Concept-Driven Engineering for Supporting Different
Views of Models

Peggy Schmidt
Christian-Albrechts-University Kiel, Department of Computer Science
pesc@is.informatik.uni-kiel.de

Abstract: This paper investigates the the development and evolution of concepts and
the management of transformers, which adds semantics to the concepts. We illustrate
how concepts, their variants and transformers can be developed via cooperation.

In order to meet increasing user demands for more various software systems, we are re-
vising the software developing process to accommodate mass customisation based upon
Concept-Driven Engineering (CDE). CDE is a strategy to application specification and
generation of new concepts via transformers. The concept and its transformation rather
than the implementation is central to the development process. It allows automation for
specification from early stages to executable specification and code generation. CDE con-
tinue to be a challenges in building complex software systems that have several variations
and options. Software development is based upon a lot of specifications and implementa-
tions such as feature models, UML models and code, which are in different formats but
share a certain amount of information. CDE is similar to the ideas of Model Driven Engi-
neering (MDE) and Software Product Line Engineering, whereby we use the term concept
instead model. A concept can be a model or a specification and is defined on a concept
structure and a set of transformers. Concepts are assigned to a set of transformers, which
generates new concepts. In this sense also a software system is a concept. One main re-
mark is the management of the evolution of concepts and its transformers. Concept-Driven
Engineering supports that requirements of the software do not remain constant during its
development time and therefore the specification has to evolved and refined in order to
fulfil the new requirements. One remark should lie an the management of the transformers
that can be effectively be used on specifications. Against MDE CDE focus on the trans-
formers which carry out the semantics of the specification, resp. the model. It is needful
to study how transformers will affect the development process, that means how easy is a
transformer to use, resp. to reuse. CDE abilities rely on the detailed transformer designer’s
knowledge of concept structure and development work flow while considering software
system knowledge, software engineering techniques and methods. The aim of CDE is to
avoid the development concepts and transformers which are in downstream development
incapable to use.

When developers change one concept simultaneously, we need to propagate these changes
across all concepts to guarantee them consistent. The process of synchronization prop-
agates changes among specifications in different stages to all involved participants. Ex-
change of models between local platforms is still a challenging issue. The exchange and

241



Abbildung 1: ConceptManger for Supporting Concept-Driven Engineering

the synchronization of different local copies between local development systems is so far
a tough problem. Tools like subversion support the developers by parallel development,
global revisioning, create working copy. The main problem is how to work in parallel
and obviate one from overwriting the work of another. Tools like subversion use therefore
mechanisms like copy-modify-merge or lock-modify-unlock. We have been developing a
tool for collaborative management of concepts, called ConceptManager. The ConceptMan-
ager is based upon concept structures. Developers can create concepts. After the activation
of a concept all other developers with access rights on this concept can use a concept.
When developer works together on a concept we transmit only these parts which were
modified and where the other developers are involved. To supports this feature we assign
each development task of one developer to a component. Overlayed parts of different de-
velopers are connected via ports. Thus a component consists only of a partial copy of
the developing software system. This problem faces how to reflect the changes that have
occurred in one concept to involved parts of the other developers and in the transformed
concepts . An other important feature is that we may have a set of possible modifications on
concepts (think on different realizations). The ConceptManger will support the negotiation
process between developers and is based upon the ideas of a earlier merge of overlayed
concept parts. Additionally we have to pay attention that a transformation can be run on
concepts, provided the concepts have compatible concept definitions.

Figure 1 represents a piece of our tool ConceptManager. It shows the concept Person,
which consists of the concepts Name and Adress. Later we want to build a database and
a java class for this concept. But a database table and a Java class itself are concepts. To
get a database and a Java class we have to merge to concepts together (DBPersonMerge
and JavaClassPersonMerge). For a given concepts we may have a set of transformers, e.g.
to get a database definition script we need a transformer what generates it. Only now the
transformer adds semantics to a concept. Other useful feature are the reuse of concepts
through the derivation possibility of new concepts from older ones, the search engine, and
the definition of constraints on concept structures.

242





