Jan Jiirjens, Kurt Schneider (Hrsg.): Software Engineering 2017,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2017 111

Mining Sandboxes for Security
Automatisches Sandboxing fiir Software-Sicherheit

Konrad Jamrozik! Andreas Zeller?

Abstract: We present sandbox mining, a technique to confine an application to resources accessed
during automatic testing. Sandbox mining first explores software behavior by means of automatic
test generation, and extracts the set of resources accessed during these tests. This set is then used as
a sandbox, blocking access to resources not used during testing. The mined sandbox thus protects
against behavior changes such as the activation of latent malware, infections, targeted attacks, or
malicious updates. The use of test generation makes sandbox mining a fully automatic process that
can be run by vendors and end users alike. Our BOXMATE prototype requires less than one hour to
extract a sandbox from an Android app, with few to no confirmations required for frequently used
functionality.

Extended Abstract

How can I protect my computer from malicious programs? One way is to place the pro-
gram in a sandbox, restraining its access to potentially sensitive resources and services. On
the Android platform, for instance, developers have to declare that an application (hence-
forth referred to as an app) needs access to specific resources. The popular SNAPCHAT
picture messaging application, for instance, requires permissions to access the Internet,
the camera, and the user’s contacts. To install the app the user has to grant such permis-
sions. If an application fails to declare a permission, the operating system denies access to
the respective resource; if the SNAPCHAT app attempted to access e-mail or text messages,
the respective API call would be denied by the Android system.

While such permissions are transparent to users, they may be too coarse-grained to prevent
misuse. For instance, SNAPCHAT offers a feature to find friends on SNAPCHAT based on their
phone number. To do this, SNAPCHAT accesses the phone numbers of the user’s contacts,
and sends them to the SNAPCHAT servers. The permission given by the Android sandbox
allows SNAPCHAT to do much more than that, namely unlimited access to all contacts at
any time. An attacker thus could inject malware into a SNAPCHAT binary that compromises
all contact details; the permissions could stay unchanged.

The issue could be addressed by tightening the sandbox—for instance, by constraining the
conditions under which the app can send the message. But then, someone has to specify
and validate these rules—and repeat this with each change to the app, as a sandbox that is
too tight could disable important functionality.

! Universitit des Saarlandes, Center for IT-Security, Privacy and Accountability (CISPA), Lehrstuhl fiir Soft-
waretechnik, Campus E9.1, 66123 Saarbriicken, {jamrozik,zeller}@cs.uni—saarland.de.
2 See footnote 1.

112 Konrad Jamrozik und Andreas Zeller

1. Mining
Test Generator App Monitor APIs used
1
— =
Qp[|To=ecraa
i ¥ OwOO
2. Sandboxing
User App Sandbox APIs permitted

- VEVEVE-NE-N—

Fig. 1: Sandbox mining in a nutshell. The mining phase automatically generates tests for an appli-
cation, monitoring the accessed APIs and resources. These make up the sandbox for the app, which
later prohibits access to resources not accessed during testing.

Q} %‘Dz?m@mx
I

In this work, we present sandbox mining, [JvSRZ16] a technique to automatically extract
sandbox rules from a given program. The core idea, illustrated in Figure 1, brings together
two techniques, namely test generation and enforcement, in a principle called test comple-
ment exclusion—disallowing behavior not seen during testing:

Mining. In the first phase, we mine the rules that will make the sandbox. We use an
automatic test generator, DROIDMATE [JZ16], to systematically explore program be-
havior, monitoring all accesses to sensitive resources.

Sandboxing. In the second phase, we assume that resources not accessed during testing
should not be accessed in production either. Consequently, if the app (unexpectedly)
requires access to a new resource, the sandbox will prohibit access, or put the request
on hold until the user explicitly allows it.

To the best of our knowledge, ours is the first approach to leverage test generation to
automatically extract sandbox rules from general-purpose applications. This allows us to
detect and prevent behavior changes for arbitrary apps, using fully automatic and easily
scalable techniques. As a result, we gain effective protection of apps against known as well
as unknown attacks as well as protection against latent malware; sandbox can be mined,
validated, compared and re-mined at any time, without any training in production.

References

[JvSRZ16] Jamrozik, Konrad; von Styp-Rekowsky, Philipp; Zeller, Andreas: Mining Sandboxes.
In: Proceedings of the 38th International Conference on Software Engineering. ICSE
16, ACM, New York, NY, USA, pp. 3748, 2016.

[JZ16] Jamrozik, Konrad; Zeller, Andreas: DroidMate: A Robust and Extensible Test Genera-
tor for Android. In: Proceedings of the International Conference on Mobile Software
Engineering and Systems. MOBILESoft *16, ACM, New York, NY, USA, pp. 293-294,
2016.

