
Approaches and challenges for a single sign-on enabled
extranet using Jasig CAS

Florian Holzschuher, René Peinl

Institute of Information Systems – Hof University
Alfons-Goppel-Platz 1

95028 Hof
florian.holzschuher2@iisys.de

rene.peinl@iisys.de

Abstract: In this paper we describe our experiences with setting up a single sign-
on enabled intranet with open source software and then making it accessible over
the internet using a reverse proxy. During this process, we encounter several
issues. We describe those, discuss possible solutions and present our final setup.

1 Introduction

Companies today often have a multitude of software systems running in their internal
networks to support their business processes. For employees the ease of use increases,
the more integrated these systems are. However, apart from Microsofts server systems
that provide out-of-the-box single sign-on (SSO) in Windows domain environments, it is
still not common to have even this basic integration, although Gartner called SSO as part
of identity and access management (IAM) solutions a “must have for enterprises of all
sizes and industries” [Wi+03] already in 2003. Especially in open source settings things
seem complex since there are a large number of technological choices and no clear
market leader, so that in many cases only authentication against a central LDAP
directory is configured instead of SSO.

Our goal was to create an SSO-enabled extranet setup, making as few changes to the
software used as possible. In our example, we connected Apache Rave, XWiki, Alfresco
and Zarafa to Jasig CAS in order to provide single sign-on, based on accounts taken
from a local LDAP directory service. This way, users only have one global account and
only need to log in once per session, granting them access to all connected systems
through their web browser. All systems do also share user profile information and report
user activities to Apache Shindig in order to centrally display them in the Rave portal.

Jasig Central Authentication Service (CAS) was chosen as it is a relatively widely
adopted open source authentication system, supporting multiple authentication protocols
and methods. The rest of the paper is organized as follows. We first describe different
SSO technologies and give an overview of some open source implementations. The we

106



present our test setup. Afterwards we discuss general issues with the reverse proxy setup
and specific issues with SSO, before we conclude with a discussion of results.

2 Single sign-on technologies

SSO can be applied in different scenarios that have different levels of complexity. The
probably easiest case is given when all applications are running on the Intranet are
using the same runtime environment like a Java application server and are prepared
for pluggable authentication [Cl02] like using JAAS in Java, or SAP applications
inside the Netweaver Application Server [Bo10]. In this case the container is managing
authentication and authorization anyway, so it is quite easy to switch the container from
the usual LDAP authentication to a central identity provider like CAS. Ideally, you don’t
have to make any changes on the application side. Pseudo SSO, using client-side
technology to store passwords for server applications is not considered here [PM03].
SSO becomes more complicated if you are considering multiple runtime environments
like one application running on Java, another on PHP and a third one on ASP.NET for
example. You have to either find applications supporting authentication standards of the
identity provider (see below) or an identity provider that supports all those (e.g., CAS).
An additional level of complexity is added, if you are running your applications in an
extranet setup [UB09], using a reverse proxy to relay and rewrite client requests that
address a single host, to the multiple machines running the applications (see figure 1).
The reverse proxy could be used to pre-authenticate the requests, so that only
authenticated users are directed to the single applications [Ha+12]. Since CAS does not
support all functionality with Apache Web server1, we chose CAS filters inside Apache
Tomcat running the applications.
A lot of research has been conducted on even more complex federated scenarios that
enable users across organizations to access to access applications without additional
login [CP07], [Ch09]. This requires one identity provider per organization and an
established trust relationship, so that security tokens issued by one identity provider are
trusted by all the others.

SSO can further be achieved using different authentication protocols. These are ideally
transparently managed by the SSO system.
Kerberos is the predominant standard for SSO in Windows environments [Pr11]. In
contrast to NTLM, which is the default authentication protocol for Windows, it is able to
transfer credentials not only from client to server applications, but also down the road to
further systems used by the service provider (e.g. the database). This feature is called
delegated authentication. Kerberos can be used in Linux environments as well, although
it is not trivial to setup the whole stack consisting of DNS (e.g. Bind), a certificate
authority (e.g. OpenSSL), a directory service (e.g. OpenLDAP) and the core component
key distribution center (KDC; e.g. Heimdal).
The Security Assertion Markup Language (SAML) is mainly used for authenticating
against Web services. However, version two includes the Web Browser SSO profile

1 https://wiki.jasig.org/display/CASC/Client+Feature+Matrix

107



(SAML SSO) designed to authenticate a user against Web applications [Hu+05]. It’s an
XML-based protocol designed to be included in transport means like SOAP over HTTP
and already implemented by some large application providers like Google [Ar+11].
Besides service-oriented architectures (SOA) it is mainly discussed for cloud scenarios
[Ce+10]. More recently, SAML is frequently accompanied by XACML, in order to
provide attribute-based access control, which is a more general form of role-based access
control [VDB07]. Emerging from public Web sites like social networks, OpenID was
proposed as a means to use an identity from one identity provider for accessing other
services [Io12]. However, in the internet OpenID currently suffers from relunctance of
relying parties [Su+10] and lack of trust from end users [Su+11]. For authorization,
OpenID is often accompanied by OAuth 2.0 [SB12]. OpenID connect is a recent
development in this area trying to better harmonize both parts [Bo12].

Finally, in the open source area, a multitude of SSO providers is available, each with
tested compatibility to a number of different open source systems. A selection of well
know open source SSO providers is briefly compared in table 1 and discussed below.

Table 1: comparison matrix for open source SSO solutions

Jasig CAS JOSSO WSO2 Id Server Open AM
Latest
version

3.5.2
(22.02.13)

2.3.0
(31.08.12)

4.1.0
(11.02.13)

10.1.0
(20.02.13)

License Jasigs own open
source license

LGPL APL v2 CDDL 1.0

Protocols CAS, OAuth,
OpenID,
SAML,
Kerberos

SAML,
NTLM

OAuth, OpenID,
XACML,
SAML, …
(18+),

OAuth, SAML,
Kerberos

Authenti-
cation
backends

JAAS, LDAP,
AD, Radius,
JDBC, X.509,
Negotiate
(Kerberos)

JAAS, LDAP
JDBC, two
factor auth
with WiKID,
X.509

LDAP, AD,
JDBC,
Cassandra

LDAP, AD,
two-factor auth
with HOTP,
Negotiate
(Kerberos)

Runtimes Tomcat or other
Servlet 2.4
container

JBoss,
Tomcat,
Websphere,
Geronimo,
Jetty

WSO2 Carbon
server

Tomcat, JBoss

Agents Spring, MS IIS,
JEE, Apache
2.2, PHP, PAM

Apache 2.2,
PHP 4+, MS
IIS, Liferay,
Alfresco,
phpBB,
Coldfusion,
Spring

None found Apache 2.4, MS
IIS, Sun Web
Server, JBoss,
Glassfish,
Tomcat,
Websphere,
Web Logic

108



Shibboleth is the implementation of the Internet 2 consortium and specifically designed
for federated scenarios [Ch09]. It uses SAML messages with digital signatures in order
to improve trustworthiness (ibid.). It allows protecting the user’s identity by using
random pseudonyms for every session. Since both federation and anonymity are not
required in our scenario, we did not consider Shibboleth.
Jasig CAS (Central Authentication Service) is a SSO system using its own protocol
(also named CAS). However, it also supports SAML and included support for SAML
version 2.0 in CAS v 3.5.1 dating in October 2012 by updating to OpenSAML 2. It also
includes support for OAuth 2.0 and can act both as an OAuth client and delegate
authentication to other OAuth servers like Facebook or Google, as well as an own
OAuth server to directly authenticate OAuth clients. The basic architecture of CAS is
similar to the Kerberos model [Io12]. The CAS protocol also supports ticket proxying,
which is similar to the Kerberos’ delegated authentication. Starting with CAS version 3,
it does also support single logout [WY10]. We chose CAS due to its direct support of
Liferay, Moodle and Mule.
Other open source SSO systems include JOSSO [AFG06], a completely Java based
identity provider that also supports PHP and dotNET service provider and has a nice
graphical tool to configure SSO scenarios, the WSO2 Identity Server [SFB10], which
is especially interesting when using the family of WSO2 infrastructure products as well
as the successor of the Sun OpenSSO framework Forgerock OpenAM [Th11]. We plan
on testing some of these in future work. Especially OpenAM in conjunction with the
Open Identity Gateway seems a promising alternative for our scenario.

3 Basic setup

Our setup consists of a single machine with an external IP running an Apache web server
that acts as a reverse proxy, a single machine with Jasig CAS and several machines
running our service providers, all of which are accessible through web interfaces. All
machines are located inside a DMZ behind two firewalls, one towards the internet and
one towards our internal network (see figure 1).

In contrast to common patterns [So03], we do not separate the proxy from the other
machines by an additional firewall, but only use it as a gateway for terminating the SSL
connection [Ma99]. The reverse proxy is using a signed certificate, only allowing
HTTPS connections and redirecting any unencrypted calls. The Apache Tomcat instance
running Jasig CAS is also SSL-enabled to allow for secure ticket validation, but is using
a self-signed certificate. We are using AJP for connecting to Tomcat-based applications.
However, that didn’t prove much better than a normal http connection (see section 4.2).
We did also consider nginx as a replacement for Apache httpd since it is optimized for
reverse proxy scenarios and provides an easy to use caching mechanism. Another
alternative worth testing would be to use a specialized SSO gateway like the Forgerock
Open Identity Gateway [BCN12]. It promises to enable SSO for those 30% of typical
Web applications that do not work with the usual SSO filters or agents.

For all connected software systems running inside Apache Tomcat we used the
authentication, validation, request wrapping and single sign-out filters provided by CAS.

109



These filters together redirect unauthenticated users to the SSO login page, validate
incoming tickets and store the authenticated user in their respective sessions. The
Apache web server used for the PHP-based Zarafa server is using a CAS authentication
module (mod_auth_cas) which also redirects users, evaluates tickets and sets the logged
in user for requests.

figure 1: system architecture of the extranet scenario

Yet, unless software is prepared for reading the provided session information, an
authentication plugin is required, telling the service provider which user is currently
logged in. Moreover, the first time a user logs in, a new local user account may have to
be created, preferably using user data from the local LDAP server. A random local
password should be set at that point to avoid empty local passwords, especially if local
login cannot be disabled completely. Since we are using open source software
exclusively, we were able to implement suitable plugins for almost all systems we
wanted to include. However, in most cases configuration was enough and no
programming was necessary. All systems are also connected to an LDAP server in order
to retrieve additional user information like full name and email address from it.

We also conducted some tests with Android-based smartphones and tablets and found
out that Chrome on Android behaves in the same way as its Desktop counterpart.

110



4 General challenges

Running our services through a reverse proxy and with single sign-on filters caused
several problems, not all of which could be solved completely.

4.1 Platform problems

In general, the whole setup has more layers than a normal intranet setup, reducing
performance noticeably. We addressed this by keeping rewriting to a minimum and only
including paths in the SSO filtering that we were certain needed direct protection or an
automatic redirect to a login page. When applicable we were able to achieve slightly
better performance by using the binary Apache JServ Protocol (AJP) to connect
application servers to the proxying web server, instead of a normal HTTP connection. It
did also enhance performance to use nginx instead of Apache and enable its caching.
However, the login process is not affected by this caching and nginx needs a plug-in for
AJP support instead of supporting it natively.

Some applications had problems with being accessed using HTTPS in their external
URL while the reverse proxy accessed them using HTTP. We were able to fix this by
setting the appropriate parameters in all applications and placing redirects in our web
server configuration. When using an HTTP reverse proxy, CAS' login page displays a
warning message about an unencrypted connection that will not support SSO, but
works anyway. We could eliminate this warning by using even an unencrypted AJP
connection. Supplying all application and web servers with certificates and reconfiguring
the reverse proxy to use SSL may also solve these protocol-related problems, but will
result in a more complex setup with slightly lower performance.

In terms of usability, we found that unless directly connected via Spring Security, the
applications' logout buttons did not work with SSO. They may terminate the
application's own session, but with the SSO session still active, the user is immediately
logged in again. This is especially confusing since CAS provides a dedicated single log-
out (SLO) filter and the client feature matrix states that SLO should work out of the box
for all clients, except Spring [Fr12]. It is also tough to correct this behavior
programmatically. Although most systems provide an interface to create an
authentication plugin, overriding the logout action is usually not available. In any case
the question whether a user only wants to log out of a single application or terminate the
whole SSO session is still open.

Beginning with Java 7, some SSL warnings are treated as errors and cannot be easily
circumvented inside applications. We found that if the name in the certificate and the
URL don't match, an “unrecognized_name” error is detected, which can be fixed by
including all possible external server names as aliases in the web or application server's
configuration. In this context, further problems can be caused by faulty DNS and domain
name configuration, causing further name mismatches on reverse lookups.

111



4.2 Rewriting

Depending on which parameters are used for their generation, web pages delivered by
proxied web services can contain incorrect URLs referencing other resources. This is
caused by the Tomcat server detecting its own machine's external address, incorrectly
specified external hosts and contexts differing from the local context inside Tomcat.

Since we were trying to run all services under sub paths of our external host to avoid
URL collisions, we kept experiencing faulty redirects and incorrect links. One of our
approaches was to use the Apache web server's rewriting functionality. It can be used to
correct URLs in headers, links, cookies and references to and within other resources
such as JavaScript and CSS.

As this approach did not produce consistently satisfactory results, we resorted to
replicating the sub path structure on all web and Tomcat application servers. This way,
we solved most problems concerning URLs and redirects and only had to manually
correct some URLs in the applications' resources and configuration and move static
resources to their new location if needed. The drawback of this method is having to
create static contexts in Tomcat, with a hash tag in its name as a delimiter to denote the
sub path. This was still necessary when using AJP instead of http as described below.

While using AJP could largely solve the problem of incorrect links and faulty
redirects, we found that some applications' resources like CSS files and especially links
within JavaScript code were still wrongly referenced. Therefore, additional rewrites or
the sub path replication mentioned above were needed in this setup as well. We
determined that this problem is based on the fact that applications, when started, use
their local context information to generate resource links which are incompatible with
the differing context used by the web server. We correctly configured the proxyName
and proxyPort attributes in the AJP connector but still had those problems. The most
notable benefit of AJP was, that CAS was no longer complaining about the unsecured
connection between the proxy and the service providers when the “secure” option in AJP
is set to true.

Another interesting configuration option in the AJP connector is called
“tomcatAuthentication” and causes the authentication to already be performed on the
reverse proxy instead of the connected tomcat application servers. This configuration
looks similar to the Forgerock Open Identity Gateway solution. However, in our test, we
could not perceive any notable differences compared to authentication using Tomcat,
especially regarding performance. The configuration might become a bit easier though.
Finally, you can configure encrypting the connection between Apache httpd and Tomcat
by configuring a pre-shared key using AJP’s “requireSecret” option.

4.3 Service accessibility

Direct access to applications using their own local administrative accounts, did also
prove to be a challenge. After the initial setup, those accounts are often the only way to
properly configure applications and delegate permissions to other users. However, the

112



filters used to protect services by redirecting unauthenticated users to the CAS login
page are blocking access to the applications' own login mechanisms. We found no way
to enable both SSO as a default method and still provide local access for admin users as
a fallback. The only option looking promising in CAS is called gateway mode. This
mode is attaching tickets to the request for already authenticated users and passing
unauthenticated request through to the service provider. However, this mode requires
larger changes to the service providers in order to start the SSO session.

One approach we took was creating users with the same ID in the LDAP directory,
preserving for example the user's administration rights in the application. Alternatively,
one could manually add or override these rights in the applications' account database for
existing LDAP accounts, since the administration interface is unavailable. Of course, this
approach is not necessarily suitable for production environments.

This could be circumvented by storing per-application rights in the LDAP directory,
which some applications offer as an option. But this would require all necessary schemas
to be incorporated into the directory's structure and additionally writing plug-ins for
applications that don't already support this approach. Moreover, we reckon a dedicated
authorization system might be a more elegant solution when dealing with a greater
number of systems. Though, this will require more and possibly more complicated
plugins, for which there is even less predefined support from applications.

Another way around this problem is a more sophisticated authentication chain,
checking several authentication possibilities before redirecting the user and offering an
opt-out functionality for the SSO mechanism. This way at least users knowing their full
URL could still log in. For this to work, the SSO login page would need an additional
opt-out button which redirects the user to the original page with an additional parameter.
This parameter would then be detected by a modified SSO filter and disable or modify
the redirect to allow a login.

Theoretically, one could also disable the automatic redirects altogether, making the
user choose between a button to log in locally and one to log in using SSO, which
triggers the redirect. This modification would be needed for each individual application
and would make the fully automated sign-on procedure semi-automatic. To minizime the
usability trade off made by this approach, at least within the comapny the SSO login
page could be set as the browsers' starting page, offering the user to log in at the
beginning of each session while still leaving the option to opt out.

Furthermore, services will also be used from within a company's network and
concerning performance it would be desirable to access them directly, bypassing the
reverse proxy. But we found that some applications need to have their external URL
specified, which in our example would be pointing to the reverse proxy. Thus accessing
applications directly can cause inconsistent web pages being generated, with resources
being referenced internally as well as externally or possibly with an incorrect URL.

113



5 Specific problems

With Jasig CAS we encountered the problem that the certificate used for its Tomcat
server needs to have the subject alternate name set correctly. While we could fix this
for our self-signed certificates by generating them accordingly, CAS would not work
with the existing certificate used by our reverse proxy server, since it lacks this
parameter. To generate a suitable certificate using Java's keytool, Java version 7 is
needed, so one needs to be careful when doing so as still many applications only work
properly when using Java version 6.

When trying to connect our Apache Rave portal to its back-end, Apache Shindig, we
realized that it was not easily possible to authenticate against CAS and maintain a SSO
session, i.e. simulate a user, from Java code, to access the service protected by the CAS
filters. The SSO setup we chose is designed to be used from a web browser and although
the protocol is documented, we could not find or develop a connector that can establish a
usable SSO session from java code. Similar problems will occur when communication
between individual systems is required. Again, this could be resolved using a more
sophisticated authentication chain, allowing other login methods to pass through without
triggering redirects. We should also note that direct login from code using a username
and a password is discouraged by the CAS developers, so our failure to maintain a
session may be the desired behavior.

Otherwise CAS' ticket proxying functionality may provide a solution, also using a
simulated client with a service account. This solution gives applications the possibility to
request a proxy granting ticket for a logged-in user that it can use to request further
tickets to be consumed and validated by other applications. This way, authenticated
server-to-sever communication is possible without impersonating a user, assuming proxy
tickets are accepted.

This is still not fully sufficient in our case as we also need to have server-to-server
communication when there currently is no user logged in and background processes are
firing events. Anyway, ticket proxying is more likely to work in our case since it only
requires a single call to CAS from the user, causing a redirect to the calling service with
the ticket needed to start proxying.

To enable this functionality we would need trusted, encrypted connections between the
servers concerned, further HTTP service endpoints, capable of being validated by CAS
and receiving proxy granting tickets and handling proxy tickets. Especially in case we
wanted to use tickets from a real user session, we would also have to modify the
applications' security systems, storing CAS session information so that it can be used
from any part of the application requiring server-to-server communication.

Lastly, we tried to make some of our services searchable using Apache Solr with an
unmodified ManifoldCF instance as a crawler. This also failed due to problems with the
SSO session. As with our manual approach, we did manage to authenticate against CAS
using built-in functionality but then failed to actually use the session for crawling. The

114



crawler was being redirected back to CAS after each request, even though it specifically
supports application server sessions.

6 Conclusion

Our experiences show, that adding only a little more complexity by introducing a reverse
proxy leads to several issues with SSO in a real world scenario. Some of the issues
described are application or SSO system specific, some others are only basic challenges
like specific settings in the SSL certificate and a few are issues by design, like single
sign-out.

We found that the difficulty of including an application into the whole setup depends
strongly on the software design, which frameworks were used in what way and how well
modifying an application's configuration, code and plugin capabilities are documented.
For example using Spring Security offers generic interfaces for adding SSO support,
which make integration rather easy in case you are familiar with Spring configuration.
But we also found that in some cases an individual preparation for SSO plugins can be
more suitable and easier to configure – possibly easier to handle in a more sophisticated
authentication chain.

Our biggest problem with the reverse proxy setup was handling the context switch
between application and web server. Many applications are able to detect requests
through a reverse proxy or can be configured accordingly, dealing with protocol and
external hostname changes. But we found that hardly any application will work normally
when placed under a different path in the web server compared to the application server
it is running on. This must be considered bad code design, since it is no problem to query
the current context information like hostname and context path from the application
server. However, using hard coded paths at least in some areas of the application
(especially JavaScript) seems still the default, based on our tests. Maybe this is a
negative side-effect from the current trend to port application code from the server to
client-side JavaScript.

In general, we can conclude that a basic SSO-enabled extranet with CAS can be created
with a reasonable amount of work, given well-prepared applications. Yet creating a well-
rounded, high quality working environment will require extensive modifications to many
applications' authentication systems and partially to the IT infrastructure around them.

References

[AFG06] Agostino Ardagna, C., Frati, F., & Gianini, G. (2006). Open Source in Web-Based
Applications: A Case Study on Single Sign-On. International Journal of Information
Technology and Web Engineering (IJITWE), 1(3), 81-94.

[Ar+11] Armando, A., Carbone, R., Compagna, L., Cuellar, J., Pellegrino, G., & Sorniotti, A.
(2011). From Multiple Credentials to Browser-based Single Sign-On: Are We More

115



Secure? In: Future Challenges in Security and Privacy for Academia and Industry (pp.
68-79). Springer Berlin Heidelberg.

[BCN12] Bryan, P., Craig, M., Nelson, J. (2012): Guide to OpenIG 2.1.0. Forgerock. 17.05.2012
http://docs.forgerock.org/en/openig/2.1.0/gateway-guide/index/index.html

[Bo10] De Boer, M., Essenpreis, M., Garcia-Laule, S., Raepple, M. (2010):Single Sign-on mit
SAP – Lösungen für die Praxis. Galileo Press, Bonn

[Bo12] Boyd, R.. Getting Started with OAuth 2.0. O'Reilly Media, Incorporated, 2012.
[CP07] Camenisch, J., & Pfitzmann, B. (2007). Federated identity management. In: Security,

Privacy, and Trust in Modern Data Management (pp. 213-238). Springer Berlin
Heidelberg.

[Ce+10] Celesti, A., Tusa, F., Villari, M., & Puliafito, A. (2010). How to enhance cloud
architectures to enable cross-federation. In IEEE 3rd International Conference on Cloud
Computing, pp. 337-345

[Ch09] Chadwick, D. W. (2009). Federated identity management. In: Foundations of Security
Analysis and Design V (pp. 96-120). Springer Berlin Heidelberg.

[Cl02] De Clercq, J. (2002). Single sign-on architectures. In Infrastructure Security (pp. 40-58).
Springer Berlin Heidelberg.

[Fr12] Fritschi, J. (2012): CAS Client Feature Matrix. Jasig. 04.04.2012.
https://wiki.jasig.org/display/CASC/Client+Feature+Matrix

[Ha+12] Haron, G.R., Maniam, D., Sadasivam, V., Loon, W.H. (2012): Re-engineering of Web
Reverse Proxy with Shibboleth Authentication. International Conference for Internet
Technology and Secured Transactions, 10-12 Dec. 2012, London

[Hu+05] Hughes, J., Cantor, S., Hodges, J., Hirsch, F., Mishra, P., Philpott, R., Maler, E. (2005):
Profiles for the OASIS Security Assertion Markup Language (SAML)V2.0. OASIS
standard. http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf

[Io12] Ionita, M. G. (2012). Secure Single Sign-On using CAS and OpenID. Journal of Mobile,
Embedded and Distributed Systems, 4(3), 159-167.

[Ma99] Maier, P. Q. (1999): Implementing and supporting extranets. Information systems
security, 7(4), 52-59.

[PM03] Pashalidis, A., & Mitchell, C. J. (2003). A taxonomy of single sign-on systems. In
Information Security and Privacy (pp. 249-264). Springer Berlin Heidelberg.

[Pr11] Pröhl, M. (2011): Kerberos – Single Sign-On in gemischten Linux/Windows
Umgebungen. d.punkt Verlag, Heidelberg

[So03] Sommerlad, P. (2003): Reverse proxy patterns. In European Conference on Pattern
Languages of Programming, EuroPLoP 2003.

[SFB10] Steuer Jr, K., Fernando, R., & Bertino, E. (2010). Privacy preserving identity attribute
verification in windows cardspace. In Proceedings of the 6th ACM workshop on Digital
identity management (pp. 13-16). ACM.

[SB12] Sun, S. T., Beznosov, K. (2012). The devil is in the (implementation) details: an
empirical analysis of OAuth SSO systems. In: Proceedings of the 2012 ACM conference
on Computer and communications security (pp. 378-390). ACM.

[Su+11] Sun, S. T., Pospisil, E., Muslukhov, I., Dindar, N., Hawkey, K., & Beznosov, K. (2011):
What makes users refuse web single sign-on? an empirical investigation of OpenID. In
Proceedings of the Seventh Symposium on Usable Privacy and Security (p. 4). ACM.

[Su+10] Sun, S. T., Boshmaf, Y., Hawkey, K., & Beznosov, K. (2010, September). A billion
keys, but few locks: the crisis of web single sign-on. In Proceedings of the 2010
workshop on New security paradigms (pp. 61-72). ACM.

[Th11] Thangasamy, I. (2011) OpenAM. Packt Publishing, Olton
[UB09] Ullrich, M., & Rieger, F. (2009). Brancheninitiative Single Sign-On: Der sichere,

einheitliche und einfache Zugang zu den Extranets der Versicherer wird Realität. In:
Maklerveraltungsprogramme der Zukunft: Ein Ausblick auf zukünftige IT-Systeme zur
Unterstützung von Versicherungs-und Finanzvertrieben, 179.

116



[VDB07] Vullings, E., Dalziel, J., & Buchhorn, M. (2007). Secure Federated Authentication and
Authorisation to GRID Portal Applications using SAML and XACML. Journal of
Research and Practice in Information Technology, 39(2), 101-114.

[WY10] Wang Y., Jia, Z. (2010): The Application Research of Single Sign Out Model Based On
CAS. International Conference on Computer Design and Appliations (ICCDA 2010)

[Wi+03] Witty, R. J., Allan, A., Enck, J., & Wagner, R. (2003). Identity and access management
defined. Research Study SPA-21-3430, Gartner.

117


