
Concept-Driven Engineering for Supporting Different
Views of Models

Peggy Schmidt
Christian-Albrechts-University Kiel, Department of Computer Science

pesc@is.informatik.uni-kiel.de

Abstract: This paper investigates the the development and evolution of concepts and
the management of transformers, which adds semantics to the concepts. We illustrate
how concepts, their variants and transformers can be developed via cooperation.

In order to meet increasing user demands for more various software systems, we are re-
vising the software developing process to accommodate mass customisation based upon
Concept-Driven Engineering (CDE). CDE is a strategy to application specification and
generation of new concepts via transformers. The concept and its transformation rather
than the implementation is central to the development process. It allows automation for
specification from early stages to executable specification and code generation. CDE con-
tinue to be a challenges in building complex software systems that have several variations
and options. Software development is based upon a lot of specifications and implementa-
tions such as feature models, UML models and code, which are in different formats but
share a certain amount of information. CDE is similar to the ideas of Model Driven Engi-
neering (MDE) and Software Product Line Engineering, whereby we use the term concept
instead model. A concept can be a model or a specification and is defined on a concept
structure and a set of transformers. Concepts are assigned to a set of transformers, which
generates new concepts. In this sense also a software system is a concept. One main re-
mark is the management of the evolution of concepts and its transformers. Concept-Driven
Engineering supports that requirements of the software do not remain constant during its
development time and therefore the specification has to evolved and refined in order to
fulfil the new requirements. One remark should lie an the management of the transformers
that can be effectively be used on specifications. Against MDE CDE focus on the trans-
formers which carry out the semantics of the specification, resp. the model. It is needful
to study how transformers will affect the development process, that means how easy is a
transformer to use, resp. to reuse. CDE abilities rely on the detailed transformer designer’s
knowledge of concept structure and development work flow while considering software
system knowledge, software engineering techniques and methods. The aim of CDE is to
avoid the development concepts and transformers which are in downstream development
incapable to use.

When developers change one concept simultaneously, we need to propagate these changes
across all concepts to guarantee them consistent. The process of synchronization prop-
agates changes among specifications in different stages to all involved participants. Ex-
change of models between local platforms is still a challenging issue. The exchange and

241






