematics system that provides remote ac-
cess to connected vehicles.

1 Introduction

Since several years, the service portfolios offered by
automotive manufacturers are increasingly blended
with vehicle telematics solutions [1]. For exam-
ple, commercial and private customers can utilize
connectivity-enabled fleet management and carshar-
ing services, respectively. We give an industrial experi-
ence report that provides insights in the evolution his-
tory of a complex telematics system that implements a
pivotal functionality for those kinds of services: con-
necting vehicles and backend infrastructure. As the
system constitutes an abstract representation of a con-
nected vehicle, it is called a Virtual Connected Vehicle
or Virtual Vehicle [2] for short.

The paper is structured as follows. Section 2 ex-
plains the context of the Virtual Vehicle system. Sec-
tion 3 reflects upon the system’s evolution by describ-
ing its four major architecture versions and the corre-
sponding transitions. Section 4 draws the conclusions.

2 Background

Connected vehicles exchange data with backend sys-
tems with the help of telematic control units (TCUs).
A TCU is an in-vehicle embedded system that sends
and receives data via a mobile communication inter-
face. A TCU may transmit data it receives from di-
rectly connected or internal sensors, e.g. from a GPS
device, or exchange data with other in-vehicle embed-
ded systems via the common controller area network
(CAN) bus standard. This can encompass reading ve-
hicle data (e.g. mileage) and sending them to the back-
end. The TCU may also receive vehicle commands
from the backend (e.g. a door unlock command) and
write corresponding signals to the CAN bus.

The Virtual Vehicle system itself runs in the back-
end and constitutes the logical endpoint for commu-
nicating with connected vehicles. It also provides a
high-level API for 3rd party systems (e.g. fleet man-
agement portals, call centers, and consumer mobile
applications) for interacting with the vehicles.

For exchanging messages with a vehicle, the Virtual
Vehicle system has to hold and take into account the
vehicle’s state. Depending on the data format used
for message transmission, the system has to trans-
late between low-level CAN messages and the high-
level API, too. As various model series and 3rd party
systems with a varying number of users have to be
supported in a secure and safe manner, extensibility,
performance, scalability, security, and maintainability
constitute particularly important quality attributes.

3 Major Architecture Versions

The four major architecture versions (AV1-AV4) of
the Virtual Vehicle are outlined in Figure 1 and de-
scribed in the following. The system was developed
over several years with varying team compositions. We
also highlight the seven specific main challenges (CH1-
CH7) of AV1-AV3 that drove the evolution.

3.1 AV1: Initial Monolith

Overview The TCU exchanges raw CAN Data mes-
sages with the Virtual Vehicle via a Message Queue. A
Router component compresses and decompresses the
messages and routes incoming messages to different
instances of the Virtual Vehicle Service (VVS) com-
ponent. This allows, for example, to address differ-
ent staging environments and to separate commercial
from private customer vehicle data. The VVS stores a
vehicle’s state and its master data via theMaster Data
Management (MDM) component. The interpretation
of CAN messages (e.g. deriving the vehicle’s mileage
from a CAN frame’s bit sequence) is accomplished by
the Static CAN Interpreter Service (Stat. CIS).

Challenges (CH1) Originating from a proof of con-
cept project, Stat. CIS includes the idiosyncrasies of
specific vehicle types and model series as hard-wired,
static constituents. Corresponding changes are tedious
and require a new deployment of the monolithic VVS

component. (CH2) Furthermore, a 3rd Party can not
only receive actual Vehicle Data points (e.g. mileage)
that were already interpreted, but it can also re-
ceive raw CAN Data via the VVS or directly from the
Message Queue. This poses a security risk.

3.2 AV2: Improved Modularity

Overview CH1 is addressed by improving the mod-
ularity and extensibility of the Virtual Vehicle sys-
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Figure 1: The evolution of the Virtual Vehicle (gray) along its four major architecture versions (AV1-AV4)

tem. Stat. CIS is replaced by the Dynamic CAN In-
terpreter Service (Dyn. CIS) component. Hence, pe-
culiarities of specific vehicle types and model series
can now be separated in independent modules. These
modules can be modified dynamically and are used
in conjunction with Dyn. CIS for interpreting CAN
Data. For tackling CH2, a 3rd Party can no longer
interact with vehicles by exchanging raw CAN Data.
This and some later changes require those external
components to co-evolve with the Virtual Vehicle.

Challenges (CH3) The system’s scalability has
to be improved to serve an increased number of
drivers (TCUs) and more 3rd Party stakeholders as
the Virtual Vehicle system moves into a piloting
phase. (CH4) Moreover, the modularity has to be im-
proved further to effectively cope with new require-
ments. For example, data points from external sensors
in vehicles (such as temperature sensors for ensuring
a continuous cooling chain), that are not available via
the CAN bus, have to be processed.

3.3 AV3: Microservices Architecture

Overview CH3 and CH4 are addressed by restruc-
turing the Virtual Vehicle system towards a mi-
croservices architecture utilizing, among others, con-
tainer technology. Each microservice has its own
database and scaling out is easier (CH3). Further-
more, the different concerns are now separated more
strictly (CH4). For example, VVS now only handles ve-
hicle master data and data points. Vehicle Commands
(that result in write accesses to the CAN bus) are
processed by the new Vehicle Control Service (VCS)
that can also serve a 3rd Party. Sensor data can be
interpreted by the new Vehicle Sensor Service (VSS)
and, similarly to other Vehicle Data, be provided to a
3rd Party by the new Vehicle Event Service (VES).

Challenges (CH5) For worldwide availability, the
system shall be migrated to a commercial Platform
as a Service (PaaS) offering. (CH6) The performance

for transmitting and processing vehicle data and com-
mands should be increased further and (CH7) main-
tainability should be improved by reducing the usage
of low-level CAN Data in the Virtual Vehicle.

3.4 AV4: PaaS-Based Architecture

Overview The Virtual Vehicle system is aligned
with the framework of the chosen PaaS (CH5).
The Discovery Service determines the appropriate
backend environment for a given TCU per connec-
tion establishment. Then, the IoT Hub is used for
communicating with the vehicle. Tasks like header
validation and data compression are delegated to
the Sender/Receiver component. Event propaga-
tion is performed by the Event Hub instead of VES.
3rd Party components now use the Virtual Vehicle
via a PaaS-enabled API Gateway (API GW). Vehi-
cle master data is handled by the Vehicle MD com-
ponent. The Vehicle Actor processes the vehicle
data. CH6 and CH7 are addressed by moving the in-
terpretation of CAN messages (Dyn. CIS) to the TCU.
Virtual Vehicle now only receives more lightweight
Vehicle Data instead of CAN Data. New vehicle types
and model series do not have to be added to the Vir-
tual Vehicle, but only to the Dyn. CIS of the TCU.

4 Conclusions

As confirmed by the development history of the Vir-
tual Vehicle system, complex systems need to con-
tinuously evolve to mature and retain business value.
Moreover, building on feature-rich platforms, e.g.
cloud services, is vital for a short time-to-market.
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