Architecture-Based Reliability Prediction
with the Palladio Component Model

Franz Brosch, Heiko Koziolek, Barbora Buhnova, Ralf Reussner

FZI Karlsruhe, Germany ABB Corporate Research, Germany
Masaryk University, Czech Republic
Karlsruhe Institute of Technology, Germany
heiko.koziolek @de.abb.com

Software-intensive systems are increasingly used to support critical business and indus-
trial processes, such as in business information systems, e-business applications, or in-
dustrial control systems. The reliability of a software system is defined as the probability
of failure-free operation of a software system for a specified period of time in a speci-
fied environment. To manage reliability, reliability engineering gains its importance in the
development process. Reliability is compromised by faults in the system and its execu-
tion environment, which can lead to different kinds of failures during service execution:
Software failures occur due to faults in the implementation of software components, hard-
ware failures result from unreliable hardware resources, and network failures are caused
by message loss or problems during inter-component communication.

To support fundamental design decisions early in the development process, architecture-
based reliability prediction can be employed to evaluate the quality of system design, and
to identify reliability-critical elements of the architecture. Existing approaches suffer from
the following drawbacks that limit their applicability and accuracy.

First, many approaches do not explicitly model the influence of the system usage profile
(i.e., sequences of system calls and values of parameters given as an input to these calls) on
the control and data flow throughout the architecture, which in turn influences reliability.
For example, if faulty code is never executed under a certain usage profile, no failures
occur, and the system is perceived as reliable by its users. Existing models encode a system
usage profile implicitly into formal models, typically in terms of transition probabilities
in the Markov Models characterizing the execution flow among components. Since the
models are tightly bound to the selected usage profile, evaluating reliability for a different
usage profile requires repeating much of the modeling effort.

Second, many approaches do not consider the reliability impact of a systems execution
environment. Even if the software is totally free of faults, failures can occur due to un-
availability of underlying hardware resources and communication failures across network
links. Neglecting these factors tends to result in less accurate and overoptimistic reliabil-
ity prediction. On the other hand, approaches that do consider the execution environment
typically offer no means to model application-level software failures, which also results in
a limited view of software system reliability.

31

Third, many approaches use Markov models as their modeling notation, which is not
aligned with concepts and notations typically used in software engineering (e.g., UML or
SysML). They represent the system through a low-level set of states and transition proba-
bilities between them, which obscures the original software-engineering semantics. Direct
creation and interpretation of Markov models without any intermediate notation may be
uncomfortable and hard to accomplish for software developers, especially when it is to be
done repeatedly during the development process.

: Legend:
Component % > 1 Model 1 a. Comp. service — proceeds — =) creates
Developer == . T~ " behaviour model i ivi
components |} 7% role artifact activity
; Eﬁ '~)
Software > 2. Mot:’tlal L b. Archl:‘ecltural AN N
" -3 model
Architect assemay ~ o i 5. Solve 6. Determine possible
3. Model <. Deployment —3y° PCM instance —) parameter Physical System States (PSS)
System -->»| executionenv. — model -
Deployer and allocation \ -

dependencies and their probabilities
4. Model d. Usage model
Domain >
Expert

usage scenarios "
11. Appl pYate g Per-state f. DTMC for
- APPY reliabili asingle PSS
R A werss
4 \ ¥ Y \
7. Generate a

. Runni (] Not OK
i. Running
12. Implement OK 10. Assess the 9. Aggregate 8. Evaluate the |
the system design quality | ¥] the results DTMC < DTMC for
- All PSSs a single PSS

A evaluated | 1 Next PSS A

-~

Figure 1: Palladio Component Model Reliability Prediction Approach

Our contribution is a novel technique for architecture-based software reliability model-
ing and prediction that explicitly considers and integrates the discussed reliability-relevant
factors [BKBR12]. The technique offers usage profile separation and propagation through
the concept of parameter dependencies [Koz08] and accounts for hardware unavailabil-
ity through reliability evaluation of service execution under different hardware availabil-
ity states. We realize the approach as an extension of the Palladio Component Model
(PCM) [BKRO09], which offers a UML-like modeling notation. We provide tool support
for an automated transformation of PCMs into Markov chains and space-effective eval-
uation of these chains. We discuss how software engineers can use architecture tactics
to systematically improve the reliability of the software architecture. Furthermore, we
validate the approach in two case studies.

References

[BKBR12] Franz Brosch, Heiko Koziolek, Barbora Buhnova, and Ralf Reussner. Architecture-
Based Reliability Prediction with the Palladio Component Model. IEEE Transactions
on Software Engineering, 38(6):1319-1339, November 2012.

[BKRO9] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 82(1):3-22,
January 2009.

[Koz08] Heiko Koziolek. Parameter Dependencies for Reusable Performance Specifications of
Software Components. PhD thesis, University of Oldenburg, Germany, March 2008.

32

