
Modelling Interactions forAutomatic Execution Using
UMLActivity Diagrams

Werner Putschögl1 and Bernhard Dorninger2

Abstract: Software applications involving interactions of distributed systems are very common
nowadays. Frequently, interactions are modelled during the analysis phase of a project and
subsequently coded manually. Very often this results in a divergence of analysis model and the
implemented code. Moreover, the border between interaction handling code and domain code may
be blurred. In addition, hard-coding collaborations and interactions may impede maintainability of
an application. In this paper, we propose a procedure for modelling interactions—and also
collaborations—with the means of slightly extended UML activity diagrams. The resulting
interaction model is then transformed to a machine interpretable format and may subsequently be
processed and controlled by an interaction infrastructure, which we developed for this purpose. In
addition, our procedure encourages a clear separation of interaction processing and domain code.

1 Introduction

Designing distributed, collaborative applications poses a demanding challenge. Major
concerns include coordinating work among the participating nodes and the distribution
of data needed and produced by the nodes. These concerns do apply for autonomous
multi node systems as well as common client-server applications involving human-
computer interaction. One means to cope with these challenges can be model-driven
software development (MDSD), which nowadays is well established due to its various
benefits [Se03]. Especially the Unified Modelling Language (UML) has emerged as the
lingua franca for modelling the various aspects of software. Nearly every UML tool is
capable of generating code at least from static models (class diagrams). There are also
numerous tools that support the generation of code from behavioural models. However,
UML [OMG09a] is often deemed insufficient for use in the context of MDSD [SV06].
Also, modelling interactions between autonomous systems and/or UI based applications
with UML is not always considered adequate.

Frequently, interactions—especially in the field of business processes and workflows—
are initially modelled via use cases and later detailed by activity diagrams (e.g. during
requirements engineering). Use cases and activity diagrams have been criticized to lack
formal semantics to generate code—although there are several proposals for enriching
activities to solve this [SH05] [BS09]. A modelling method intended solely for business
process modelling is Business Process Modelling Notation (BPMN) [GDW09].
Interactions can also be modelled with UML collaboration/communication diagrams
[CBJ02], but are used to visualize object level collaborations rather than high level

1 Software Competence Center Hagenberg, Softwarepark 21, 4232 Hagenberg, Werner.Putschoegl@scch.at
2 Software Competence Center Hagenberg, Softwarepark 21, 4232 Hagenberg, Bernhard.Dorninger@scch.at

180 Werner Putschögl and Bernhard Dorninger

interactions. The Human Computer Interaction (HCI) community also has offered
several suggestions to extend UML with mechanisms supporting the modelling of
interactions [SP03] [PBL03]. These methods focus on the modelling of user interface
related aspects of interactions and/or were developed for communicative purposes rather
than for generating code or executable information.

Often, the analysed model of interactions is lost as the design and implementation
process progresses, especially when interactions are coded manually. Modelled
interactions are split and refined to various domain or infrastructure objects and
functions in the codebase [CBJ02]. This results in a lack of traceability from the
modelled interaction to the code. This problem is reinforced by the fact that
implementations often mix up interaction related code with functional code and
infrastructure related code. It may lead to highly complex method/function
implementations in the collaborative peers, which in turn decreases maintainability as
well as comprehensibility. In addition, it makes interactions and domain functions
difficult to reuse in other scenarios. The principles of Domain Driven Design (DDD)
[Ev04] may help here, which suggest a clear separation of domain code from
infrastructure code.

In this paper we outline an approach of how to avoid the aforementioned downsides by
proposing a procedure of interaction modelling with regard to a strict decoupling of
interaction and domain functions and preserving the modelled information in the code.

2 Goals and Challenges

The primary goal of our work described in this paper is to provide a procedure for
modelling and implementing interactions between software systems as well as a reusable
software infrastructure for processing the modelled interactions.

It is desired that efforts for implementing and maintaining collaborations/interactions is
kept low. Thus, implementation of interactions shall be automated as far as possible.
Manual coding shall be reduced to the need of implementing the content of domain
operations, whereas interaction related code or interaction descriptions shall be
generated from predefined models. The procedure shall prescribe a clear separation of
interaction and domain/business functions and preserve this separation in the resulting
implementation. On the other hand, the key here is to provide traceable and
comprehensible information concerning the flow of interaction and the relationship of
actions to domain operations. Finally, modelling shall be based on a standardized
technique. Possible enhancements shall be as simple as possible and shall not depend on
a specialized modelling tool.

The interaction infrastructure shall not only suggest the compliance to an architectural
pattern [CBJ02] or concentrate on the protocol or application level communication layer
[ASQP05] but rather provide a reusable mechanism for processing any interaction or
collaboration scenarios.

Modelling Interactions for Automatic Execution Using UML Activity Diagrams 181

To satisfy these requirements, we have to cope with two key challenges.

•• Distribution of control: Processing interactions in collaborative systems certainly
involves the changeover of control. Each participant has its tasks to solve and
actions to perform, which may depend on the actions and decisions of the fellow
participants. We have to find a way to control the flow of interactions independent
of a concrete interaction, i.e. the infrastructure shall be able to handle arbitrary
interaction scenarios.

•• Distribution of interaction data: Each action or decision within an interaction
needs and/or produces data. This data may be needed by subsequent actions and/or
decisions in the interaction flow. Since the interaction is distributed over
potentially more than two nodes, we have to secure the availability of the needed
data in the respective participant. Of course data distribution and availability shall
be addressed already in the model and shall not lie in the responsibility of the
programmer.

The remainder of this paper outlines the developed procedure and explains the necessary
steps from analysis of the interaction to deployment of the solution.

3 Creating an Executable Interaction Model

In the software development process, the analysis phase usually results in a more or less
detailed model of the respective domain, consisting at least of a data model and the
usage scenarios of the planned software. Scenarios are documented in form of use cases,
which may be represented by textual descriptions, use case diagrams and even
behavioural diagrams like activity diagrams (AD). These use cases implicate necessary
domain operations (aka business logic) as well as interactions between systems or users
and a system.

In this section, we will outline a procedure, which builds on the results from the analysis
phase by augmenting AD with additional information and subsequently generating an
interpretable representation of interactions. For executing the interactions, an
infrastructure was developed managing the distributed execution of an interaction at
runtime. Figure 1 illustrates the fundamental steps of our procedure, structuring the
procedure into three basic steps:

1. Modelling: The use cases from analysis phase have to be modelled as AD
according to specifications we introduce in our procedure. At the same time,
domain operations have to be modelled matching the actions from the AD. Next,
data used by these operations during the interaction has to be specified. The
procedure of modelling is described in detail in Section 3.1.

2. Transformation and Implementation: The goal of this step is the generation of an
interpretable representation of the interaction model. Another task is the
generation of code stubs for the modelled domain operations from step 1.

182 Werner Putschögl and Bernhard Dorninger

Subsequently, the functionality of the generated stubs has to be implemented.
Section 3.2 will elaborate on this step.

3. Application: To verify the results of our efforts, we developed an interaction
infrastructure, which is responsible for distributed invocation and execution of
modelled interactions. This infrastructure ensures that each participating system
processes the assigned actions, executes the respective domain operation and is
supplied with data required from other participants. The concept of the
infrastructure and its processing of interactions is explained in Section 3.3.

Proposed Procedure

2. Transformation
and Implementation

3. ApplicationAnalysis
Results

1. Modelling (UML)

Domain Model

Use-Cases Activity
Diagrams

Class
Diagrams

Extended
Activity
Diagrams

Interaction
Model

Application

Interaction
Infrastructure

Application

Interaction
Infrastructure

Domain Code

Fig. 1: Procedure Overview

The following sections describe each step in detail by using a simple example. We will
demonstrate the way from use case descriptions to executable representations of the
implicated interactions, and how interactions are executed and controlled by the
infrastructure.

3.1 Modelling

The modelling step builds on the artefacts of the analysis phase and can be divided into
three sub-steps, illustrated in Fig. 2. The figure depicts the artefacts required and
generated in each sub-step.

1. Model Interactions 2. Model Domain Operations

Domain ModelUse-Cases

Analysis Results

Interaction Model
(Activity Diagram)

Extended Activity Diagram

Analysis Phase

Extended Activity Diagram

3. Model Interaction Data

Fig. 2: Modelling Overview

Modelling Interactions for Automatic Execution Using UML Activity Diagrams 183

The analysis phase provides us with use cases, which implicate domain operations and
optional domain rules their execution is subjected to. Domain rules are conditions which
have to be fulfilled before an operation can be executed. In addition we get a data model
of the domain. These artefacts form the basis of our four modelling sub-steps.

1. Model Interactions: If not already created during analysis, the interactions
described in use cases have to be transformed into activity diagrams following
certain rules (see Section 3.1.1).

2. Model Domain Operations: Since we want to automatically execute and control
the modelled interactions, our procedure prescribes the presence of domain
operations for each modelled activity or domain rule from an activity diagram.
Therefore, in this step, we explicitly model the domain operations in a static view,
in our case an UML Class diagram. In doing so, we consider the recommendations
of the Domain Driven Design approach [Evans]. Finally each activity and decision
node is assigned to the appropriate domain operation. This connects the dynamic
view of the activity diagram with the static view of the class diagram. The step
“Model Domain Operations is described in detail in Section 3.1.2.

3. Model Interaction Data: Finally, we have to model the data, which is distributed
between the individual operations. Furthermore, we have to concretize our domain
rules in a machine-recognizable way. Section 3.1.3 describes this step in detail.

After these steps, the model is ready for transformation.

3.1.1 Model Interactions

We use a simple example of a flight booking interaction to demonstrate our proposed
procedure. Listing 1 shows the use case gained from the analysis phase. Fig. 3 shows the
activity diagram of the interaction based on the use case shown in Listing 1.

Flight booking:

Main Course:
1. The user chooses a flight to

book.
2. The system asks the user for

the number of passengers.
3. The user enters the number of

passengers.
4. The system ensures that there

are enough places vacant,
reserves the places and books
the flight.

5. The use-case ends
successfully.

Alternative Courses
4.a.: The check fails as there are not enough
seats available.
4.a.1. The system informs the user.
4.a.2. The user chooses to pick another
flight

List. 1: Flight Booking Use Case

184 Werner Putschögl and Bernhard Dorninger

The example includes actions that are performed by a user on a client system, actions
performed by the systems as well as a simple domain rule. This domain rule indicates
that there must be sufficient seats available to continue with the reservation. In addition,
it serves as precondition for the reserving and booking actions. The “Check Availability”
decision (Fig. 3) evaluates this domain rule.

act Flight Booking

Fl
ig
ht

B
oo

ki
ng

S
er
ve

r

Choose Flight and
Number of
Passengers

Reserve
Seats

Book Flight

Display Error

Check Availability
ActivityFinal

FlowFinal

Fl
ig
ht

B
oo

ki
ng

C
lie

nt

ActivityInitial
[repeat] [cancel]

[enough seats available]

[not enough seats available]

Fig. 3: A Basic Flight Booking Example

Distributed execution requires a mechanism which specifies where an operation is going
to be processed. Our procedure introduces system roles to identify different systems in
an interaction. A system role is a classifier such as “Flight Booking Client” or “Flight
Booking Server”, not a specific physical system, as for instance there can be multiple
client systems connected to one server in the above example. In the AD we use partitions
to model these system roles, each partition representing one role. Each diagram element
has to be put in one partition. In the example shown in Fig. 3 each element is put in one
of the two partitions specifying that the “Flight Booking” action is to be executed on a
“Flight Booking Server”-type system.

Domain rules are represented by a decision node. To enable an automated evaluation of
the decision each outgoing control flow has to be modelled using mutually exclusive
conditions. At this stage of modelling, guards can only be expressed by abstract, textual
conditions. These guard expressions will be refined into machine-recognizable
expressions after specifying the interaction data (see Section 3.1.3).

3.1.2 Model Domain Operations

Having modelled the dynamic view with activity diagrams is not sufficient for our
purpose. We also need to model the operations, which will be executed when processing
an interaction. When modelling applications, it is common to have static views depicting

Modelling Interactions for Automatic Execution Using UML Activity Diagrams 185

the domain’s data model as well as operations on these data. Concerning operations, our
procedure suggests applying the principles of Domain-Driven Design (DDD) [Ev04].
Evans introduces the so called “Service” pattern, which proposes the modelling of
domain operations, which manipulate other domain objects (such as data or resources),
as stateless services. We follow this view and expect the domain operations to be
modelled according to this pattern. In addition, we model each operation as an interface,
since our procedure requires the presence of an appropriate domain operation for each
action in the activity diagram. To be able to process domain rules within an interaction
we apply the “Specification” pattern proposed by Fowler and Evans [EF97]. It describes
the modelling of domain rules as interfaces just like operations. The pattern allows
integrating domain rules into our interaction model with their execution being similar to
the execution of domain operations.

After having modelled the domain operations and rules we create an explicit relation
between the dynamic view from the activity diagrams and the static view of the
operations in the class diagrams. This is done by mapping each activity element and its
respective domain operation (or the shortcut thereof).

Fig. 4 shows how the “Reserve Seats” action from the activity diagram is mapped to the
“ReserveSeatsOperation” interface via an explicit link. The result of the link is
that upon processing the interaction, the operation implemented in the interface is
executed when the action is processed.

Fig. 4: Example Link

3.1.3 Model Interaction Data

The next task is to specify the data used in the context of the interaction. As already
mentioned the distribution of data to systems involved in an interaction is a key
challenge. We have to model data that will be exchanged by the operations and rules
during the execution of interaction. The entirety of data exchanged between operations
or between operations and rules within one interaction—which may span several system
roles—is called interaction context. Data is specified as properties of the modelled

186 Werner Putschögl and Bernhard Dorninger

domain operations or rules. Data properties of operations must be stereotyped as input or
output (or as both if this applies). The result of an evaluation of a domain rule is
regarded an output data property. Once defined, each data property in the interaction
context is available for all other operations and rules within the regarded interaction. The
mapping of data properties between the operations and rules is achieved via lexical
identity of the property names.

class Flight Booking

ReserveSeatsOperation

«in»
- passengers: List
- fl ightNo: int

class Flight Booking

ChooseFlightUserOperation

«out»
- passengers: List
- fl ightNo: int

Fig. 5: Data Supply Example

In Fig. 5 the solid line arrows depict the data flow between two operations (via the
interaction context) during the execution of an interaction. The action
ChooseFlightUserOperation produces the data flightNo, which is required by
the operation ReserveSeatsOperation. The mapping of domain operation data is
achieved by lexical identity of the property names. This is indicated by the dashed line
arrow. Any domain operation in the same interaction seeking to access flightNo, would
have to define it as a <<in>> or <<in,out>> property.
Only data exchanged between operations and rules has to be specified here. Additional
data required privately by a domain operation should not be part of the model.

Fig. 6: Modelling Guard Conditions

After the interaction context has been defined, we now have to adapt the guard

Modelling Interactions for Automatic Execution Using UML Activity Diagrams 187

conditions of our domain rules to match the appropriate data. In addition, we mandate
the guards being expressed in a machine-interpretable way for allowing their automatic
evaluation. Fig. 6 displays an example.

The Boolean data property “seatsAvailable” is the result generated by evaluating the
preceding domain rule. Knowing the data property name, the guard condition must be
transformed manually from a textual definition to a machine processable condition using
the correct property name and values.

3.2 Transformation and Implementation

The interaction model and the domain operations created during modelling form the base
for the step Transformation and Implementation. This step includes two sub-steps:

1. Model Transformation: The UML model is transformed into a XML
representation of the interaction model used as input for the infrastructure.

2. Generation and Implementation: Based on the interfaces modelled to represent
operations and rules, interfaces and class stubs are generated. The generated stubs
have to be completed by manually coding the required functionality of the domain
operations and domain rules.

This section describes the sub-steps to generate the artefacts required to be used by
interaction infrastructure.

3.2.1 Model Transformation

For the model transformation, we define our own metamodel representing interactions.
The next step is to export the AD modelling the interaction from the modelling tool and
transform it into our metamodel. The XML Metadata Interchange (XMI) standard
defined by the Object Management Group is widely supported by UML Modelling tools
for exchanging and exporting model data. Since XMI is very verbose, we extract the
relevant information concerning the interaction and transform it to an XML
representation of our own metamodel (Fig. 7).

Our metamodel is loosely based on the UML metamodel [OMG09b], but of course takes
a simplified view suitable for our needs. All elements of the metamodel representing
actions or decisions implement the InteractionElement interface. This implies that all
elements have an identifier unique for the interaction as well as a target role, defined by
the partitions in the UML interaction model. The current metamodel supports two types
of interaction elements: ActionElements and DecisionElements. SpecificationElements
differ from ActionElements only in that ActionElements execute domain operations
whereas SpecificationElements evaluate domain rules. The information required for both
comprises the domain operation or rule to process including the data properties modelled
and the succeeding element. For decisions associated with a domain rule a
SpecificationElement is generated followed by a DecisionElement. The DecisionElement

188 Werner Putschögl and Bernhard Dorninger

contains the guard conditions determining the possible successors.

class InteractionModel

ActionElement

domainClassName: string
next: string
dataMappings: DataMap

«interface»
InteractionElement
+ id: String
+ targetRole: String

DecisionElement

- guards: ListSpecificationElement

Interaction

1

next2..*

1..*

interactionElements
1

1

next 1

Fig. 7: The Interaction Metamodel

List. 1 is a short excerpt of the transformed XML file showing the “Reserve Seats”
operation from the example.

…
<actionelement id=’Reserve Seats’ targetrole=’Flight Booking Server’
operation=’ReserveSeatsOperation’ next=’Book Flight’>

<property name=’flightNo’ kind=’in’>
<property name=’passengers’ kind=’in’>

</actionelement>
…

List. 1: Excerpt of generated XML.

3.2.2 Generation and Implementation

Based on the modelled domain operations and rules, interfaces and class stubs are
generated. The domain operations and rules represented by the class stubs have to be
implemented for the system they are intended for. This is done by manually adding the
code of the functionality to the generated stubs. For data properties modelled in the
interaction, get and set methods are generated automatically. The interaction
infrastructure uses these to supply or retrieve data required by other operations or rules
within the same interaction. Access to additional data necessary for an operation has to
be coded as needed.

Modelling Interactions for Automatic Execution Using UML Activity Diagrams 189

3.3 Application and Execution of Interactions

After having generated interpretable interaction definitions and the implementation of
the relevant domain code (operations and rules), it is desired to execute these
interactions. We developed an infrastructure to invoke and control the modelled
interactions using Java. The infrastructure may be embedded into any Java based
application, where it handles control flow, data supply and synchronization for the
participating systems. Control flow management involves a mechanism keeping track of
the progress of an invoked interaction and controlling which element has to be executed
by which system. Execution encompasses calling the associated domain operation or
evaluating a rule as well as supplying the required data.

Fig. 8: Infrastructure Layers

The interaction infrastructure can be separated into two layers: the Interaction Processor
and the Communication Layer (Fig. 8). The Domain Code and Interaction Model have to
be created individually for each application.

The Interaction Processor is responsible for building an object representation from the
generated interaction definition.

It furthermore has to handle the processing of the interactions, which includes data
supply as well as the execution of domain operations or rules. The Interaction Processor
also manages the execution focus, i.e. it has to take care that each domain operation or
rule is executed by the system defined in the model. To achieve this, the processor uses
the Communication Layer. The Communication Layer defines an interface that has to be
implemented to connect the systems participating in an interaction. All technology
dependent functionality is encapsulated in the Communication Layer. Our prototypical
implementation relies on Java RMI, but other implementations using different
technologies (such as CORBA) are feasible without changing the Interaction Processor.

Deployment and Configuration

To make use of the interaction infrastructure each of the systems requires deployment
information in addition to the interaction model and the domain code. Deployment
information has to be present for each participating system in an interaction. It includes
the respective participant’s system ID, its system role and information concerning the
other potentially participating systems. The system roles are determined by the different
partitions used in the interaction model. The system ID is an abstract, technology
independent name for uniquely identifying a specific system within the set of

190 Werner Putschögl and Bernhard Dorninger

participants. Deployment information also has to contain a mapping from logical system
IDs to physical system addresses. This information depends on the communication
protocol used by the Communication Layer. In our prototypical implementation we map
the logical system IDs to IP addresses.

Another issue is the distribution of deployment information. For our prototype the
deployment information has been provided using one configuration file for each system
participating in an interaction. This is error-prone and may prove inappropriate for more
complex systems. Registry servers may be an alternative to local configuration files with
the deployment information being automatically downloaded.

Interaction Invocation and Execution

Upon start-up of an application, the interaction infrastructure parses the deployment
information and initialises the application’s system role and ID. The infrastructure loads
the interaction definitions from the XML file and constructs the corresponding
interaction element graphs conforming to the metamodel from Fig. 7. The
Communication Layer has to be configured with the deployment information about
possible interaction participants. For all systems the system ID, system role and physical
address has to be known to enable a connection.

An application invokes an interaction by passing the interaction’s unique name to its
embedded interaction processor. Subsequently, an interaction context for that specific
interaction is created, which is valid for one invocation only.

The interaction context contains all information required for the execution of the
interaction. The most important part of this information is the data exchanged by the
domain operations and rules. When invoking an interaction, this data is extended by
additional runtime information, which encompasses system role to ID mappings as well
as the progress of the interaction.

Each role of an interaction has to be assigned to one specific system. Upon invocation of
the interaction, the infrastructure assigns the role in the interaction to its system ID. This
assignment does not change for the duration of the interaction invocation. After
assigning the system role, the infrastructure starts to traverse the interaction object graph.
If the current interaction element is to be executed locally, the interaction processor
instantiates the according domain operation class and sets the data properties defined
upon modelling. The data is read from the interaction context and passed to the domain
operation or rule by invoking its setter methods. Then, the domain operation or rule is
executed. After successful completion, the values of the operation or rule’ output data
properties are retrieved and written to the interaction context. Finally, the progress
indicator in the interaction context is advanced to the successor of the just processed
interaction element

If the current interaction element has to be executed by a system with another system
role, the execution focus must be transferred to an appropriate participant. If the needed
role has not been assigned to a system yet, the infrastructure tries to assign the role

Modelling Interactions for Automatic Execution Using UML Activity Diagrams 191

automatically. Ambiguities (i.e. there are more participants potentially fulfilling a role)
can be resolved by predefining the participating systems upon invocation or by routing
algorithms making the choice. The interaction infrastructure provides extension
mechanisms to support routing.

The execution focus is transferred by transmitting the interaction context containing
interaction data, system role to ID mappings and the current progress indicator to the
system that has been assigned the role the current interaction element was modelled in.
The Communication Layer translates the system ID to an actual physical system and
performs the context transfer. To reduce the network load, only new or changed data in
the context is transferred. The interaction infrastructure of the target system is
responsible for merging the changes into its interaction context. Once the other
participant has the execution focus, it may continue with processing the interaction until
it runs into an interaction element, which again needs to be processed by another
participant. While the interaction is continued by other systems the local application
waits for the interaction context and execution focus to return or the interaction to end.

This process is repeated until the interaction ends successfully or an error occurs. Upon
termination, all participants are informed about the end of the interaction and if it was
successful or not. If possible, information about the error is added to the context to
provide feedback.

4 Discussion

The goal of our work described in this paper was to provide a modelling procedure
combined with a reusable infrastructure to process and control interactions and/or
collaborations between distributed systems. While there are a number of possible
approaches to model interactions such as UMLi [SP03] or MoLIC [PBL03], we use
activity diagrams, since UMLi and MoLIC both focus on human computer interaction
(HCI). UMLi provides its own diagram type for modelling interactions between users
and the user interface. MoLIC also introduces diagram types for modelling interactions.
It focuses on the user’s actions and goals and deals with system actions (domain
operations in our sense) from a very abstract point of view. Moreover, MoLIC does not
intend to generate machine-executable or interpretable interaction definitions, but
classifies itself as a means of communications between software development and
potential users. We take a different approach to interaction modelling, as we do not aim
at UI design, but primarily focus on the aspect of distributed execution and control of
interactions. . Interactions in our sense may be also addressed as collaborations. They
take place between arbitrary systems, which may incorporate UI clients as well as
autonomous systems. We concentrate on modelling the distribution of activities and
actions and the corresponding data. Moreover, we did not want to introduce new types of
diagrams

192 Werner Putschögl and Bernhard Dorninger

Strengths

We argue that using a de-facto standard modelling language is an advantage of our
procedure. We refrain from introducing special diagram types, which allows utilizing
readily available tools without further adaptations. Another benefit we see in our
procedure is that we require only few rules to cover all aspects for a distributed
execution of interactions, keeping our procedure simple.

Using a separate, reusable infrastructure has two major advantages: it reduces the effort
for implementation as the functionality for executing and controlling interactions as well
as distributing corresponding data is already provided. Furthermore, it supports
architectural layering suggested by Evans [Ev04]. We extend Evans’ suggestion with the
inclusion of interactions as a separate layer. Having a layered architecture increases
flexibility by limiting the dependencies to a few well known points, thus improving
maintainability and facilitating changes.

As propagated in MDSD [SV06], models are considered equal to code. We follow a
similar point of view, generating a machine-readable representation of our models and
subsequently use an infrastructure to interpret them. As with MDSD, our procedure
mandates the (transformed) model as an integrated part of an interactive or collaborative
application avoiding extra effort to keep the documentation up-to-date.

Limitations

Besides its strengths, the procedure has some weaknesses which need further
consideration.

One major issue concerns the current form of modelling interaction data. Lexical
mapping for connecting data properties is error prone as even simple typos may cause
fatal runtime errors. Furthermore, when modelling complex interactions, the sheer
number of properties might become increasingly confusing. The improvement to
modelling interaction data should provide a clear and straightforward method to model
data properties while not cluttering the model.

Another aspect has to do with distribution of data. At the moment, interaction data is
distributed over system boundaries, regardless if any interaction element executed in the
context of a system needs to access a specific data property at all. In other words,
interaction data is available globally. An improvement would be to distribute data only
to systems, which in fact need to access it. The information of data property usage by
systems participating in an interaction could already be drawn from the current model,
yet this information is not considered upon transforming the model or at execution time.

A third potential improvement would be supporting parallel execution of interaction
elements within an interaction. This applies for parallel execution of interaction elements
on one system as well as on different systems. At present, only one system can hold the
execution focus at any given time during the processing of an interaction. While this
suffices for most cases of client-server applications, collaborations of autonomous

Modelling Interactions for Automatic Execution Using UML Activity Diagrams 193

systems may require such a mechanism. A key challenge regarding this issue will be the
merging of data written by different execution paths to guarantee consistent data for the
interaction.

5 Summary

In this paper we have presented a procedure based on descriptions of interactions in form
of activity diagrams to create a machine interpretable model of interaction. We described
how UML activity diagrams could be extended to attain such a model.

Despite a number of issues, we think this procedure allows us to achieve our goals of
reducing the effort to create and maintain interaction implementations and having a clear
separation between domain-code and interaction handling. The procedure proposed does
not require specialised modelling tools or new diagram types but only extensions to
activity diagrams. We introduced a simple metamodel for representing interactions and
explained the transformation of the created UML model into a machine-readable
instance of this metamodel.

We also presented a prototypical implementation of a reusable infrastructure which takes
the transformed model as input, allowing the distributed execution of the modelled
interactions. We explained how this prototype handles the challenges of coordinating
distributed interaction execution and distributing data required during the process.

Acknowledgement

This project was sponsored by the initiative “Regionale Wettbewerbsfähigkeit OÖ 2007-
2013” funded by the European Regional Development Fund and the state of Upper
Austria.

References

[ASQP05] Joao Paulo Almeida, Marten van Sinderen, Dick A.C. Quartel, and Luis Ferreira Pires.
Designing Interaction Systems for Distributed Applications. IEEE Distributed Systems
Online, 6(3), 2005.

[BS09] Anup Kumar Bhattacharjee and R.K. Shyamasundar. Activity Diagrams: A Formal
Framework to Model Business Processes and Code Generation. Journal of Object
Technology, 1:189–220, January-February 2009.

[CBJ02] E. Cariou, A. Beugnard, and J.M. Jezequel. An Architecture and a Process for

194 Werner Putschögl and Bernhard Dorninger

Implementing Distributed Collaborations. In Enterprise Distributed Object Computing
Conference, 2002. EDOC ’02. Proceedings. Sixth International, pages 132–143, 2002.

[PBL03] María Greco de Paula, Simone Diniz Junqueira Barbosa, and Carlos José Pereira
de Lucena. Relating Human-Computer Interaction and Software Engineering
Concerns: Towards Extending UML through an Interaction Modelling Language. In
Proceedings of the IFIP INTERACT 2003 Workshop, 2003.

[SP03] Paulo Pinheiro da Silva and Norman W. Paton. User Interface Modeling in UMLi.
IEEE Software, 20(4):62–69, 2003.

[EF97] E. Evans and M. Fowler. Specifications. In Proceedings of PLoP 97 Conference, 1997.

[Ev04] Eric Evans. Domain Driven Design: Tackling Complexity in the Heart of Business
Software. Addison-Wesley, 2004.

[GDW09] A. Grosskopf, G. Decker, and M. Weske. The Process: Business Process Modeling
using BPMN. Meghan Kiffer Press, 2009.

[OMG09a] OMG Unified Modeling Language (OMG UML), Infrastructure Version 2.2, 2009.

[OMG09b] OMG Unified Modeling Language (OMG UML), Superstructure Version 2.2, 2009.

[Se03] Bran Selic. The pragmatics of model-driven development. IEEE Software, 20(5):19–
25, 2003.

[SH05] Harald Störrle and Jan H. Hausmann. Towards a formal semantics of uml 2.0
activities. In Software Engineering, pages 117–128. Gesellschaft fuer Informatik,
2005.

[SV06] Thomas Stahl and Markus Voelter. Model-Driven Software Development. John Wiley
& Sons, 2006.

