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Abstract:
Regulatory RNAs often unfold their action via RNA-RNA interaction. Transcrip-

tional gene silencing by means of siRNAs and miRNA as well as snoRNA directed
RNA editing rely on this mechanism. ncRNA regulation in bacteria is mainly based
upon RNA duplex formation. Finding putative target sites for newly discovered ncR-
NAs is a lengthy task as tools for cofolding RNA molecules like RNAcofold and
RNAup have a run time proportional to O((n + m)3) which makes them unpractical
for whole genome search. We present a new program, RNAplex, especially designed
to quickly find possible hybridization sites for a query RNA in large RNA databases.
In contrast to earlier approaches, RNAplex uses a slightly different energy model
which reduces the computational time by a factor 65 compared to RNAhybrid without
loss of sensitivity.

1 Introduction

For decades, RNA molecules were dismissed as simple cell servants quietly transmitting
genetic information from DNA and converting it into proteins. However the discovery
that double stranded non-coding RNAs (dsRNAs) can efficiently inhibit gene expression
by hybridizing to a target mRNA aroused strong interest in the scientific community. Re-
cent studies have shown that many RNA-RNA interactions play a crucial role in differ-
ent cellular processes. RNA-RNA interactions mediate pseudouridylation and methyla-
tion of rRNA [BCH02], splicing of pre-mRNA [ZB97], nucleotide insertion into mRNAs
[Ben92], transcription and translation control (siRNA, miRNA, stRNA) [FXM+, KG07,
BS02] or plasmid replication control [ET90]. While siRNAs are often fully complemen-
tary to their targets, most of the ncRNAs interact in a more intricate manner which does
not involve perfect hybridization. For example in E.Coli, OxyS, which is involved in ox-
idative stress response, interacts with its target mRNA, fhlA, through a two sites kissing
complex formation [AA00].
Systematic target prediction for the plethora of genomic information brought by ncRNA
detection programs and high throughput sequencing is a challenging problem and different
kinds of tools are available to solve it. On one hand, BLAST [AGM+90] or FASTA [PL88]
search for long stretches of perfect complementarity between a query and a target se-
quence. GUUGle [GG06] can efficiently locate potential complementary regions and, in
contrast to BLAST, also allows for G·U pairs.A typical application for these programs is
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for example siRNA target search. Their main drawback is that they do not give informa-
tion about the thermodynamics of the interaction between the query and the target RNA.
Moreover their lack of sensitivity is a real issue when looking for more complex interac-
tions found for example between miRNA and their targets.
On the other hand, RNA folding algorithms based on free energy minimization are at
present among the most accurate and most generally applicable approaches for RNA fold-
ing [TS88, Zuk00, ZS81]. They are based upon a large number of measurements per-
formed on small RNAs and the assumption that stacking base pairs and loop entropies
contribute additively to the free energy of RNA secondary structures [MSZT99, Mat04].
A straightforward approach to folding two RNA molecules is to concatenate the two se-
quences and apply a slightly modified RNA folding algorithm. This approach is used for
example by the RNAcofold [HFS+94, BTM+06] and pairfold [AZC05] programs.
However, the restriction to pseudo-knot free structures in standard folding algorithms is
a more serious issue when dealing with RNA duplexes, as many known RNA-RNA in-
teractions are mediated e.g.by “kissing hairpins” or other structure motifs that appear as
pseudo-knots when the sequences are concatenated.

As in the case of single sequences [Aku00] inclusion of pseudo-knots makes the prob-
lem NP-complete [AKN+06] in the unrestricted case. Polynomial time complexity can be
achieved like in Alkan [AKN+06] and Pervouchine [Per04], where intramolecular struc-
tures of each molecule are pseudoknot free and intermolecular binding pairs are not al-
lowed to cross. While these algorithms can predict complicated interaction motifs, such
as the bacterial OxyS−fhlA system, they run in O(n3 · m3) making them prohibitively
expensive for most applications. Moreover, these algorithms suffer from a lack of good
parameters: Little is known about the energetics of more complicated loop-types, so that
predicted optimal structures will often not correspond to reality.

Pseudo-knot free hybrid structures as in the case of RNAcofold can be computed in
O((n + m)3) time. However, the exclusion of pseudo-knots essentially means that in-
teractions can happen only in the exterior loop of the concatenated sequences. Mück-
stein [MTH+06] recently considered an asymmetric model in which the base pairing is
unrestricted in a large target RNA, while the interaction partner is restricted to intermolec-
ular base pairs. RNAup works by modeling the total binding energy as a sum of two
contributions, the energy needed to make the target site accessible (by breaking inter-
molecular pairs) and the energy gained through the RNA-RNA interaction. In contrast to
RNAcofold, RNAup allows binding to an unpaired region in any kind of loop, the main
limitation is that the interaction is confined to a single such binding site.

A further reduction in computational complexity is achieved by omitting the computa-
tion of secondary structures within the monomers. This is implemented by RNAhybrid
[RSHG04] and RNAduplex from the Vienna RNA package. It is the simplest and fastest
approach with a theoretical time complexity scaling as O(m · n · max(n, m)) which can
be reduced to O(m · n · L2) by restricting the maximum loop length to L.

Although these programs are fast enough e.g. to predict possible targets of a microRNA,
they are still cumbersome for large scale applications comprising many small RNAs and
genome-wide searches. Here we present a new version of RNAduplex, RNAplex, which
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is based on a slightly simplified energy model. In this model the loop energy is an affine
function of the loop size instead of a log-function. This approach reduces the time com-
plexity to O(m · n) resulting in a speedup factor of 65 when compared to RNAhybrid,
without loss of sensitivity. In particular, the relative energy difference between both energy
models remains smaller than 7% for all known miRNA/mRNA interactions. We compare
the performance of RNAplex and BLAST in finding experimentally verified off-target ef-
fects published by Jackson [JBS+03]. We further apply RNAplex to study the propensity
of ncRNAs predicted by RNAz [WHS05, WHL+05] to bind to known mRNAs.

2 Method

2.1 Energy model

RNAduplex/RNAhybrid are essentially equivalent to the classic RNA folding algo-
rithm of Zuker & Stiegler [ZS81] when only interior loops are allowed. As such they have
a time complexity of O((n+m)4) in the naive implementation , where n and m represents
the length of the interacting nucleotide sequences. It is a common practice to speed up
these algorithms by restricting the loop size to L leading to O((n ·m ·L2), where L = 16
in the case of RNAhybrid. Here we use a simplified energy model that allows us to get rid
of the constant but fairly large prefactor L2.

Since we are neglecting intra-molecular structure here, the only loop types that can appear
are stacked pairs, bulge loops, and interior loops. The Turner energy parameters provide
look-up tables for the free energies of stacked pairs as well as for small interior loops
(1x1, 2x1, and 2x2 loops). These look-up tables are used in RNAplex without change.
Likewise, bulge loops of length 1 are treated exactly as in the full energy model, namely by
adding the stacking energy of the two pairs closing the loop plus a sequence independent
penalty. Larger bulge loops are normally assigned a length dependent penalty that grows
logarithmically for large loops. In RNAplex this bulge energy is approximated by an
affine function. Similarly, large interior loops are normally modeled by a size dependent
term, an asymmetry penalty, and sequence dependent “terminal mismatches”. Here again,
we replace the size dependent loop energy by an affine function and neglect the asymmetry.
The resulting energy model is exact for small loops and slightly overestimates the loop
energies of large interior and bulge loops.

2.2 Recursion

The structure of RNA duplexes predicted by our model can be decomposed in stacking
pairs, interior loops and bulges. Our dynamic programming algorithm therefore employs
four tables representing sub-structures that end in a base pair C, interior loop I and bulge
on the first or second sequence, Bx,By , respectively. The central quantity Ci,j stores the
best energy of interaction between sub-sequence x1..xi and yj ..ym. Similarly Bx,y

i,j store
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the best energy of interaction given that residue yj , respectively xi, is aligned to a bulge.
Finally Ii,j store the best energy of interaction given that xi and yj are in an interior loop.

Based on these matrices the recursion relation can be written as:

C(i, j) = min

����������������������������

C(i − 1, j + 1) + S(i, j; i − 1, j + 1)
C(i − 1, j + 2) + S(i, j; i − 1, j + 2) + Pbulge

C(i − 2, j + 1) + S(i, j; i − 2, j + 1) + Pbulge

C(i − 2, j + 2) + I(i, j; i − 2, j + 2)
C(i − 3, j + 2) + I(i, j; i − 3, j + 2)
C(i − 2, j + 3) + I(i, j; i − 2, j + 3)
C(i − 3, j + 3) + I(i, j; i − 3, j + 3)
I(i − 1, j + 1) + M(i, j; i − 1, j + 1)
Bx(i − 1, j + 1)
By(i − 1, j + 1)

(1)

I(i, j) = min


C(i − 1, j + 1) + M(i − 1, j + 1; i, j) + gI

open + 2gI
ext

I(i − 1, j) + gI
ext

I(i, j + 1) + gI
ext

(2)

Bx(i, j) = min

�
C(i − 1, j) + gB

open + gB
ext

Bx(i − 1, j) + gB
ext

(3)

By(i, j) = min

�
C(i, j + 1) + gB

open + gB
ext

By(i, j + 1) + gB
ext

(4)

where S(i, j, k, l) represents the energy gained by stacking the xi · yj base pair onto the
xk · yl base pair. As usual, bulges of length 1 are modeled as the sum of a bulge penalty
Pbulge plus the stacking energy of the adjacent base pairs. M(i, j; i− 1, j + 1) represents
the “mismatch” energy of the unpaired nucleotides i − 1, j + 1 adjacent to the pair (i, j).
I represents the energy contribution of the small interior loops. Finally gB,I

open and gB,I
ext

represent the parameters of the affine loop energy function that approximates the conven-
tional Turner loop energies. These parameters were gained by linearly fitting the loop
energy model.

In our model a duplex starts with 2 stacked pairs (i, j) · (i − 1, j + 1). The hybridization
of the recursion matrices should ensure that all structural element has to start and end
inside the recursion matrices. This means that no interior loops and no bulges on the target
sequence may be closed before i = 3. Moreover no bulge and no interior loop on the query
sequence may be closed before j = m − 2. Finally C1,0 is set to 0. As a consequence the
matrix are initialized in the following way

I(1, j) = I(2, j) =∞∀j
Bx(1, j) = Bx(2, j) =∞∀j
I(i, m) = I(i, m − 1) =∞ ∀i
By(i, m) = By(i, m − 1) =∞ ∀i

The above recursion is graphically represented in figure 1.
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Figure 1: Simplified representation of the structure decomposition used in RNAplex. For clarity only the
decomposition of the closed structure terms (see equation 1) is shown. Black dots represent paired bases. White
dots denote unpaired bases. Given that xi and yj are paired, C stores the best energy of interaction between
x1..xi and yj ..ym. S is the stacking energy of two pairs of nucleotides. P is the bulge penalty to add to 1x0
bulges. I is the matrix holding the best energy of interaction given that xi and yj are in an interior loop. I1

1
is

the destabilizing energy of a 1x1 interior loop (1x2, 2x1 and 2x2 cases not shown) and Bx represents the matrix
storing the best energy of interaction given that residue yj is aligned to a bulge. The cases where xi and yj do
not pair (interior loop and bulge extension and/or creation) are not shown

2.3 Suboptimal Hits

In case of long sequences it is possible that many hybridization sites reach a significant
interaction energy. RNAduplex handles these by backtracking all position in the recur-
sion matrix which have an energy higher than a given threshold. The main problem of
this method is that the majority of hits returned are overlapping and do not contain bio-
logical relevant information. RNAhybrid reports suboptimal hits by masking previously
reported sites and recomputing the whole recursion matrix, which is very time consuming.
RNAplex uses an idea developed by Durbin [DEKM98] which allows to recover all non
overlapping suboptimal hybrids above a given threshold in one pass. This is achieved on
one hand by storing the score of the alignment minus the energy threshold, the so-called
match score, in an additional line of the C table and on the other hand by setting unpaired
region in the C array to the current match score (see figure 2). The recurrence relation for
the C matrix is then changed to

C(i, 0) = min

�
C(i − 1, 0)
minj C(i − 1, j) − T

(5)

C(i, j) = min

�
C(i, 0)
C(i, j) from eq.(1)

(6)

60



Figure 2: a) The repeat dynamic programming matrix generated by RNAplex for the two RNA sequences
”UACAUGUACC”and ”GUAUA” and a threshold set to −2 kCal/mole. In red the backtracking path returning
two separate match regions, with energy -5.90 and -3.50 kCal/mole. b) The duplexes in dot-bracket format as
returned by RNAplex.

2.4 Memory usage

In order to reduce the memory and time consumption of RNAplex a slightly different
recursion has been used. It should first be noted that based on the recursion presented in
section 2.2 each position (i,j) in the matrices Ci,j , Ii,j , B

x
i,j and By

i,j can be computed
from the previous two columns of those matrices. So in a first step, instead of keeping the
whole recursion matrices in memory, only 3 columns of each matrix are needed to locate
the position in the alignment which scores higher than a given threshold T. The memory
usage of this step reduces to O(3 · m) with m the length of the query sequence. Storing
these positions allows one then to recompute the local alignment of the query sequence to
the substring of the target sequence around the stored region. The memory consumption
of this step reduces to O(lm) where l represents the maximum hybridization length. The
reduced memory usage permits to reduce the computation time by a factor two, mainly
because most of the computation are done inside the faster processor cache memory.
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We also tried to reduce the computation time of RNAplex by identifying stretches of
complementarity before attempting the more time consuming dynamic programming pro-
cedure. GUUGle, which locates potential helical regions under RNA base pairing rules
with the help of suffix arrays, was used to find these highly complementary regions. The
trade-off between speed and sensitivity is controlled by the ktup parameter, which spec-
ifies the size of complementarity to search for. We compared the CPU time and sensi-
tivity of RNAplex and GUUGle+RNAplex when searching for experimentally verified
miRNA targets. Up to a word size of 7 RNAplex is faster than GUUGle+RNAplex,while
the sensitivities for both programs are the same. GUUGle+RNAplex performs better
than RNAplex from a word size of 8 nt however at the cost of a reduced sensitivity.
RNAplex+GUUGle may prove to be useful for searching of gapped interactions with
complementary regions longer than 7 nt.

2.5 Accuracy

RNAplex uses an affine function instead of a log function to model the destabilizing loop
energy. This energy model also neglects destabilizing energy coming from loop asymme-
try. As a result the hybridization energies as computed by RNAplex and RNAduplex
may differ. Table 1 reports the energy difference between RNAduplex/RNAhybrid
and RNAplex for loop size up to 14 and loop asymmetry up to 7. As expected, the
difference between RNAduplex/RNAhybrid and RNAplex results correlate with the
loop asymmetry. On the other hand the energy model of RNAplex deviates only by 0.4
kCal/mole from the standard one for symmetrical loops up to size 14 and bulges up to
size 7. To further test our energy model we used RNAplex to recover the experimentally
verified human miRNA target sites. All the sites were predicted correctly by RNAplex.
Moreover, we compared the energy returned by RNAplex with the energies computed
by RNAhybrid on the same data set. The maximal relative energy difference between
RNAplex and RNAhybrid was 6.8% or 1.2 kCal/mol for a predicted interaction energy
of -17.40 kCal/mole.

2.6 Performance

The run time performance of RNAplex has been compared to RNAhybrid by searching
for possible hybridization sites for 10 randomly generated 19-mers against a set of 10, 20,
50 and 100 sequences of length 2000 nt each. Both programs were compiled with ”-O2
-g” and ran on an Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz. In all cases RNAplex
is about 65 times faster than RNAhybrid without loss of sensitivity. Moreover in con-
trast to RNAhybrid, RNAplex can search for hybridization sites in sequence longer than
2KB, which makes it a fast tool for genome wide hybridization studies. At this velocity
RNAplex can search for all possible hybridization sites of a 19 nt miRNA against the
whole human 3’UTR database in 80sec, instead of 90min for RNAhybrid.
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loop size query loop size target
0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0.20
1 0 0 0 0.10 1.35 1.90 2.40 2.90
2 0 0 0 0.35 0.9 1.35 1.90 2.35
3 0 0.10 0.35 0.10 0.35 0.90 1.35 1.80
4 0 1.35 0.90 0.35 0.10 0.35 0.80 1.25
5 0 1.90 1.45 0.90 0.35 0.20 0.25 0.70
6 0 2.40 1.90 1.35 0.80 0.25 0.30 0.10
7 0.20 2.90 2.35 1.80 1.25 0.70 0.10 0.40

Table 1: Maximal energy difference between RNAduplex and RNAplex for common loops found
in miRNA/mRNA interaction. The first row gives information about the size of the loop in the
target strand while the first column reports the loop-size on the query strand. The total loop size
can be retrieved by adding the coordinates of a given element in the table. The loop asymmetry
is calculated by subtracting the coordinates of a given element in the table. The maximal energy
difference between RNAduplex and RNAplex is found for 7x1 loops where the asymmetry is
highest. Inversely the smallest energy differences are found for symmetrical loops and bulges. In
our energy model gI

open and gI
ext were set to 1.20 kCal/mole and 0.15 kCal/mole respectively

while gB
open and gB

ext were set to 2.00 kCal/mole and 0.40 kCal/mole

3 Application

3.1 Off-target effect prediction

Successful application of post-transcriptional gene silencing depends on one hand on reli-
able selection of potent siRNAs and on the other hand on the ability to ensure specificity of
the siRNA for its cognate mRNA. The most commonly used tool to control siRNA speci-
ficity is the basic local alignment search tool BLAST. However due its limited capacity to
search for gapped alignment, BLAST may in many cases miss relevant hits.

This is examplified in table 2 where proved off-targeted genes from Jackson where blasted
against the whole human mRNA database. Jackson showed that as few as 5 contiguous
identical nucleotides could lead to off-target effects. While RNAplex could retrieve all
9 off-targets validated by Jackson, BLAST returned only 3 of them. Moreover the time
needed by RNAplex to scan the whole human mRNA database for undesirable matches
was 80sec , which is fast enough for considering RNAplex as a more sensitive alternative
to BLAST.
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Accession Number Identity BLAST RNAplex
NM 002271 14/15 YES YES
NM 021033 14/15 YES YES
NM 017748 11/15 YES YES
A133672 8/13 NO YES
NM 004165 10/12 NO YES
NM 002946 5/11 NO YES
NM 018457 9/10 NO YES
NM 013242 8/10 NO YES
AW237459 8/11 NO YES

Table 2: BLAST and RNAplex performance at retrieving experimentally confirmed off-targets from
Jackson [JBS+03]. Accession numbers are from NCBI Genbank database. The max length of
contiguous identical nucleotides as well as the total number of identical nucleotides is shown in
column 3. The last column shows the ability of RNAplex and BLAST to recover the off-targeted
transcripts. NCBI BLAST was run with E=10000,wordsize=7 and Number of hits = 2000. 80 sec
were necessary for RNAplex on a Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz for finding putative
hits

3.2 ncRNAs interactions with mRNAs

Regulatory RNAs often function by means of direct RNA-RNA binding. In order to gain
insight in the propensity of ncRNAs to bind to mRNAs, we investigated whether RNAz
predictions show an increased tendency of interacting with known mRNAs compared to
dinucleotide shuffle RNAz hits. RNAplex was used to find putative targets for 1500
highly structured RNAz predictions in known human mRNAs. For each RNAz and shuf-
fled hit, the most stable interaction was kept. However interactions involving RNAz hits
with overlapping mRNAs were discarded. Interaction free energy distributions of the true
and shuffled RNAz hits were tested against the null hypothesis of a common distribution
using the Kolmogorov-Smirnov method. The null hypothesis was rejected with p < 10−4.
The densities of interaction free energy are shown in figure 3. A similar work was done
in a recently published paper [BB+07]. In contrast to our approach which only used
RNAplex to find putative targets, Bompfünewerer et al. located possible interaction part-
ners with NCBI BLAST. This filtering step, which allows to rapidly scan for possible
interactions, may also cause a loss in sensitivity when compared to the results returned by
RNAplex. Interestingly one of the strongest interactions results from the hybridization of
pre-Mir-219 with YAP-1 mRNA. Given the high interactions energy, one might consider a
siRNA-like function of pre-Mir-219 against YAP-1.

We have identified here a large number of evolutionary conserved structure ncRNA candi-
date genes that interact with mRNAs significantly stronger than random sequences.
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Figure 3: Density of distribution of interaction energy for true RNAz hits (solid line) and shuffled RNAz hits
(broken line) against the human mRNA. The inset shows the tail of the distribution.

4 Discussion

The folding problem of more than one RNA strand can be treated at different levels of
complexity. Because of the high computational cost of many algorithms for prediction
of RNA-RNA interactions, target search may be best performed by a hierarchical search
strategy, employing a series of filters that balance speed versus accuracy. Here we have
introduced the program,RNAplex, which drastically reduces the search time of possible
hybridization partners, mainly by neglecting intramolecular interactions. In the context
of RNA-RNA interaction-search strategy, RNAplfold [BBB+] can be used to filter out
inaccessible target sites predicted by RNAplex. The remaining target sites can further be
analyzed using tools such as RNAup, RNAcofold or IRIS.
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