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Track every move of your students: log files for Learning 
Analytics from mobile screen recordings 
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Abstract: One of the main data sources for Learning Analytics are Learning Management Systems 
(LMS). These log files are limited though to interactions within the LMS and cannot take into 
account interactions of students in other applications and software in a digital learning environment. 
In this paper, we present an approach for generating log files based on mobile screen recordings as 
a data source for Learning Analytics. Logging mobile application usage is limited to rather general 
system events unless you have access to the source code of the operating system or applications. To 
address this we generate log files from mobile screen recordings by applying computer vision and 
machine learning methods to detect individually defined events. In closing, we discuss how these 
log files can be used as a data source for Learning Analytics and relevant ethical concerns. 

Keywords: Learning Analytics, mobile screen recordings, data sources, log files, Human Computer 
Interaction, Computer Vison 

1 Introduction 

The field of Learning Analytics uses a wide range of data sources. A common data source 
are log files from systems that support the learning process like Learning Management 
systems [PE14]. Pardo and Kloos [PK11] state that early Learning Analytics research is 
“LMS-centric”: using only data from an LMS might limit research to a small part of the 
activities of students. Especially communication often happens through existing email or 
mobile chat applications and not through the communication features of the used LMS 
[PK11]. This reduces the informative value of log files from LMSs. To provide a 
comprehensive picture and analysis of learning activities, additional data is helpful beyond 
the log files of the LMS. 

In order to analyze learning outside the LMS, additional data is necessary, especially when 
various third-party applications and software are used in a digital learning environment. 
In these applications, it is difficult to gather data about the interactions of students. To get 
log data from these third-party applications, it is usually necessary to implement log 
commands in their source code. However, many applications are not open source and 
changing the source code to generate data for Learning Analytics is not possible.  
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Papamitsiou and Economides state that “[..]every ‘click’ within an electronic learning 
environment may be valuable actual information that can be tracked and analyzed. Every 
simple or more complex action within such environments can be isolated, identified and 
classified through computational methods into meaningful patterns.” [PE14]. 

Hepp et al. describe these small pieces of data we leave behind when we act in digital 
environments “digital traces” and stress that these traces are meaningless until we put them 
into a relevant context by appropriate methods and their triangulation [HBF18]. While we 
leave more traces in digital learning environments than ever before, it is still a challenge 
to collect these data points in an appropriate way and give meaning to this data through 
adequate Learning Analytics, for example. 

Our work addresses this lack of data sources in digital learning environments containing 
not just an LMS but also multiple closed source code applications by presenting a method 
to generate log files for Learning Analytics based on mobile screen recordings.  

A graphical user interface (GUI) always represents the current state of a system, based on 
user and system events [AKRR14]. The focus on GUIs in Human Computer Interaction 
(HCI) leads to the point that the analysis of screen recordings makes it possible to 
understand almost every interaction, every behavior or every task that the user performs 
while using a computer system. Interpreting screen recordings manually is very time 
consuming, what limits this approach to relatively short time periods. Our approach 
utilizes computer vision and machine-learning methods to automatically analyze screen 
recordings and to create event-based log files. Our intention is to combine the advantages 
of short-term detailed screen recording analysis with long-term log file generation.  

The main contribution we aim at in this paper is to introduce a new method to collect data 
in digital learning environments. We present how we define events of interest and find 
these in mobile screen recordings in order to create log files for further analysis. The 
results and evaluation in this paper are based on 118 example screen recordings from a 
mobile device. Besides that, we show basic descriptive visualizations of example data and 
show how this could be used as a new data source for Learning Analytics.  

2 Related Work  

2.1 Data Sources for Learning Analytics outside the LMS 

A systematic literature search by Papamitsiou and Economides [PE14] identifies various 
data sources used in the field of Learning Analytics and educational data mining, such as 
log files of goal-oriented implemented systems, questionnaires, interviews, web tracking 
software, open data sets and virtual machines. A main source for data in the field of 
Learning Analytics are still log files containing entries about interactions of students 
within an LMS [TRB15, PK11].  
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There are several efforts in the Learning Analytics community to collect data on student 
behavior and interactions outside the LMS. Pardo and Kloos [PK11] present an approach 
using virtual machines to log a number of events outside of an LMS. They provide pre-
configured virtual machines to students of a programming class that the students run on 
their personal computers. The machines monitor a couple of events like power-up and 
shutdown, start and use of selected tools and commands and browser history. They show 
that a significant amount of relevant interactions happen outside of the sphere of the used 
LMS.  

Another attempt to gather data beyond the LMS is introduced by Kitto et al. [Ki15] 
utilizing data from social media combined with LMS data. They present an open source 
toolkit accessing six social media APIs and save in a standardized actor-verb-object 
notation for further analysis. Their focus is to gather data from multiple sources in a 
uniform way at large-scale, but also concerns regarding related privacy and data 
ownership issues. 

Another study by Tempelaar et al. explores and compares the predictive power of different 
Learning Analytics data sources [TRG15]. Therefore, they collect self-reported data, LMS 
data and e-tutorial data of formative assessments. In the conducted study, data from 922 
mathematics and statistics students is collected. They mention that the use of only LMS 
data does not have substantial predictive power in their study. They find that the use of 
formative computer-assisted assessments is a good predictor for detecting 
underperforming students. 

There is still no agreement within the Learning Analytics community as to which 
interactions of students within a digital learning environment are decisive for effective 
learning [Ag14]. More research and exploration of different data sources is needed, to 
address this. Coming from this point, our approach, which we present in this paper, follows 
the path of opening up and developing new data sources with the aim of providing a more 
comprehensive picture and a new perspective on learning activities. 

2.2 Detecting events in screen recordings 

The analysis of screen recordings of student devices is not yet used in the context of 
Learning Analytics, neither for manual nor for automatic analysis. There are some 
research approaches that focus on the automatic analysis of screen captures, but not in 
association with the generation of data for Learning Analytics. Most research in this area 
is aiming at analyzing Human Computer interaction, but there are also approaches that 
could be used as a data source in other contexts such as learning analysis. 

The project ”InspectorWidget” [Fr16] proposes an automatic screencast annotating system 
for usability checks using computer vision and machine learning techniques. The approach 
is designed for usability checks and requirement engineering scenarios. The work is in an 
early stage, but has a potential for long-term research studies and generating log files for 
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several purposes on desktop devices. The project has been developed for Linux, Windows, 
and Mac, but lacks to support mobile devices like smartphones and tablet computers.  

An approach by Chang et al. [CYM10] has some close relation to our approach although 
their aim is not to generate log files from screen recordings. The focus of their project 
“Sikuli Test” is to test desktop GUIs automatically using computer vision methods. The 
script acts ”like a robotic tester” and acts on the visual screen output of desktop GUIs 
based on previously defined events. Common with our approach is to detect individually 
defined GUI states using computer vision methods. 

Matejka et al. introduce a tool for the collection of data about software usage, with effort 
spent in making the approach independent of the actual application. This aim is closely 
related to our approach, but the way of data collection is different. The result of this is a 
dynamic heat map overlay, that shows usage patterns of the active user and of the 
community. They collect data about how frequently users use functions in office 
applications aiming at optimizing software. The tool is only available for Mircosoft 
Windows, using its accessibility APIs (not available for all applications), making the 
method useable for many Windows applications, but requires additional work for every 
application [MGF13].  

Based on the previous work on data sources in Learning analytics and we present how we 
combine computer vision and machine-learning methods to automatically detect events in 
mobile screen recordings to generate log files for Learning Analytics. 

3 Technical Approach 

The process for generating log data and further analysis in form of Learning Analytics 
involves several steps (see Fig. 1). At first, video data needs to be collected on the student’s 
devices, followed by the definition of events of interest and automatic analysis of the video 
material based on these event definitions. The resulting log files need to be prepared for 
further analysis, to be finally analyzed and put into context.  

 
Fig. 1: Simplified process: from screen recordings to log files for Learning Analytics 
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3.1 Collection of screen recordings 

To validate the results of our approach we recorded 118 smartphone usage sessions (68 
minutes), which is roughly equivalent to the average use of a smartphone during one day 
[Bö11]. With this amount of video, it is still possible to manually validate the log results 
and identify errors in the detection process. We define a phone usage session as from 
switching on the screen until the screen turns off again and record interactions in the 
locked state as well as in unlocked device state. For evaluation of our approach, we 
recorded high-quality video in full HD at an average bitrate of 4418 Kbit/s and 20 frames 
per second (FPS) on an Android device. 

3.2 Event detection 

Since video analysis is a compute-intensive process, optimizations that reduce the 
workload are of importance. As our focus are screen recordings from mobile devices, we 
can exploit some characteristics of the mobile platform. In contrast to most desktop 
systems, mobile devices have a way more structured and fixed GUI. On desktop platforms, 
it is common to have multiple resizable windows and applications opened at various 
positions on the screen. Mobile platforms usually only support to display one application 
at a time which lowers the effort to check where and which application or activity is 
present. Besides that, most applications follow the design guidelines of iOS and Android, 
which gives GUIs a fixed structure and makes them more predictable. 

Video Preprocessing 

To speed up the detection process we slightly preprocess the video material, as there are 
many frames without a visible difference. At a frame rate of 20 FPS, we skip 54 % of all 
frames from our test videos. We compare each frame to its predecessor by subtracting the 
frames and compare the result against a threshold: similar frames result in very small or 
zero values. 

Definition of Log Events 

Events of interest are defined on the basis of GUI states and contain a message that is 
written to the log entry. For our test runs, we defined a list of 30 events ranging from 
general user interface (UI) events like “keyboard opened” to more specific events like 
“Whatsapp chat with Person A”. Figure 2 shows an example of an event definition of a 
Whatsapp chat. Every event can consist of different elements: comparison of fixed image 
areas, search for image parts in the whole frame and comparison of text elements or 
reading text from the frame. 

An event definition can contain multiple fixed areas. These image parts are compared to 
the same area of every video frame. This exploits the fixed structure of the mobile 
platform, as it is not necessary to search in various positions on the screen in many cases. 
The similarity is determined by a perceptual hash function [Bu18]. Perceptual hashes are 
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rather robust and work with different image scaling or artifacts caused by video 
compression. 

To search for an image part that can appear at any or not a fixed position of the screen we 
use OpenCV’s [Op18] template matching algorithm. As this step can cost more time in 
contrast to comparing fixed areas it is more efficient to use fixed areas if possible to define 
an event. 

 
Fig. 2: Definition of an Event. In this example a text string is fetched from an area at the top, two 
fixed areas are set, one at the bottom and one at the top (keyboard and chat header) and we search 

for a non-fixed image part in the whole frame (smiley) 

We are searching for text strings or reading text from a certain area of the frame using 
optical character recognition (OCR). For this, we use the open source library tesseract 
[Te18]. Text recognition is helpful to distinguish a variety of events. An example for 
fetching text from a frame is the name of a chat partner that is attached to the log message 
(Fig. 2).  
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Detecting Events 

The detection process works frame by frame and in a certain order, that keeps the 
computational effort low. Every frame is checked against the list of events. A frame can 
contain multiple events or no events. The first step is to compare all fixed areas from the 
event list against the frame, as this step is fast, compared to template matching and OCR. 
After that, template matching is executed followed by OCR as the last step. As each frame 
is processed individually, it is possible to scale up the detection process on multiple CPU 
cores. 

3.3 Log files 

The resulting log files contain one or more entries for every video frame. An entry consist 
of frame number, timestamp and log message. To further work with these entries we 
transfer these logs into a different formatting, to make further analysis more feasible. The 
final log files are event based instead of frame based. E.g. if 85 consecutive frames contain 
the event “Instagram feed opened”, this would lead to one event “Instagram feed opened” 
with a timestamp and a certain length. Listing 1 shows example log entries from the 
resulting final log file. The last log entry for example indicates that a Whatsapp chat to a 
certain person was opened for 31,4 seconds at 17:37:14 on the 14th of December 2017. 

1513269377027.0;2017-12-14 
17:36:17.027000;2000.0;whatsapp, chatlist active, number 
of chats with new messages – 1 
1513269377227.0;2017-12-14 
17:36:17.227000;1800.0;whatsapp, chatlist opened 
1513269379027.0;2017-12-14 17:36:19.027000;800.0;whatsapp 
chatlist, scrolled down 
1513269380027.0;2017-12-14 
17:36:20.027000;3400.0;whatsapp, chatlist active, number 
of chats with new messages - 1 
1513269380027.0;2017-12-14 
17:36:20.027000;3400.0;whatsapp, chatlist opened 
1513269383627.0;2017-12-14 
17:36:23.627000;12200.0;whatsapp chat opened - Luca 
1513269386027.0;2017-12-14 
17:36:26.027000;6200.0;keyboard opened 
1513269394027.0;2017-12-14 
17:36:34.027000;2000.0;keyboard opened 
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1513269395627.0;2017-12-14 
17:36:35.627000;200.0;homebutton pressed 
1513269396027.0;2017-12-14 17:36:36.027000;2400.0;home 
screen present 
1513269398427.0;2017-12-14 
17:36:38.427000;32200.0;Instagram opened 
1513269398427.0;2017-12-14 
17:36:38.427000;32200.0;Instagram, feed opened 
1513269398427.0;2017-12-14 
17:36:38.427000;32200.0;Instagram, feed opened, unread 
messages 
1513269434427.0;2017-12-14 
17:37:14.427000;31400.0;whatsapp chat opened – Luca 
List. 1: Example entries from the result log file. All entries contain a timestamp, a length in 

milliseconds and a log message that describes the event 

4 Results 

Altogether 79790 frames were processed from the 68 minutes of video material and a log 
file with one or more entries per frame was generated. This video frame based log file was 
transferred into a different formatting as described above (see listing 1). In total, the final 
log file consisted of 931 correctly detected events. The result log file did not miss any 
events but contained 1.3 percent false positive events using the originally collected high-
quality video material. We define a false positive as an event with a correct log message 
that did not occur in the video material. The most problematic event definition was the 
event “calculator opened”. The calculator was only opened one time in all videos but was 
detected falsely 11 times. The reason for these false results was an imprecise definition of 
the calculator event. Another reason for several messed up log messages were events that 
fetched text from transition frames using OCR. On these frames between switching or 
closing applications it is not clear which application is present, as both are morphed into 
each other. These animation frames caused messed up names of chat partners when the 
chat applications were closed, for example. 

Figure 3 illustrates a usage session containing several application usage sessions. We 
visualize the result log files in reference to van Berkel et al. [Be16] as usage sessions 
containing detailed application usage sessions. As an application session, we take the time 
from opening and using an application until the application is closed again or switched. 
The upper timeline shows application events, the lower blue line shows the use of general 
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UI events, which can occur in parallel to in-app events. In this example, the events 
“keyboard opened” and “k key pressed” occurred several times. 

 
Fig. 3: Visualization of a phone usage session containing the use of different applications and in-

app interactions 

This usage session shows the use of two different applications (Whatsapp and Instagram) 
and contains several detailed in-app events about the use of Whatsapp. Three chats with 
different partners were opened, partly together with the presence of the keyboard. At least 
in the last chat, the keyboard was opened and used. Most likely in the other cases as well, 
but for testing we only defined an event for pressing the k key. 

Most test events were connected to chat communication. In addition several events 
regarded the general UI, news applications, and Android system events such as lock screen 
interactions or displaying the "all applications" menu for example. The result log file 
contained detailed information about chat communication in four different applications 
with a chat function: Whatsapp, SMS chats, Instagram and Pinterest. For all chat 
application events the name of the chat partners was saved. In total there were chats with 
13 different persons, the most conversation happened through Whatsapp. One chat partner 
occurred in all four applications. The event definitions for Whatsapp were most detailed, 
ranging from taking a picture in a chat (happened two times) to scrolling down the list of 
chats and number of new messages. Besides those two phone calls were registered to the 
same person, one missed call and one outgoing call. Other events included using the 
phone’s contact list, creating a new contact, viewing the “top stories” in the BBC news 
application, using the calculator, and whether the device is used in unlocked or locked 
screen mode. 

All event definitions besides one used at least one fixed area and perceptual hash 
comparisons. Template matching was defined in two events and OCR in 12 events. In 
general comparing fixed areas worked reliable for our purpose, as well as template 
matching. The OCR results were very accurate, unless used on transition frames during 
application switching or closing. We used multiprocessing on a dual-core Intel i7 for all 
test runs. Processing all 118 high-quality videos took about 10 hours. Ideas for speeding 
up the process are briefly outlined in the discussion. 
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5 Discussion 

Most data sources for Learning Analytics rely on log files from LMSs or related systems. 
These data sources have two clear limitations: log events cannot be individually defined 
in most cases, unless the source code is modified and most the log files are limited to 
interactions within the system. We address this challenge by introducing a logging 
approach that relies on the visual screen output. Theoretically, it is possible to track 
everything that is visible on the student's device screen, leading to data about interactions 
in very high detail. Log events can be detected in multiple applications while only using 
one method to generate the log file which eliminates the need to merge log files from 
multiple sources. Instead of implementing log commands at development stage, 
researchers can define events of interest based on GUI states instead. This can be done 
before collecting video data or even after. In case that the logged events are not useful or 
predictive for the research question, event definitions can be adjusted and the video 
material can be analyzed again from a different perspective. Another possibility resulting 
from the use of this approach is that no access to the source code of the applications is 
required to implement log commands. This opens a new way to log in third party 
applications, since many applications are closed and do not produce any log files. 

5.1 Privacy and Ethical Challenges 

A serious challenge before applying our approach in a real-world scenario is possible, is 
the privacy of student’s personal data. The student’s device screen is permanently 
recorded, saved, and analyzed. This requires an informed consent by participants and 
raising the question of how participants in research studies can be informed what data they 
share for what purpose and how they can control what they share. We follow the Privacy 
by Design [Ca11] approach in order to develop an effective concept for the protection of 
the privacy of participants already during development. A step in this direction would be 
that the screen recordings are not be accessible to researchers and would have to be 
approved by users to be searched for events. Additionally, the anonymization of the 
resulting log files is obligatory, before they could be used in a Learning Analytics context. 
With regard to these serious obstacles to privacy, ethical questions also arise as to whether 
the gathering and use of these log files justifies such a data collection and analysis. This 
ethical perspective will depend greatly on the success and implementation of a sustainable 
privacy concept, that ensures the privacy rights of students or participants and is in 
accordance to current regulations. 

5.2 Technical Challenges 

For further analysis of learning paths, student behavior or predictions based on these log 
files, it is essential, that the data quality and correctness is ensured. The result logs of our 
sample video material reached a high level of correctness for 30 test events, ranging from 
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very short events like pressing a key on the keyboard to reading in a news app. We 
identified some event definitions that produce unexpected or messed up results and 
incorrect log messages that lead to false positives, though no events that occurred in the 
test video material were missed.  

Another technical challenge besides correct log results is the great file size of the video 
material and computational effort to process the screen recordings. The 118 sample screen 
recordings we used for this paper to validate the results of our approach as a data source 
added up to 2,2 GB. Since the recognition works frame by frame, the recognition process 
can be considerably accelerated by multiprocessing. Besides scaling the number of CPU 
cores, it seems reasonable to reduce the video frame rate already at recording time, since 
54 % of all frames were duplicates or almost duplicates. 

6 Conclusions and Future Work 

In this paper, we presented an approach for a new data source in Learning Analytics that 
works beyond an LMS, in multiple applications and independent of the applications source 
code. We showed that we could generate detailed log files based on mobile screen 
recordings and track a range of interactions on mobile devices. We demonstrated examples 
of how this log data can be further processed to serve as a basis for Learning Analytics 
scenarios from a new perspective.  

The next steps involve the development of privacy measures, performance and result 
optimizations. It is also necessary to investigate how this data source can be used sensibly, 
what insights are possible, and how this approach can be reasonable from a viewpoint of 
research ethics. 
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