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Decision Robustness of Voice Activity Segmentation in
unconstrained mobile Speaker Recognition Environments

Andreas Nautsch,! Reiner Bamberger' and Christoph Busch!

Abstract: Voice activity detection (VAD) is an essential segmentation process in speaker recogni-
tion systems, seperating speech and non-speech segments of voice samples. In speaker recognition,
references are modelled purely by concerning speech segments. Different VAD segmentations lead
to variations in biometric models, and consequently in system performance. Thus, VAD decisions
need to be robust among different conditions.

In this paper, the decision robustness of different VAD algorithms is examined on mobile data by sim-
ulating different environmental noise conditions for which we propose a Hamming distance based
analysis. By examining speech and speaker recognition based VADs, we further propose to extend
a well-performing VAD algorithm, which is based on likelihood ratio comparison of speech to non-
speech models, by including most dominant frequency component (MDFC) features for selection of
model training segments. Thereby, more robust VAD decisions are conducted by 7%, while sustain-
ing an average EER SNR-sensitivity of 0.76% per dB SNR.

Keywords: voice activity detection, robust segmentation, speaker recognition

1 Introduction

Biometrics becomes more popular on mobile devices, especially for payment methods. In
order to cope with unconstrained mobile environments in speaker recognition, biometric
system designers need to ensure front-ends make decisions robustly, i.e. the segmenta-
tion of voice samples remains rather constant no matter the environmental condition or
signal quality. The segmentation of voice samples into speech and non-speech frames is
referred to as voice activity detection (VAD). Based on VAD-selected front-end speech
signal features, back-ends extract and compare biometric features. VAD segmentation de-
cision robustness is fundamental to the performance of any speaker recognition back-end
e.g., the conventional Gaussian mixture model and universal background model approach
(GMM -UBM), Gaussian supervector kernel support vector machines (GSV-SVMs), joint
factor analysis (JFA), or intermediate-sized vectors with probabilistic linear discriminate
analysis comparison (i-vector/PLDA). Stable segmentation decisions are important to the
reliability of biometric systems in unconstrained environments, such as in mobile banking
using voice recognition or automated forensic speaker recognition.

In this paper, a novel Hamming distance based VAD metric is proposed, which contrary to
conventional VAD metrics stemming from the field of automatic speech recognition (ASR)
are more suitable for assessing VAD performance for biometric recognition purposes.
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Aiming at mobile environments, experiments are carried out on the publicly available
MOBIO speaker recognition evaluation task (MOBIO SRE’13) [Mcl12, Kh13], which
provides a challenging and realistic test-bed for current state-of-the-art speaker verifica-
tion [Kh13]. Different conditions are simulated in terms of additional noise, in particular:
white, pink, car and babble noise with white and pink noise representing random channel
effects and natural-environment backgrounds, respectively. Based on our VAD analysis
of six segmentation algorithms, we propose a more robust variation of the unsupervised
GMM-based VAD introduced in [Al14] utilizing MDFC features rather than energy values
for the unsupervised training of GMMs modeling speech and non-speech frame segments.

This work is organized as follows: in Section 2 a selection of well-established and recent
VAD algorithms is introduced as well as ASR-related VAD metrics, in Section 3 the Ham-
ming distance based analysis is proposed, in Section 4 experimental analysis with respect
to VAD, biometric and forensic performance metrics are depicted, which are carried out
on noise simulations of the MOBIO database, and in Section 5 conclusions are derived
alongside with provided future perspectives.

2 Related Work

VAD algorithms are introduced from the field of ASR: in order to recognize the verbalized
text under less computational effort, speech is segmented into relevant parts, i.e. words by
excluding silence, noise and non-speech sounds. Therefore, VADs are conventionally de-
signed, such that speech is not clipped and non-speech is not falsely segmented as speech.

2.1 VAD Algorithms

In this work, emphasis is put on the ITU recommendation P.56 [IT94]3, the Voicebox VAD
(VBX) [KS99, Ma01, Br05], the simple real-time VAD (SRT) [MHO09], the low-complexity
variable framerate VAD (VFR) [TL10], the practical, self-adaptive VAD (PSA) [KR13],
and the unsupervised GMM-based VAD (USG) [Al14], for which we propose an extension
(MUG) incorporating features from the simple real-time VAD approach.

P.56 ITU P.56 [IT94] contains a VAD for telephone speech transmission qual-
ity in real-time applications. P.56 is a multi-stage VAD, firstly a two-stage
exponential averaging on the rectified signal values is performed, secondly
initial VAD decisions are conducted by fix-threshold comparison. Thereby,
frames are processed in a geometric progression scheme with accumulative
activity and hangover counters. The P.56 hangover scheme delays speech to
non-speech decisions by 0.2s, preserving low-energy speech at the end of
utterances. Thirdly, activity levels of frames are estimated based on activity
counters, which are finally compared to a sample-adaptive threshold based on
the long-term energy and a 15.9 dB margin.

3 P.56 (03/93) is suceeded by P.56 (12/11) with solely changes in annexes. We refer to the P.56 (03/93) Voicebox
implementation [Br05].
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VBX The Voicebox VAD [Br05] is a first-order Markov process modeling of
speech with minimum statistic noise estimation. It extends the VAD of [KS99]
by conducting a frame-based log-likelihood ratio (LLR) test for speech and
non-speech hypotheses examining a-posteriori SNRs estimates based on the
power spectrum after discrete Fourier transform (DFT). The noise spectrum is
estimated using minimum statistics noise estimation (MSNE) [Ma01] instead
of the minimum mean-square error (MMSE) estimator. Thereby, spectral min-
ima are tracked in each frequency band without any speech or non-speech
assumptions. The power spectral density (psd) estimation is smoothed by a
conditional mean square error estimator, and a-priori and a-posteriori SNRs
are computed for each frequency band w.r.t. the variance of the smoothed and
bias-compensated psd estimation. A Hidden Markov Model (HMM) based
hangover scheme is conducted, such that Bayesian decisions for currents
states also depend on previous observations. Speech decisions are conducted
on speech posterior probability threshold of 70%. Contrary to conventional
hangover schemes, delaying transitions in speech to non-speech decisions, the
property of strong correlations in consecutive occurences of speech frames is
modeled explicitly by the VBX VAD [KS99].

SRT Targeting a simple, efficient and robust algorithm, [MH09] proposed an
easy-to-implement and low-complexity VAD for real-time applications based
on short term features, i.e. the short-term energy, the spectral flatness measure-
ment (SFM, in dB), and the most dominant frequency component (MDFC),
where SFM represents the dB-domain ratio of the geometric mean to the arith-
metic mean of the speech spectrum, and MDFC represents the frequency cor-
responding to the maximum spectral value. For each feature, [MHO09] esti-
mates thresholds based on the minimum feature values within first 30 frames
assuming them to partially contain non-speech sequences. SRT decides on
speech if one of the following votes is positive: short-term energies surpass
the minEnergy by an adaptive margin, MDFCs surpass the minMDFC by 185
frequencies, SFMs surpass the minSFM by 5, i.e. the geometric spectral mean
is favored over the arithmetic spectral mean by a factor of /10. Energy min-
ima Ey, estimates increase frame-wise by the number of consecutively ob-
served non-speech frames, such that an adaptive threshold is computed as
Eihres = 40 1og(Ein ). SRT examines frames of 10 ms.

VFR Contrary to conventional frame window and hop size set-ups in speech
processing (25 ms and 10 ms) assuming speech signals to have stationary be-
havior in short time segments, VFR VAD [TL10] assigns higher frame rates
to fast changing and lower frame rates to rather steady events e.g., conso-
nants vs. vowels or silence. Thereby, frames are examined with a frame shift
of 100Hz (1 ms hops), and reliable regions in noisy speech are emphasized
on. VAD decisions are carried out on a-posteriori SNR estimate distances of
consecutive frames: if accumulated distances of non-speech frames surpass
an frame-adaptive threshold, frame segments are denoted as speech. VFR
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preserves sigmoidal turning points between 15dB and 20 dB. In the online
available source code to [TL10], the VFR VAD decision is outvoted, if the
posterior probability of a frame being voiced is larger than 25% by utilizing
the Voicebox pitch tracker [Br05].

PSA Targeting NIST speaker recognition evaluations (SREs), Kinnunen and
Rajan [KR13] proposed an unsupervised, self-adaptive and practical VAD
based on Mel-frequency cepstral coefficients (MFCCs) x and frame ener-
gies of denoised and enhanced signals by spectral substractions in magni-
tude domain, power domain, and Wiener filtering utilizing MSNE for noise
tracking. MFCCs of the frames associated to 10% of the lowest and high-
est clean energy values are utilized in order to train two GMMs representing
non-speech and speech A°Peech ) non-speech respectively, which take the form
of: p(x | Aspeechnon=speechy — y°C_ v, 4 (x| ., Ec), with mixture weights w,.,
component means [, and covariances X, where A$Peech jnon-speech haye
the same number of components C for simplicity. GMMs are trained us-
ing k-means in order to retain low complexity with C = 16 codevectors
(components) for 12 static MFCCs (including C0) without any normaliza-
tions nor deltas. VAD decisions are conducted within the Bayesian decision
framework assuming equal priors and costs, such that the LLR test reduces
to the nearest-neighbour rule, i.e. to a vector quantization based approach:
ming ||x; — " |2 < min, ||x; — 2" P12 | where a simple energy-based
VAD decision log E(¢) > —75dB needs to hold as well in order to consider a
frame as speech.

USG In [All14], an unsupervised GMM based VAD is proposed based on a
similar design to the PSA VAD [KR13], where VAD decision making is con-
ducted by LLR and energy decisions, followed by an finite state machine
(FSM) based hangover scheme. In our implementation, rastamat [EI05] is
used for computing energy values. The energy decision are conducted after
smoothing log E () values by a 9-frame sliding window moving averaging fil-
ter, where the energy threshold 7 is the average of the values of the 20%
and 80% quantiles of sorted log E () values. Similarly, the sample-adaptive
LLR threshold 1z g with 23-frame smoothing. As in the PSA VAD [KR13]
both speech votes are required for considering a frame as speech. Finally, a
hangover scheme is applied that recover speech segments masked by acoustic
noise in two distinct ways: transitions from non-speech to speech states are
delayed, i.e. in order not to move into the speech state due to false-alarms,
all frames in the transition phase need to indicate speech, and transitions from
speech to non-speech states are delayed, i.e. if noise is indicated, another tran-
sition phase prevents speech misses. Motivated by [DNTO06], we refer to 3 and
8 frame states for false-alarm and miss VAD transition phases, respectively.

MUG GMM-based VADs are motivated due to the poor performance of
energy-based VADs in low-SNR scenarios e.g., on 0dB SNR, speech and
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noise energies are equal, effectively leading to random VAD decisions. Since
USG GMMs are self-adaptive to the current speech sample, energy-based
selection may result in inadequate-representative training segments, espe-
cially in the presence of high-energy noise impulses, such as closing doors
or moving nearby objects*. Thus, we propose to utilize the lowest and high-
est MDFCs instead of energy values for initializing speech and non-speech
GMMs, respectively. MDFC values are smoothed by a 3-frame sliding win-
dow moving averaging filter before sorting in order to exclude impulsive
short-time noises from speech GMM training. This paper refers to the pro-
posed extension as MDFC-based unsupervised GMM (MUG) VAD.

2.2 VAD Metrics in Speech and Speaker Recognition

In speech recognition, VAD metrics represent how much verbalized context is missed in
contrast to how many false-alarms occur in terms of non-speech that is forwarded to ASR
systems. Conventional VAD metrics [GS85, Fr89, DNT06, KEWP11] are computed as:

e the front-end clipping (FCE): FCE = %, (1)
e the middle-speech clipping (MSC): MSC = %, (2)
e the non-speech over-hang (OVER): OVER = %, (3)
e the noise detected as speech (NDS): NDS = Nggf’m , 4)
e the speech, non-speech, and average hit rates (SHR, NHR, AHR):
SHR:%,NHR:H:l—NBS,AHR:%(SHRJFNHR), (5)

with the speech misses in the beginning of an utterance Nfyon—miss,» during utter-
ances Nyig—miss, the false alarms of non-speech frames after an utterance and in
a sample Noyer fa,Nu, the amounts of correct speech and non-speech decisions
Nspeech—hitss Nnon—hits» and the ground-of-truth amounts of speech and non-speech frames
Ngot—speechs Ngor—non» requring frame-wise VAD annotated datasets.

In speaker recognition, VAD effects are mostly reported regarding their effect to the bio-
metric and decision performance e.g., in terms of the equal-error rate (EER), NIST SRE
decision cost functions (DCFs) or the goodness of LLRs Cy [SS12, KR13, Al14, MG15].
Due to GMM and factor analysis based architectures in state-of-the-art speaker recognition
[RQDO0, Ke05, Del1], contextual information is accumulated, i.e. VAD is relevant to re-
ject speech segments as little as possible in order to estimate higher-certainty Baum-Welch
statistics, without regard to a segment’s context, in which a segment is omitted (missed) or

4 Several MOBIO [Mc12] samples comprise short-time noises at the capture start, which may occur due to e.g.,
doors, chairs or pressing a start recording button.
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falsely included (false alarms). Thus, FCE, MSC and OVER are less relevant for the bio-
metric VAD performance assessment, however these metrics remain useful for developing
VADs, such that for example FCE and OVER reflect the gains from a two-way hangover
scheme, and MSC the benefits of smoothings. Furthermore, AHR equally accounts for
SHR and NHR, which is not necessarily optimal from the perspective of retaining speech
segments for discriminative biometric recognition, especially if SHR and NHR diverge
significantly.

3 VAD Decision Performance in unconstrained Environments

Targeting VAD performance assessment for unconstrained mobile environments, VAD de-
cisions shall remain stable under changing conditions impacting sample quality, such as
varying background noises stemming from different sources. Since VAD decisions are bi-
nary, i.e. speech or non-speech, and environmental effects are conventionally examined
in certain levels or steps, such as 0dB, 5dB, ..., 20dB and clean, of a quality-adapted
undistorted clean database, effects on VAD decisions under different environments can
be thought of as binary sequences, which have arbitrary but fixed length for each voice
sample as depicted in Fig. 1. Given optimal-condition e.g., clean, and synthetic-distorted
samples, each binary VAD decision sequence stemming from distorted signals can be
XOR-compared to the clean, and reported in terms of the average Hamming distance d
depicting the conditional VAD decision error rate for one sample. In order to report VAD
decision robustness, we propose the database-average conditional VAD decision error ¢ ;
(VDE). Other statistic moments, such as variance, skewness and kurtosis, can aid a d-
distributional summary and VAD development processes, but are not included in further
steps for the sake of easy tractability.

clean lolofol1]1|[1]1]o]olo|1][1][1]1]o]0]

20dB lolofofo[1|[1]1]ofofof1|[1][1][1]o]o] xOR:1 a=4
15dB loJofofoft[1]1]1]ofof1][1]o]1]o]o] XOR:3 a=3
10dB loJoJoJo[1]1]o]ofo]1][1]1]o]o][o][0] xOR:s5 da=3
5dB [1]1]ofo[1|1]o]ofo]1]1]o]o][1][1][0] xOR:8 a=2%&
0dB [1]1]1]ofofofo[1][1][1]ofofofo[1][1]| XOR:16,a=1¢
condition VAD decision examples on 16 segments

Fig. 1: VAD decision example under changing environmental conditions with segment-wise VAD
votes as speech (1) and non-speech (0), where clean denotes the original sample of good quality.

4 Evaluation in mobile Speaker Recognition Scenario

Experiments are carried out on the MOBIO SRE’13 task [Kh13]. A standard speaker
recognition front-end is used based on rastamat [ElI05] and jfacookbook [G109]: 60-
dimensional speech signal features based on 19 MFCCs with log-Energy and derived A
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and AA coefficients on a standard hamming window. Feature warping [PSO1] is applied us-
ing a 3 s sliding window, and for non-speech features removal, the in Sec. 2 depicted VADs
were utilized. Raw i-vectors are extracted with 400 dimensions based on a 512-component
UBM. Due to the limited data in MOBIO SRE’ 13, gender-independent systems are trained
based on a state-of-the-art PLDA comparator [GREW11]: i-vectors are projected into a 49-
dimensional spherical unit subspace by LDA, mean-subtraction, within class covariance
normalization (WCCN) [HKSO06] rotation, and length-normalization [GREW11]. Refer-
ence and probe i-vectors are compared by PLDA [GREW11] in full-subspace to obtain
(uncalibrated) LLR scores.

4.1 Database Description: MOBIO SRE’13

The speaker recognition subset of the MOBIO database [Mc12, Kh13] was recorded on
mobile phones and laptops, however in the MOBIO SRE’13 [Kh13] only data from mobile
phones was used. Tab. 1 depicts the amount of speakers and samples for the backround and
development (dev-set) containing 50 and 42 subjects in total, respectively. Experiments are
solely conducted on the dev-set, in order to prevent data snooping effects for other research
on the MOBIO database targeting the MOBIO evaluation set. Due to the small partition
of female speakers during PLDA training, results are solely reported w.r.t. data of male
speakers.

Set Female Male
Subjects Samples  Subjects Samples
Background 13 2496 37 7104
dev-set (references) 18 90 24 120
dev-set (probes) 18 1890 24 2520

Tab. 1: Partitioning of MOBIO database, see [Kh13].

4.2 Evaluation Criteria

The biometric performance is reported in accordance to the ISO/IEC IS 19795-1 [IS11] by
the Equal-Error-Rate (EER), and the False Non-Match Rate (FNMR) at a 1% False Match
Rate (FMR100). As an application-independent performance metric, we emphasize on the
minimum cost of log-likelihood ratio (LLR) scores Cﬁ‘ri“, which represents the discrimi-
nation power as generalized empirical cross-entropy of genuine and impostor LLRs with
respect to Bayesian thresholds assuming well-calibrated systems [BdP06, RGROS].

4.3 Experimental Results

Analyses are conducted regarding the VAD decision robustness in noisy conditions of
different SNR levels, and the coherence of VAD metrics in terms of sensitivity to the eval-
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uation criteria. The performance of baseline speaker recognition systems utilizing VADs
are compared in Tab. 2. In terms of EER and Cﬁ‘ri“, VEFR outperforms the other algo-
rithms, while the proposed MUG VAD yields a better FMR100 performance. The perfor-
mance gain of baseline systems to no VAD segmentation applied is moderate, since the
MOBIO task comprises rather prompted speech instead of phone calls, i.e. samples are
pre-segmented due to the prompted scenario.

VAD P56 VBX SRT VFR PSA USG MUG noVAD

EER (in %) 11.0 10.9 12.2 10.2 10.9 11.0 10.7 11.9
FMRI100 (in %) 42.4 41.1 45.9 40.0 43.7 41.7 39.6 46.7
Cﬁ‘ri“ 0377 0376 0376 0355 0373 0377 0.361 0.407

Tab. 2: VAD algorithm performance comparison to no VAD applied by EER, FMR100, and Cﬂ’ri“
on male speaker subset of the MOBIO dev-set, i.e. in this work referred to as clean condition.

4.3.1 VAD Decision Robustness

In order to analyze the impact of noise conditions (source types and SNR levels) to
VAD and biometric recognition performance, pink, white, babbel and street noise are
examined in 0dB, 5dB, ..., 20dB SNR levels utilizing the Matlab implementations of
[Br05, ZB14, Ly15]. Pink noise is referred to be ubiquitous in many biological and phys-
ical systems [BTW87], white (Gaussian) noise represents random signals, babbel noise is
conducted utilizing all speakers of the MOBIO background set with random sample se-
lection, street noise is stemming from the QUT-NOISE-TIMIT corpus [Del0], which is
explictely designed for the purpose of evaluating VAD performance.

VAD algorithm
FEZw BERc AERo EEZ0
> > DD > > DD > > DD > > DD
2E5% %53 223 %Ez°
A D A A D A A A A A

T T T T
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E 15dB |- B — B - §
~ joq| ® m mE O | s
% mlEEEE B : - Mo 2
5 sqpl| B . EEEm mm o5
N ] T ]
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‘ ‘ ‘ ‘ %
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Fig.2: VAD decision robustness carried out under noisy samples compared to clean samples on
dev-set by the proposed VDE metric ¢ ;.
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Fig. 2 depicts the robustness of VAD algorithms introduced in Sec. 2 regarding the pro-
posed VDE metric, representing the average rate of misconducted VAD segmentation
votes. For the majority of VAD algorithms, speech decisions on 15dB and 20dB con-
ditions are similarly to the clean condition. On 0 dB and 5 dB, SRT yields the most stable
decisions on white, babbel and car noise, and MUG on pink noise. Regarding 10dB to
20dB, VFR outperforms other VADs on pink, white, and street noises, while for bab-
ble noise, USG and SRT yield more stable VAD decisions on high-SNRs and 10 dB, re-
spectively. Examining SRE-related VADs, the proposed MUG VAD outperforms PSA and
USG on pink, white and street noise in 0dB to 15 dB conditions, and on 20 dB pink and
white noise. In other conditions, USG outperformed PSA. On condition-averaged VDE,
MUG yields 0.120, USG 0.129, and PSA 0.130, where VFR and SRT yield 0.113 and
0.157, respectively.

4.3.2 Sensitivity Coherence: VAD to biometric Recognition Metrics

Sensitivity analyses are conducted in order to provide insights on coherence of the pro-
posed VDE metric to biometric and forensic performance. For tractability purposes, noise
conditions are pooled by SNR level and the SNR of clean samples is assumed to be 25 dB.
Fig. 3 depicts the SNR sensitivity of the SRT, VFR, USG and MUG algorithms. SRT
achieves low sensitivity regarding EER and FMR 100, though SRT yields the highest EER
and FMR100 results among all examined VADs, cf. Tab. 2. In terms of the proposed VDE
metric and FMR100, VFR, USG and MUG VADs perform similarly, however regarding
Cﬁlri“ and EER, USG and MUG result in more stable performance than VFR, especially
in the low-SNR region with average EER sensitivitiy of 0.76% and 0.80% in EER per
1dB SNR.

=£ 0020 . £ 002
E}g EUE:% 0.020
g § 0.010 § .
0 5 10 15 20 0 5 10 15 20
SNR (in dB) SNR (in dB)
(a) VDE — (b) Cﬁ‘lfin
QS ¥ >
£ 1.000 & &
£ 32
% 2 0.800 = g
m < 2
0 5 10 15 20 T 0 5 10 15 20
SNR (in dB) SNR (in dB)
(c) EER (d) FMR100

—e— SRT —s&— VFR —— USG —— MUG
(e) Legend

Fig.3: Sensitivity of VAD performances to different SNR levels of SRT, VFR, USG and MUG
approaches by (a) VDE, (b) C[i'", (c) EER, (d) FMR100.
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4.4 Summary and Discussion

VADs are designed for certain applications and target specific environmental constraints,
such that none of the examined algorithms is able to outperform other approaches regard-
ing each analyses. NIST SRE-motivated VADs yield more stable segmentation decisions
in high-SNR conditions than conventional VADs. However, examining low-SNR condi-
tions, conventional and SRE VADs achieve good performance, in particular: VFR, PSA,
USG and MUBG. In contrast, SRT achieves better sensitivity results, but has shortcomings
in VDE on pink noise conditions and also high biometric error rates on clean condition.
Regarding evaluation criteria sensitivity, USG and MUG yield the least SNR-sensitive re-
sults, which is coherent to the conducted VAD decision sensitivity analysis. The proposed
MUG outperforms other SRE VADs by utilizing benefitial MDFC-features from conven-
tional VADs, where SRT and VFR partially achieve gains by employing SFM, a-posteriori
SNR and pitch features in low-SNR white, babbel and car noise conditions.

5 Conclusion

The proposed VDE metric reveals the stability of VAD segmentation decisions under dif-
ferent noise conditions. Contrary to well-established metrics in speech recognition, the
proposed metric examines the average amount of inconsistent VAD decisions on changing
environmental conditions, emphasizing on where speech frames are falsely recognized.
By conducting the proposed analyses recipe for examining the decision robustness and
evaluation criteria sensitvity of VADs, coherent decisions can be made regarding the ap-
plicability of VAD segmentation algorithms to speaker recognition tasks. The proposed
metric has limitations regarding the location of false segmentation decisions, which can be
examined by conventional VAD metrics. However, decision robustness is more valuable
to state-of-the-art speaker recognition methods, in which speech frame statistics are ac-
cumulated, i.e. the location of VAD errors remain without impact, whereas unstable VAD
decisions lead to different frame samplings forwarded to front- and back-end processing.
Contrary to conventional VAD metrics, frame-wise annotation voice samples is not re-
quired in order to measure VAD performance. Furthermore, the proposed MUG-extension
of the USG approach yields promising gains, which are expected to be more extended by
incorporating SFM, a-posteriori SNR and pitch features into the VAD decision process.
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