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Towards a Differential Privacy Theory for Edge-Labeled
Directed Graphs

Jenni Reuben1

Abstract:

Increasingly, more and more information is represented as graphs such as social network data, financial
transactions and semantic assertions in Semantic Web context. Mining such data about people for
useful insights has enormous social and commercial benefits. However, the privacy of the individuals
in datasets is a major concern. Hence, the challenge is to enable analyses over a dataset while
preserving the privacy of the individuals in the dataset. Differential privacy is a privacy model that
offers a rigorous definition of privacy, which says that from the released results of an analysis it is
’difficult’ to determine if an individual contributes to the results or not. The differential privacy model
is extensively studied in the context of relational databases. Nevertheless, there has been growing
interest in the adaptation of differential privacy to graph data. Previous research in applying differential
privacy model to graphs focuses on unlabeled graphs. However, in many applications graphs consist
of labeled edges, and the analyses can be more expressive, which now takes into account the labels.
Thus, it would be of interest to study the adaptation of differential privacy to edge-labeled directed
graphs. In this paper, we present our foundational work towards that aim. First we present three
variant notions of an individual’s information being/not being in the analyzed graph, which is the
basis for formalizing the differential privacy guarantee. Next, we present our plan to study particular
graph statistics using the differential privacy model, given the choice of the notion that represent the
individual’s information being/not being in the analyzed graph.

Keywords: Differential privacy, graphs, labels, analyze, utility.

1 Introduction

Analyzing the information collected in statistical databases provides valuable insights
in the medical and social science research. However, the challenge is how to ensure
that the public release of the results from the analysis does not compromise the privacy
of the individual contributors of the dataset. This challenge is referred to as the data
privacy problem and being extensively studied both in the statistics and computer science
community [AW89,AS00,Be80,Ch05,Sw02].

Increasingly, more and more information is represented using graph structures, for example
social network data, financial transactions and semantic assertions in the Semantic Web con-
text. Many recent studies have investigated the data privacy problem in graph data [ZPL08].
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Among the studied privacy models, the Differential Privacy model provides a mathematical
definition of data privacy that is guaranteed to the participants of a database, independent
of the auxiliary information available to an adversary3. Intuitively, a trusted curator of the
database uses a privacy preserving mechanism that satisfies the definition of differential
privacy for releasing the results of the analysis performed on the database. The definition
of differential privacy states that the result is ’essentially’ the same when an individual
participates or refrains from participating in the database. Thus, the publicly released results
provide meaningful insights about the underlying population of the database yet obscure
any one individual’s contribution.

Previous research in applying differential privacy theory in the context of releasing graph
statistics focuses on graphs with unlabeled edges. One typical example of the queries over
the graph data is, ’𝐶𝑂𝑈𝑁𝑇 all edges’. However, in many applications, the graphs consist
of edges that are labeled. Accordingly, there are analyses that take into account these labels,
for example to get ’𝐶𝑂𝑈𝑁𝑇 of the edges that have certain label(s)’ . It would thus be
of interest to learn how to apply differential privacy to graphs with labeled edges, where
different edges may have different labels. The main goal of this paper is to define the
foundations for applying differential privacy to edge-labeled directed graphs.

2 Preliminaries

As a basis for presenting our work in this paper, in this section we recall the main notions
defined for differential privacy both in the relational database settings [Dw08,Dw06] and in
graphs without edge labels [Ka13,NRS07,TC12].

A database 𝐷 is a set of rows. Consider a database 𝐷𝐼 that contains information about a set
of individuals 𝐼 , where the information about each individual is captured as a separate row.
Now, consider another database 𝐷𝐽 = 𝐷𝐼±𝑥 that includes/excludes information of one
random individual 𝑥. So, 𝐷𝐽 and 𝐷𝐼 differ by one row and they are called neighboring
databases [Dw08]. A trust worthy curator uses a privatized mechanism 𝐾 that takes a
database 𝐷 as input and produces a result 𝐾𝐷, which gives nearly zero evidence about
whether the input database is 𝐷𝐼 or 𝐷𝐽 , thus obfuscating any one individual’s contribution
to the result.

Definition 1 (Differential Privacy [Dw08]) A privatized mechanism 𝐾 is said to give
𝜖-differential privacy, if for any pair of databases 𝐷𝐼 and 𝐷𝐽 that differ by one row, and
for all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒𝐾, it holds that: 𝑃𝑟𝐾𝐷𝐼 ∈ 𝑆 ≤ 𝑒𝜖 × 𝑃𝑟𝐾𝐷𝐽 ∈ 𝑆

where the probabilities represent the random choices made by the privatized mechanism 𝐾
and 𝑅𝑎𝑛𝑔𝑒𝐾 denotes the set of all possible outputs of 𝐾.

3 In this context, an adversary is an entity that intends to compromise the privacy of the participants of a database.
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Dwork et al. [Dw06] presented a privatized mechanism 𝐾 for continuous-valued queries,
that is the classes of queries that map the database to vectors of real numbers. If the true
response of a query function 𝑓 is 𝑓𝐷, for achieving 𝜖-differential privacy the privatized
mechanism then distorts this true response by adding appropriately chosen noise before
disclosing it to the public. The noise that needs to be added to the true response is given by
the sensitivity of the query function 𝑓 and the chosen value of 𝜖. The function sensitivity
specifies what is the maximum difference that the privatized mechanism needs to bridge in
the form of additive noise such that from the noisy response it is difficult to attribute that
the input database is 𝐷𝐼 or 𝐷𝐽 . If the value of 𝜖 is set to a very small value, then the noise
that need to be added increases. Similarly, the amount of the additive noise will be large if
the sensitivity of the function is greater.

The original differential privacy definition remains essentially unchanged for graph data.
However the notion of neighboring databases on which Definition 1 is based on need to
be adapted to graph data. In the literature, there appear two variants of differential privacy
definitions that formalize the privacy guarantee for two different notions of what it means for
a pair of graphs to differ by one unit. One definition is edge privacy, which formalizes the
differential privacy guarantee for any two graphs that differ by at most one edge [NRS07].
The second definition is node privacy, which deals with any pair of graphs that differ by a
single node including all its adjacent edges [Ka13,TC12]. Inspired by these definitions, in
the next section, we present three variants of differential privacy definitions that guarantee
various levels of privacy protections for edge-labeled directed graphs.

3 Differential Privacy for Edge-labeled Directed Graphs

Let 𝐿 be an infinite set of possible edge labels. An edge-labeled directed graph, hereafter
simply a graph, is a tuple 𝐺 = 𝑉, 𝐸, where 𝑉 is a set of vertices, and 𝐸 is a set of edges such
that 𝐸 ⊆ 𝑉 × 𝐿 × 𝑉 . The privacy guarantee formalized in Definition 1 builds on the notion
that the response for a query over a database is ’essentially’ the same for any two databases
that are neighbors (i.e they differ by a row). For graph data, as presented in Section 2
there are different possibilities to represent what it means for two graphs to differ by one
unit. The following definitions specify what it means for a pair of graphs being neighbors
for formalizing the differential privacy guarantee for edge-labeled directed graphs. Each
possible definition of neighboring graphs provides a different semantic interpretations of
the differential privacy guarantee. Hence it is important to study the privacy/utility trade-off
of the chosen graph neighbor definition. First, we adapt the ’edge privacy’ definition of
unlabeled graphs. Accordingly, two graphs are edge-neighbors, if in one of them one edge
is included/excluded independent of its label.

Definition 2 (Edge-neighboring Graphs) Graphs 𝐺 = 𝑉, 𝐸 and 𝐺
′
= 𝑉

′
, 𝐸

′
are edge-

neighbors if 𝑉 = 𝑉
′
𝑎𝑛𝑑 𝐸

′
= 𝐸 − {𝑒} for some edge 𝑒 ∈ 𝐸

′
.
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Second, in accordance with the ’node privacy’ definition of unlabeled graphs, two graphs
are node-neighbors if one of them is obtained from the other by adding/removing one
arbitrary node and all of its labeled edges.

Definition 3 (Node-neighboring Graphs) Graphs 𝐺 = 𝑉, 𝐸 and 𝐺
′
= 𝑉

′
, 𝐸

′
are

node-neighbors if 𝑉
′
= 𝑉 − 𝑥 and 𝐸

′
= 𝐸 − {𝑣1, 𝑙, 𝑣2 | 𝑣1 = 𝑥 ∨ 𝑣2 = 𝑥} for some

𝑥 ∈ 𝑉 .

In the third adaptation, the differential privacy guarantee is built on the notion of graphs that
differ by a set of labeled outedges of a node. The intuition is, in some of the applications of
edge-labeled directed graphs such as RDF, an entity is represented by its associations and
particular associations, indicated by certain labels, ’uniquely’ identify that entity.

Definition 4 (𝑄𝐿-Outedge Neighboring Graphs) Let 𝑄𝐿 be a subset of 𝐿. Graphs
𝐺 = 𝑉, 𝐸 and 𝐺

′
= 𝑉

′
, 𝐸

′
are 𝑄𝐿-outedge-neighbors if 𝑉 = 𝑉

′
and 𝐸

′
=

𝐸 − {𝑣1, 𝑙, 𝑣2 | 𝑣1 = 𝑥 𝑎𝑛𝑑 𝑙 ∈ 𝑄𝐿} for some 𝑥 ∈ 𝑉 .

Example 1. Let 𝑄𝐿 = {𝑏}, given the 𝑄𝐿, in Fig 1, 2 graphs 𝐺 = 𝑉, 𝐸 and 𝐺
′
= 𝑉

′
, 𝐸

′
are

𝑄𝐿-outedge neighbors, because in 𝐺
′

for the vertex ’y’, there does not exists any of the
outedges with the labels in 𝑄𝐿. Similarly in Fig 3, 4, let 𝑄𝐿

′
= {𝑎, 𝑏}, in 𝐺

′′′
= 𝑉

′
, 𝐸

′
for

the vertex ’y’ all its outedges with all the labels in 𝑄𝐿
′
are excluded. So, graphs 𝐺

′′
and

𝐺
′′′

are 𝑄𝐿
′
-outedge neighbors.

Given the different definitions of what it means for two edge-labeled directed graphs to be
neighbors, the privacy guarantee of a privatized mechanism is formalized as:

Definition 5 (Differential privacy for edge-labeled directed graphs) A privatized mech-
anism 𝐾 for edge-labeled directed graphs satisfies 𝜖-edge differential privacy (respec-
tively, 𝜖-node differential privacy, or 𝜖-𝑄𝐿-edge-labeled differential privacy for some
𝑄𝐿 ⊆ 𝐿), if for every pair of graphs 𝐺 and 𝐺

′
that are edge-neighbors (respectively,

node-neighbors, or 𝑄𝐿-outedge neighbors), and for all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒𝐾, it holds that:
𝑃𝑟𝐾𝐺 ∈ 𝑆 ≤ 𝑒𝜖 × 𝑃𝑟𝐾𝐺

′ ∈ 𝑆.

where the probabilities represent the random choices made by 𝐾 and 𝑅𝑎𝑛𝑔𝑒𝐾 denotes the
set of all possible outputs of 𝐾.

4 Discussion and Future Outlook
Differential privacy for graph data offers a strong mathematical privacy guarantee for
releasing graph statistics, but the semantics of the privacy protection rests on the definition
of neighboring graphs. Thus, the choice of the definition of neighboring graphs impacts the
privacy/utility trade-off offered by the privatized mechanism.

In the case of edge-neighbors (i.e Definition 2), edge disclosure is protected by the privatized
mechanism. For some applications such as analysis on email communication graphs where
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the relationships are sensitive, the edge-neighbors definition is sufficient. The node-neighbors
definition (i.e Definition 3), mirrors the notion of neighboring databases formalized in
Definition 1. However, the structural properties of graphs may introduce a huge gap between
two neighboring graphs, consequently the function sensitivity is large, which need to be
obfuscated by the privatized mechanism in order to protect the input graph that produces
the result. The type of graph data analyses that a privatized mechanism can support under
this definition yet producing accurate results may thus be limited. In many applications of
edge-labeled directed graphs, the labels play a significant part in defining the relationships
among the nodes. We assume that edges with labels from a particular domain-specific
subset of all labels, ’uniquely’ identify a node in an edge-labeled directed graph. Further,
we focus on outedges of a node because it represents the contributions that this node makes
to the graph dataset. Hence, this semantically captures the notion of an individual being in
one graph but not in another graph similar to the private data represented as tuple in the
relational databases. We propose that this definition of neighboring graphs offers another
level of privacy protection than the edge-neighbors definition. Further, we hypothesize that
under this definition the noise required to bridge the gap between the two neighboring
graphs will be less than the node-neighbor definition, thus increasing the utility of the
results returned by the privatized mechanism. Nevertheless, it would be interesting to study
the type of graph statistics that are accurate and how accurate the results are under this
scheme of things.

To test the hypothesis, as a next step we begin to focus on degree distribution as a particular
graph statistics over edge-labeled directed graphs. Degree distribution of a graph gives a
simplistic understanding of the structure of a graph. Degree distribution is a vector of real
numbers that represent the degrees of the nodes in a graph. We plan to employ the privatized
mechanism introduced by Dwork et al. [Dw06] to answer the degree distribution queries
over edge-labeled directed graphs. Most importantly, we plan to study the privacy/utility
trade-off of this privatized mechanism when the different neighbor definitions are chosen
(i.e., Definition 2 versus Definition 3 versus Definition 4 with different QL). To this end,
we plan to generate different edge-labeled graphs by systematically varying the structural
characteristics, which constitute the datasets that are protected by the envisioned privatized
mechanism. Based on these graphs, we aim to analyze the accuracy of the degree distribution
query under the edge-neighbors versus the 𝑄𝐿-outedge-neighbors (for different 𝑄𝐿). Further,
we aim to analyze the privacy/utility trade-off of our mechanism versus the Hay et al.’s
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mechanism [Ha09], which supports degree distribution queries but requires a post processing
step for improving the utility of the results. We also plan to evaluate the privacy/utility
trade-off of our mechanism over a set of real-world graphs.

As a long-term goal, we move on to study other types of graph analyses, in particular,
analyses that take into account the edge labels (e.g., in the case of degree distribution, to
estimate the degree distribution that represent the edges with certain labels). From the results
of these experiments that analyze the privacy/utility trade-off when different neighboring
edge-labeled graph definitions are chosen, we aim to investigate different ways to optimize
the privacy/utility trade-off in particular for 𝑄𝐿-outedge neighbor definition.
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