
An Artifact-oriented Framework for the Seamless
Development of Embedded Systems

Wolfgang Böhm, Andreas Vogelsang
Technische Universität München

Institut für Informatik
Boltzmannstr. 3

85748 Garching b. München
{boehmw,vogelsan}@in.tum.de

Abstract: Transferring novel modeling concepts and approaches into a well estab-
lished and customized industrial context is not easy. They have to be mapped to the
specific development process of the application domain, must complement the existing
tools, and exhibit certain representations. Artifact-oriented development distinguishes
between the development process and the created artifacts in the context of a given
development project. This paper provides a conceptual framework that encompasses
an artifact-oriented view onto the development of embedded systems. We argue that
this artifact-oriented view provides means to map academic models and description
techniques onto existing development processes in industry. It furthermore provides
the basis for the definition of tracing links and dependencies between the different
contents and artifacts, allowing for a seamless development of artifacts.

1 Artifact-oriented Development

Over the years, a number of methods, processes, description techniques, and models have
been proposed by academia in order to enhance the development of embedded systems.
On the other side, there exists a plethora of well-established tools, development processes
and best practices applied in industry. Therefore, the transfer of new ideas and approaches
into a well-established and customized industrial context is not easy. Artifact-oriented de-
velopment distinguishes between the development process, which might be very specific,
and the created artifacts in the context of a given development project. It specifically aims
at a detailed description of the structure, the content and the used concepts of the artifacts.
We argue that this artifact-oriented view provides means to map academic models and de-
scription techniques onto existing development processes in industry. Additionally, it has
a positive impact on the syntactic and semantic quality of the created artifacts [Me11].

An artifact is seen as a structured abstraction of modeling elements used as input, output,
or as an intermediate result of the development process [Me10]. Artifacts capture and
document information about the system, its development, and its context. Thus, they
document system properties. This leads to an artifact model, which contains the artifacts
to be developed during a specific development process together with their internal structure
and dependencies between them.

225



In artifact-oriented development, the entire development process is understood as the
stepwise construction of artifacts, always focusing on the results (the artifacts) that need
to be produced during a development rather than focusing on the methods and processes
that create them. We speak of “artifact-driven” versus “process-driven” development.

The basic assumption of artifact-oriented development is that, although development pro-
cesses vary heavily from project to project, the content within the different artifacts is
described by modeling concepts that are independent from the underlying development
process. Note that content here refers to the logical content of an artifact, abstracting from
its actual representation.

As artifact-oriented development puts emphasis on consistent result structures and used
terminology, a given artifact can be created using quite different methods, processes and
representations. The underlying development process is then just an arrangement of the ar-
tifacts produced during system development, together with the methods that produce them.
This leads to a flat method structure. On the opposite, an activity-based (process driven)
approach puts emphasis on how to produce something (rather than what to be produced)
with a more vague description of content and structure, producing a flat artifact structure,
where dependencies between artifacts only arise from dependencies between the methods
that create them. It should be noted that even in a process-centric environment, such as the
development of automation software, an artifact-oriented approach can be applied by fil-
tering the results of the various process steps and abstracting from the methods to produce
them in the first place.

Artifact orientation comes with various interpretations and manifestations in practice.
Therefore, we need a clear definition of the term artifact itself. There is a variety of
information that is embodied in an artifact. We distinguish between:

• the structure of the artifact (e.g., given by a table of content)

• the artifacts logical content, i.e., the pure assertions about a system

• the modeling concepts, i.e., the language by which the logical content is expressed

• the representation (including description techniques) of the artifacts content (e.g.,
natural text, diagrams, models, tables)

• the dependencies between the logical content

Contribution: This paper provides a conceptual framework that encompasses an artifact-
oriented view onto the development of embedded systems by introducing two different
models: The artifact model and the concept model. In a nutshell, the concept model de-
fines modeling concepts that are used to describe a set of content items (e.g., elements
and relations necessary to specify a state machine). These content items are arranged in a
process-dependent hierarchical artifact structure that is defined in the artifact model. The
artifact model contains the set of artifacts that need to be produced within the specific
engineering process together with the dependencies and relations between them. Each ar-
tifact has a hierarchical structure (a table of content) of (sub-) artifacts with leafs being the

226



various content items. Each content item of an artifact is linked to a concept of the concept
model by a specific representation of the concept.

Upon such a framework, we are able to provide concepts for different content items inde-
pendent from the engineering process. On top of that, we can define clear responsibilities
and support a progress control for the production of artifacts. This framework can also be
used to compare different engineering processes (e.g., from different application domains)
and to pinpoint potential needs for optimization. Furthermore, the framework provides the
basis for the definition of tracing links and dependencies between the different contents
items and artifacts, allowing for a seamless development.

After introducing this conceptual framework, we instantiate it by providing a concept
model for the development of embedded systems as it is worked out in the SPES XT1

project. We exemplarily show how this concept model can be linked to a given engineer-
ing process in industry by providing a process-dependent artifact model. We furthermore
show the benefits of this approach by highlighting dependencies between artifacts, which
need to be maintained in that engineering process.

2 Related Work

Artifact orientation has gained much attention in recent years, especially in requirements
engineering approaches. In these approaches, artifact orientation is used to define RE
reference processes and connect them with special concepts that are used within these
processes.

REMsES [Br10] provides a process guide for supporting requirements engineering pro-
cesses in the automotive industry. This approach is based on three models: an artifact
model, a process model, and an environment model. The artifact model provides a ba-
sic structure for the definition of the artifacts, their assignment to abstraction layers and
content categories, and the relations between the artifacts. It defines general control flow
dependencies within requirements engineering processes. The process model defines the
coarse-grained course of action and fine-grained task descriptions. It defines individual
artifact-related tasks. The environment model defines the interfaces between the envi-
ronmental processes that interact during the engineering process of the system with its
requirements engineering process. The approach in this paper follows this idea and ex-
tends it to be applicable for the entire engineering process and not just RE. Additionally,
it also focuses on the concepts used to define parts of the artifacts allowing for a precise
definition of dependencies between artifacts.

REMbIS [Me10] is a model-based RE approach for the application domain of business
information systems. It consists of (1) an artifact abstraction model that defines horizontal
abstraction and modeling views, (2) a concept model that defines those aspects dealt with
during construction of models including the definition of possible notions for producing
the models and finally (3) a generic process model with milestones, phases, and roles that

1http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html

227



defines the activities and tasks of the RE process. We follow this approach in large parts
and extend it to capture the entire development process.

3 Conceptual Framework for an Artifact-oriented Development

The conceptual framework introduced in this section distinguishes between the process-
dependent set and structure of artifacts, defined in an artifact model, and the process-
independent use of concepts used to describe certain content, defined in the concept model.

The concept model is a collection of modeling concepts together with dependencies that
may exist between the different concepts. Each concept is characterized by an ontological
basis, which describes the ontological entities of the concepts and the relations between
them (see Figure 1). Thus, a concept defines an abstract syntax of a modeling language.
Besides this pure description of the syntax, the concept model could also provide semantics
for the concepts used. A concept model captures the complete vocabulary of the engineer-
ing tasks necessary to develop a system. Therefore, it provides modeling languages for
a well-defined, structured specification of the content, while at the same time abstracting
from the actual representation used in a specific artifact (e.g. tables, plain text, models,
code). Concept models can have different levels of “richness” with regard to how expres-
sive and customized the defined concepts are. Simple concept models could just provide
general modeling concepts like state machines or Petri nets. Richer concept models could
provide more specialized concepts, which build upon such simple concepts in order to de-
fine a more specific content. A specialized concept for the definition of a system function
could use the concept of a state machine to describe a functions behavior.

Since systems and their descriptions and documentation can get very large, it is essential to
adequately structure the produced artifacts as well as their logical content. Therefore, we
define an artifact model in the conceptual framework that defines the artifacts produced in
a development process as a hierarchical structure with specific content items as leafs (see
Figure 1). The artifact model defines for each artifact the expected content (e.g., defined
by means of a taxonomy). In this model, content items serve as containers for the actual
content and define single areas of responsibility. In addition, we can regard these content
items as artifacts by themselves and different content items may be grouped together to
form another artifact at a higher level, which may be the outcome of a specific process
step. This leads to a hierarchical structure of artifacts with content items being the leaves
of the tree (see Figure 2).

As an example, the reader may consider a system specification as a concrete artifact to be
produced during the development process. The structure of this specification (e.g., given
by its table of content) will also be described in the artifact model. The concepts used to
describe the individual pieces of content within the system specification are described in
the concept model. To link the two models together, the concepts are related to content
items. In doing so, a concept is given a specific representation that is used to describe the
concept within an artifact. The concept now becomes content that appears in one or more
artifacts, depending on the development process being used. However, the representation

228



Figure 1: Meta Model of the Conceptual Framework (cf. [Me10])

of the concept might vary depending on the artifact in which it is expressed. Therefore,
we say that a concept has a number of representations (e.g., diagram, text, or table), which
are used to describe different content items in artifacts. As a simple example of the above,
we consider the concept of a state machine, which can be used to describe the behavior
of a logical component in the architecture of a system. The development process used
may call for a system architecture specification, which includes the state machines of all
components as state transition diagrams. Another way to describe these state machines
is a tabular representation, which could be used in an interface specification document.
The representation link also allows for the use of different concrete modeling languages.
For example in an avionic context, a state machine might be represented by a SysML
State Machine Diagram, whereas in an automotive context this might be expressed using
a Simulink Stateflow Chart.

Please note that the concept model does not only cover content items that appear in docu-
ments. It also includes content that arises from producing code for example. In this case
the appropriate concept might be a specific programming language or a structural element
(e.g., a class or a method).

229



Figure 2: Artifact Hierarchy

A special challenge in a structured system development approach is an appropriate han-
dling of dependencies. In our framework we aim at a precise description of dependencies
between concepts, content items, and artifacts. Dependencies on the level of concepts de-
scribe the relation between ontological entities of different concepts. These inter-concept
dependencies express dependencies with regard to content and are independent of the de-
velopment process (e.g., events of a state machine must be consistent with the interface of
the logical component in which they are embedded).

When concepts are mapped to the artifact model and thus become content items in a spe-
cific artifact, these content dependencies induce dependencies between content items and
therefore also between artifacts. The induced dependencies arise from the chosen artifact
structure and constrain the way the artifacts can be created. Please note that the dependen-
cies between the content items are not limited to a single artifact. An artifact model thus
defines a description of the set of required artifacts, their structure and contents, and the
relations between the artifacts.

4 Mapping Content and Artifacts to a Development Process

The content items of the artifacts together with the related concept model and their depen-
dencies can be regarded as a blue-print of a comprehensive system specification covering
the whole development process. Therefore, an artifact model can be used as a reference
model that captures the domain-specific results of the development steps. As in artifact-
oriented development the content items are independent of the development process there
must be a mapping of the artifact model to the actual development process.

This mapping is established by assigning the artifacts of the artifact model to tasks and
milestones of the development process. Conversely, we can obtain content items from a
given development process by filtering the results of the various process steps and abstract-
ing from the methods to produce them.

230



Figure 3 provides a meta model for this mapping. The generic process model structures
a development process into a set of milestones and tasks. Each artifact is assigned to
a milestone where it has to be delivered. Artifacts are produced within tasks, in which
potentially other artifacts are needed as inputs in order produce new artifacts.

Figure 3: Mapping of the Artifact Model onto a Generic Process Model (cf. [Me10])

5 Example: Mapping the SPES Modeling Framework to the V-Model
XT Process

The SPES Modeling Framework, as described in [Br12], provides a structured set of model
types that are considered beneficial for the development of embedded systems. These
model types are structured into so called Viewpoints, which group the model types ac-
cording to some concerns following the standard of IEEE42010. Each model type has an
ontological basis. Thus, the SPES Modeling Framework can be considered as a concept
model. However, the model types in SPES do not only cover the information about the
concepts to be used. They additionally provide information about the content that should
be addressed by using these concepts. Therefore, the model types in SPES can also be
considered as a basic set of content items that can/need to be created in the development

231



of an embedded system. In summary, the SPES Modeling Framework defines a set of
content items (basic artifacts) together with concepts that are used to describe the content
items. In the following, we will map these content items and concepts to an artifact model
instance for development process V-Model XT [Fr09].

The V-Model XT is a development process meta model that needs to be instantiated for a
given project context. The instantiation provides an organisational tailoring of considered
roles, activities, and products to be produced during the development. In the context of the
V-Model XT, artifacts are called (work)products. For this paper, we exemplarily examine
the high-level products “Anforderungen (Lastenheft)”2 and “Gesamtsystemspezifikation
(Pflichtenheft)”3. We will create an instance of an artifact model containing these two
products (artifacts) and show how the content items of the SPES Modeling Framework
can be related to these artifacts. Figure 4 shows the artifact model for the two products.
The mapping of the content items to the artifacts is based on the textual descriptions given
for the products and the SPES Modeling Framework. Note, that this model is not com-
plete. Both products contain further content that is not considered here.The V-Modell XT
documentation additionally provides a mapping for these two products to tasks in which
they need to be created.

Figure 4: Artifact model instance for the V-Modell XT products “Gesamtsystemspezifikation” and
“Anforderungen”.

The SPES Modeling Framework also defines dependencies between the model types that
are expressed on the level of the used concepts. There is for example a dependency defined
which states that the interface behavior of the Functional Black Box Model must be refined
by the interface behavior of the Logical Architecture. This dependency on the level of
concepts induces a dependency between the content items and finally between the artifacts

2http://ftp.tu-clausthal.de/pub/institute/informatik/v-modell-xt/
Releases/1.4/Dokumentation/V-Modell%20XT%20HTML/14794f684e963e8.html#
ref14794f684e963e8

3http://ftp.tu-clausthal.de/pub/institute/informatik/v-modell-xt/
Releases/1.4/Dokumentation/V-Modell%20XT%20HTML/f436f8cfc083ae.html#
reff436f8cfc083ae

232



to which they are linked to in the artifact model. Exactly this dependency between the
two artifacts is also described in the V-Modell XT documentation4. However, with the
definition of dependencies on the level of concepts we can be much more precise and
process-independent.

6 Conclusion and Outlook

In this paper, we have shown that an artifact-oriented view can be used to structure the
system development into process-dependent and process-independent parts. This separa-
tion is useful in order to assess and classify academic development approaches and to map
them to specific development processes used in industry. This does not only cover specific
tasks and artifacts used in the process but also specific representations used.

The presented conceptual framework is open to increments in order to cover additional
aspects. One aspect, for example, could cover the artifacts life cycle by extending the
artifact model with attributes that entail the current state of an artifact (e.g., draft, in review,
released).

A further benefit of the presented framework is that it opens the way to a fully integrated
tooling environment, in which content items, which are described by concepts can be
linked to specific tools that are used in order to create these content items. The dependen-
cies in the concept model clearly state the connection between the models within tools that
need to be maintained during development. For practical purposes the content items can be
stored in a content repository, similar to a Product-Lifecycle-Management system (PLM).
The relations between the content items are maintained by the repository system such that
changes in one content item are automatically updated in all related content items. Given
the artifact model, the actual artifact documents can be generated by compiling the corre-
sponding content items from the repository. This way, artifacts always reflect the current
state of development and have a higher quality.

References

[Br10] Peter Braun, Manfred Broy, Frank Houdek, Matthias Kirchmayr, Mark Müller, Birgit
Penzenstadler, Klaus Pohl, and Thorsten Weyer. Guiding requirements engineering
for software-intensive embedded systems in the automotive industry. Computer Sci-
ence - Research and Development, 2010.

[Br12] Manfred Broy, Werner Damm, Stefan Henkler, Klaus Pohl, Andreas Vogelsang, and
Thorsten Weyer. Introduction to the SPES Modeling Framework. In Klaus Pohl,
Harald Hönninger, Reinhold Achatz, and Manfred Broy, editors, Model-Based Engi-
neering of Embedded Systems. Springer Berlin Heidelberg, 2012.

4http://ftp.tu-clausthal.de/pub/institute/informatik/v-modell-xt/
Releases/1.4/Dokumentation/V-Modell%20XT%20HTML/18296108af1c73c3.html#
ref18296108af1c73c3

233



[Fr09] Jan Friedrich, Ulrike Hammerschall, Marco Kuhrmann, and Marc Sihling. Das V-
Modell XT. In Das V-Modell XT, Informatik im Fokus. Springer Berlin Heidelberg,
2009.

[Me11] Daniel Méndez Fernández, Klaus Lochmann, Birgit Penzenstadler, and Stefan Wag-
ner. A case study on the application of an artefact-based requirements engineering
approach. In Evaluation Assessment in Software Engineering (EASE 2011), 15th An-
nual Conference on, 2011.

[Me10] Daniel Méndez Fernández, Birgit Penzenstadler, Marco Kuhrmann, and Manfred
Broy. A Meta Model for Artefact-Orientation: Fundamentals and Lessons Learned
in Requirements Engineering. In Dorina Petriu, Nicolas Rouquette, and Øystein Hau-
gen, editors, Model Driven Engineering Languages and Systems, volume 6395 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2010.

234


