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Abstract: In order to derive the overall mechanical response of a microscopically
material body, both the theoretical and the numerical framework of multi scale con-
sideration coined as computational homogenisation is presented. Instead of resolving
the actual heterogeneous microstructure in all detail for its simulation, representative
micro elements are considered which provide the material properties for the coarse or
rather scale. This procedure allows for a smaller and less inexpensive computation.
However both the chance and challenge of visualising the decisive features arise on
two scales.

1 Introduction

If a material—although it may appear macroscopically homogeneous—at a closer look
possesses a heterogeneous microstructure, we would rather account for this microstruc-
ture than posing a inaccurate macroscopic constitutive assumption. Such microscopic
inhomogeneities may for instance be voids, small inclusion, micro cracks [NNH99] as
for instance those that occur in metal alloy systems, polymer blends, porous and cracked
media, polycrystalline materials, or composites [KBB01].

Approaches to obtain the overall characteristics of such heterogeneous materials have been
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developed since the 1960s by e. g. Hashin and Shtrikman, Hill, Willis and Walpole [HS62,
Hil63, Hil72, Has64, Wal66, Wil77, Wil81, Has83] and are comprised in the recent mono-
graph of Nemat-Nasser and Hori [NNH99]. They provide a framework to relate overall ag-
gregate properties to micro-properties, thereby they involve the concept of a representative
volume element (RVE) over which an averaging of key quantities is performed [NNH99]:

An RVE for a material point of continuum mass is a material volume
which is statistically representative of the infinitesimal material element.

Within the framework of computational mechanics involving multiple scales, these con-
cepts have been applied to the numerical solution during the last decade by several re-
searchers [TIK98, SBM98, MSS99, MMS99, THKK00, FC00, TK01, KBB01, MMS01,
Kou02, KGB02, MK02, MD04]. Rather than resolving the single heterogeneities individ-
ually, they have made use of the theoretical foundations and developed algorithms which
allow to obtain macroscopic material properties from underlying microstructures during
the computation as these evolve under the deformation.

In this contribution, we adopt a multiscale framework within the context of large defor-
mations. The notation is adopted along the lines of our earlier contributions [HKS06,
HKS07a, HKS07b, HKS07c], whereby we now restrict ourselves to a classical continuum
without additional degrees of freedom on both the macro and the micro level.

We first describe the theoretical framework (Section 2) which involves the continuum de-
scription for both the macro and the micro scale, the latter being occupied by the represen-
tative volume element, and the relations between the two scales. Then the approach to the
computational homogenisation is explained (Section 3). The paper closes with numerical
examples (Section 4) and a brief conclusion (Section 5).

2 Homogenisation

We review the theoretical framework which relates the continuum on the macro scale, for
which no constitutive assumption is made, with the underlying microstructure advocated
by the representative volume element. Thereby the continuum mechanical framework of
finite deformation is pursued analogous to the contributions of [Hil72, KGB02, Kou02,
KGB02, Mie03]. Note that throughout the paper quantities on the macro scale are denoted
by •̄, while quantities within the RVE are denoted by plain letters. Body forces will be
omitted on both scales.

2.1 Governing equations on the macro scale

As already indicated, the mechanical behaviour on the macro scale is described within a
standard continuum mechanics framework, whereby no constitutive assumption is posed.
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2.1.1 Continuum framework

On the macro level we consider the behaviour of a physical point P̄ within a body B. It
has the initial placement X̄ in the material configuration B̄0 and the current placement
x̄ in the spatial configuration B̄t, respectively. The deformation map ϕ̄ and deformation
gradient F̄ are defined as

x̄ = ϕ̄(X̄, t) F̄ = "X̄ϕ̄ (1)

The weak formulation of the balance of momentum, derived from the Dirichlet principle1,
reads �

B̄0

P̄ : δF̄dV =
�

∂B̄0

t̄0 · δϕ̄dA (2)

whereby P̄ denotes the Piola stress and t̄0 the corresponding traction vector. Hereby the
terms on the left represent the internal and those on the right the external virtual work,
respectively. The resulting strong or rather local form of the balance of momentum and
the corresponding boundary conditions read

Div P̄ = 0 in B̄0 P̄ · N̄ = t̄0 on ∂B̄0 (3)

for the considered static case. No constitutive assumption is made on the macro level, but
rather obtained from the underlying micro structure.

2.2 Governing equations on the micro scale

The set of governing equations on the RVE level comprises both the continuum framework
and a constitutive formulation.

2.2.1 Continuum framework

The classical continuum framework as introduced for the macro scale, is also adopted for
the micro scale. Particularly, the deformation map ϕ and the deformation gradient F read

x = ϕ(X, t) F = "Xϕ . (4)

The balance of momentum and the corresponding boundary conditions

Div P = 0 in B0 , P ·N = t0 on ∂B0 (5)

1The Dirichlet principle requires the energy density to be stationary for the system to be in equilibrium,
i e., Dδ(

R
B̄0

Ū0(ϕ̄, F̄ ; X̄)dV − R
∂B̄0

v̄0(ϕ̄; X̄)) = 0, whereby Dδ denotes a variation with respect to all
kinematic quantities at fixed material placement X̄. Furthermore U0 denotes the total bulk energy density and
v0 the surface energy density.
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have to be fulfilled for the RVE to be in static equilibrium. Herein P is the Piola stress
within the RVE and t0 denotes the spatial traction vector on the material surface of the
RVE. The weak form is stated in complete analogy to (2) as�

B0

P : δFdV =
�

∂B0

t0 · δϕdA . (6)

2.2.2 Constitutive formulation

Any suitable constitutive behaviour can be assigned with the micro level. In the present
contribution for the sake of simplicity, we use a hyperelastic material which obeys the
neo-Hooke formulation for the energy density

U0(F ; X) = 1
2 [λ ln2(det(F )) + µ[F : F − ndim − 2 ln(det(F ))]] , (7)

wherein µ and λ are the Lamé material constants and ndim denotes the spatial dimension
of the problem. With this formulation the Piola stress P := DF U0 can be evaluated.

2.3 Micro-to-macro transition

The relation between a macro continuum point and the underlying microstructure is based
on the averaging of the decisive quantities over the corresponding representative volume
element.

2.3.1 Averaging of quantities over the RVE

The volume averages over the RVE of the deformation gradient, the Piola stress, and the
virtual work

�F 	 =
1
V

�
B0

FdV , �P 	 =
1
V

�
B0

PdV , �P : δF 	 =
1
V

�
B0

P : δFdV (8)

are recalled here and transformed to boundary integrals2:

�F 	 =
1
V

�
∂B0

ϕ⊗NdA , �P 	 =
1
V

�
∂B0

t0 ⊗XdA , �P : δF 	 =
1
V

�
∂B0

t0 · δϕ dA .

(9)

These will be related to the macroscopic quantities next.
2The following relations are utilised to derive the representation of the volume averages as surface integrals

over the boundary:

F = �Xϕ = �Xϕ · I + ϕ · Div (I) = Div (ϕ⊗ I)

P t = I · P t + X ⊗ Div P = �XX · P t + X ⊗ Div P = Div (X ⊗ P )

P : δF = Div (ϕ · P ) − Div P · δϕ = Div (δϕ · P ) .
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2.3.2 Equivalence of averages and macro quantities

It is postulated that the macroscopic deformation gradient, Piola stress and virtual work
are equivalent to the averages:

F̄ ≡ �F 	 , P̄ ≡ �P 	 , P̄ : δF̄ ≡ �P : δF 	 . (10)

With this framework at hand, boundary conditions stemming from the macroscopic quan-
tities are imposed on the RVE using (9), whereby the Hill condition

�P 	 : �δF 	 .= �P : δF 	 (11)

must be fulfilled.

2.3.3 Boundary conditions on the RVE imposed by macro quantities

There are three ways to apply boundary conditions on the RVE based on the macroscopic
quantities, which meet the Hill condition (11): The first is referred to as linear displace-
ment boundary conditions, the second as an imposition of periodic displacements and
antiperiodic tractions. A third option is to apply constant traction on the boundary. While
the first two options are depicted in Figure 1, we omit the latter case here for the sake of
brevity. They all are based on the assumption that the origin of the coordinate system is
placed in the volumetric centre of the RVE. For linear displacement boundary conditions,
the displacement on the RVE boundary is a linear mapping of the reference placement by
means of the macro deformation gradient:

ϕ = F̄ ·X on ∂B0 . (12)

In case of periodic boundary conditions, deformations of opposite boundaries allow for
periodicity, while from equilibrium the tractions on opposite edges will be antiperiodic:

[ϕ+ −ϕ−] = F̄ · [X+ −X−] , t+0 − t−0 = 0 on ∂B±
0 . (13)

Thereby the positive and negative boundaries, B+
0 and B−

0 , respectively, are located on
opposite edges of the RVE.

3 Computational Homogenisation

The homogenisation concept introduced previously is embedded into a nonlinear finite
element framework. Particularly, the macro specimen is discretised by a finite element
mesh. During the simulation of a boundary value problem, at each elemental integration
point of each element, the material properties are evaluated by means of an underlying
RVE along the lines of the contributions by Miehe, Geers, and others [MSS99, FC00,
KBB01, KGB02]. Due to the geometrically and physically nonlinear framework, this
multi-scale computation requires an iterative solution procedure on both the macro and
the micro level, as we illustrate in the simplified flowchart of Figure 2.
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(a) (b) (c)

Figure 1: Representative volume elements: (a) undeformed mesh and deformed mesh under (b)
linear displacement on the boundary, (c) periodic displacement on the boundary.

macro micro

loop over load increments

loop over nr iterations

loop over macro elements

loop over gauss points✛
✚

✘
✙calculate

deformation gradient

impose bc to
micro-structure

✛
✚

✘
✙impose bc to

micro-structure

☛✡ ✟✠solve micro bvp

☛✡ ✟✠return C and P̄

✲

✛

Figure 2: Simplified flow chart of computational micro–macro transition.
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3.1 Application of the boundary conditions on the RVE

According to Section 2.3.3, different types of boundary conditions can be applied onto
the RVE within the stepwise and iterative numerical evaluation of the particular RVE at
a macroscopic integration point. In case of linear displacement on the boundary, the dis-
placements of all boundary nodes are prescribed as shown in Figure 1(b). For the periodic
case, only the displacement of three independent corner nodes are prescribed, see Fig-
ure 1(c).

3.2 Solution of the nonlinear system of equations of the RVE

With the respective boundary conditions, the micro system of equations is solved. In the
case of fully prescribed boundary displacement, this is straightforward. With the displace-
ment boundary condition stemming from the current increment of the macro deformation
gradient, an iteration scheme (e. g. Newton-Raphson) is used to find the solution at (micro)
equilibrium.

The linearised system of equations with the algorithmic tangent tensor KIK

KIK ·ΔϕK = f ext
I − f int

I , KIK =
∂RI

∂ϕK
(14)

is solved such that the residual vector becomes zero:

RI =
nel

A
e=1

�
B0

P · "XNI − f ext
I

!= 0 . (15)

Note that for periodic displacement and anti-periodic traction on the boundary, the peri-
odicity constraints must be imposed before the solution of the system is performed. We
transform the system (14) towards a new system only formulated in terms of independent
degrees of freedom

K) ·Δϕi = Δf) (16)

as proposed by [Kou02]. Thereby the transformed stiffness matrix and the transformed
incremental load vector read:

K) = Kii + Ct
di ·Kid + Kid · Cdi + Ct

di ·Kdd · Cdi (17)

Δf) = Δf i + Ct
di ·Δf d , (18)

which is based on the relation Δϕd = Cdi ·Δϕi between the dependent and the indepen-
dent degrees of freedom with the so-called dependency matrix Cdi.

82



3.3 Obtaining the macro stress and tangent operator

Once the solution has been obtained iteratively, the macroscopic stress and tangent op-
erator are computed. With the equivalence (10)2 the macro Piola stress P̄ is discretely
evaluated as a summation over boundary nodes:

ΔP̄ =
1
V

%
I

Δf I ⊗XI . (19)

With (14), the tangent operator in the relation ΔP̄ = ∂F̄ P̄ : ΔF̄ is extracted as3

Ā := ∂F̄ P̄ =
1
V

%
I

%
K

KIK ⊗ [XK ⊗XI ] . (20)

In the case of linear displacement boundary conditions, the summations over nodes (I) and
(K) run over all boundary nodes, while for periodic boundary conditions, only the three
independent boundary nodes are taken into account. In each of these cases a condensation
is applied to the stiffness matrix at the solved state.

4 Numerical examples and visualisation

Based on the presented framework, some numerical examples are shown.

Figure 3 shows a benchmark-type problem. Hereby, the macro specimen is discretised
with four finite elements, each of which possesses four integration points, which are de-
picted by the bullets. At each integration point an underlying RVE with a circular centered
hole shown in Figure 1(a) is installed. Uniaxial loading is applied on the macro structure.
The influence of different choices for the RVE boundary conditions (Section 3.1) on the
macro response are examined. Thereby, the macroscopic load displacement curves reflect
the fact that the RVE under displacement boundary conditions exhibits a stiffer behaviour
than the RVE under periodic boundary conditions.

As a more realistic example, Figure 4 shows a rectangular specimen under uniaxial ten-
sion, the response of which is determined with the same underlying RVE, in particular a
quadratic specimen which has a circular centered hole in the undeformed configuration.
On the deformed macro mesh the Cauchy stress component σ̄22 is plotted. Furthermore, at
four several placements of the macro specimen the deformed underlying micro structures
are scaled into. Both the deformed shape and the distribution of the longitudinal normal
component of the Cauchy stress, σ22, strongly vary depending on the position at which the
RVE is evaluated. Contrary to our last contribution [HKS06], here the Cauchy stress is a
symmetric quantity due to the used standard continuum .

3The modified dyadic product of two second-order tensors is defined as [A ⊗ B] : C = A · C · Bt.
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(a) (b)

Figure 3: (a) Macro boundary value problem discretised with four elements with four integration
points per element. (b) Comparison of macro load displacement curves for different RVE boundary
conditions (reproduced in colorplate 193).

Figure 4: Deformed specimen with circular hole under longitudinal tension and deformed RVEs
with logitudinal normal stress component σ̄22 and σ22, respectively (reproduced in colorplate 193).

5 Conclusion

In this contribution, we have given a briew review on a finite-element-based multi scale
method coined as computational homogenisation or rather FE2. This approach is charac-
terised by the solution of separate boundary value problems on both the macro and the
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micro scale, which are linked at each integration point of each macro finite element, while
the material behaviour is exclusively determined by the constitution and response of the
micro structure.

While here we have chosen a continuous RVE with a phenomenological constitutive be-
haviour, one could also employ other material laws or other compositions. For instance
inelastic formulations of standard continua [RMS07] or micromorphic continua [HS07]
represent a significant challenge. A further extension of the methodology to obtain ma-
terial properties of cohesive layers has recently been developed by the authors [HRSS07,
HRSS08, HSS08]. In the contribution of [HSS08] a micromorphic continuum [HKS06,
HKS07b], was employed at the micro level to account for a large intrinsic substructure
underlying to the material layer. Thereby nonsymmetric stress measures as well as higher
order tensors evolve, which from our perspective represent further challenges in the vi-
sualisation. Futhermore we would like to refer to the discrete element method which
accounts for the interaction of single particles [MKS06, MKS07, MSK07], or atomistic
models [SS03, SES07] and, if employed at the microstructural scale, can lead to realistic
simulation of structures at the nano level.
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