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Abstract: To combat privacy attacks that exploit the motion and orientation sensors embedded in
mobile devices, a number of recent works have proposed noise injection schemes that degrade the
quality of sensor data. Much as these schemes have been shown to thwart the attacks, the impact of
noise injection on continuous authentication schemes proposed for mobile and wearable devices has
never been studied. In this paper, we empirically tackle this question based on two widely studied
continuous authentication applications (i.e., gait and handwriting authentication). Through a series
of machine learning and statistical techniques, we show that the thresholds of noise needed to over-
come the attacks would significantly degrade the performance of the continuous authentication ap-
plications. The paper argues against noise injection as a defense against attacks that exploit motion
and orientation sensor data on mobile and wearable devices.

Keywords: continuous authentication, gait authentication, handwriting authentication, wearables
and mobile phones.

1 Introduction

To authenticate the user after the initial login action, there are a myriad continuous au-
thentication mechanisms recently proposed for mobile and wearable devices. Examples of
these mechanisms include those centered on gait [Pr14], touch [Fr13], phone grasp [Si16]
and handwriting patterns [GSMS17], to mention but a few. The core driving force behind
these authentication mechanisms are the sensors inbuilt in the devices. For example, gait,
touch and phone grasp based authentication relies on patterns captured by the accelerom-
eter and gyroscope sensors built in the devices, while touch patterns are recorded thanks
to the touch sensor.

Continuous access to these sensor data streams — as required by continuous authentica-
tion applications — could however provide an avenue for privacy violations. For example,
several studies have shown that data from the accelerometer and gyroscope could be lever-
aged to infer a user’s typed inputs (e.g., see example of this attack based on a smart-phone
[Mi12] and on a smart-watch [WLRC15]). In another attack that applies to these two sen-
sors as well as other sensors on mobile and wearable devices, it has been shown that sensor
output could be leveraged to fingerprint sensor-equiped devices and maliciously track these
devices whenever they access a given website (e.g., see [DBC16, Da16]). In the rest of the
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paper, we refer to the former attack as Attack #1 and the latter as Attack #2 (Figure 1 gives
a high level overview of these attacks).
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Fig. 1: High level overview of Attack #1 and Attack #2. Attack #1 uses data collected from sensors
in a smart-phone or wearable device such as a smart-watch to predict the user’s inputs. Attack #2 on
the other hand uses the same data to fingerprint the identity of the device (i.e., to identify the device).

To ensure that a sensor-oriented application (such as continuous authentication applica-
tion) can never feasibly exploit sensor data for these kinds of attacks, recent research has
called for the injection of noise into the sensor data stream in order to degrade its qual-
ity before the sensor data can be accessed by the applications (e.g., see [DBC16, Da16,
SMS16]). While these noise injection schemes have been shown to successfully overrun
both Attacks #1 and #2, there has never been research on how continuous biometric au-
thentication applications might perform given a sensor input stream as input that has been
degraded through noise injection. This paper explores this question. In particular, we take
the case of two widely studied continuous authentication applications (i.e., sensor-oriented
gait and handwriting authentication) and empirically explore their behavior under one of
the noise injection schemes proposed in recent research.

Our contributions: The main findings and contributions of our work are summarized
below:

1. Impact of Noise Injection on Authentication Error Rates: At increasing thresholds of
noise injection, we studied the behavior of gait and handwriting-based continuous
authentication. We found that the injection of moderate amounts of noise causes the
two applications to see statistically significant reductions in authentication accuracy
relative to when no noise was injected. When we compared the authentication ap-
plications to each other under a wide range of noise injection thresholds, we found
statistically significant differences in the impacts of noise on them. This observa-
tion indicates that the impacts of noise injection are highly application-dependent,
which in turn implies that noise injection will have to be studied for many categories
of apps before making reliable conclusions about its impacts.

2. Exploring User-level Dynamics of Noise Injection based on the Biometric Menagerie:
Beyond the global authentication accuracy of the biometric system, we delved into
the user-level dynamics of noise injection to understand how noise injection affects
different categories of users. We found that the decrement in global mean F-score
seen due to noise injection mostly manifested as an increment in one of the two
classes of poor performing users: the ”lambs”. This observation is particularly in-
teresting as it suggests that solutions targeting categories of users (e.g., as stipulated
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by the biometric menagerie) might enable noise injection to co-exist with sensor-
oriented continuous authentication in mobile and wearable gadgets.

Paper structure: The rest of the paper is organized as follows. We present related work
in Section 2 followed by our experimental design in Section 3. We discuss our results in
Section 4 and finally present our conclusions in Section 5.

2 RELATED WORK

There is now a sizable body of work proposing the injection of noise into the sensor stream
in order to make it impossible for sensor-oriented applications to violate the privacy of the
user. However, none of these works has explored how biometric continuous authentication
applications might be affected by the noise. In [Ow12], it was shown that accelerome-
ter measurements could be used by a sensor-oriented application to decode a 6-character
password in an average of about 4.5 guesses (i.e., Attack #1). As a mitigation strategy
against the attack, they suggested the use of vibrational noise to perturb the accelerom-
eter sensor data stream. Arguing that vibrational noise is not sufficient to obfuscate the
keystrokes, Shrestha et al. [SMS16] proposed a defensive application (called Slogger) that
defended the attacks through more aggressive noise injection. The application injects pro-
grammatic noise at random intervals between touchstroke events (sometimes replacing
some or all events with noise values) when a user is inputting sensitive information. Slog-
ger was shown to make it difficult for an attacker to distinguish between noisy and actual
sensor values.

With regard to Attack #2, the works in [DBC16, Da16] explored the impact of the attacks,
and showcased several noise injection schemes that were able to thwart the attacks. To
support the argument that noise injection would not have a negative impact on benign
sensor-oriented applications, they studied the impact of noise on a step counting app in
[DBC16] and the impact of noise on a gaming app in [Da16]. In both cases they concluded
that these two apps were not significantly affected by noise. As we show in our work
however, different apps can be affected very differently by noise injection. This is likely
due, at least in part, to the differences in underlying operating mechanisms of the apps.

For example, many step counting apps operate by keeping track of the number of cycles
in the sensor time series. A biometric authentication application on the other hand would
have to do more than just count cycles — e.g., for gait authentication, the application, de-
pending on the features used, might have to additionally distinguish between the nature of
these cycles in order to separate between two users. For this reason, if the step counting
application is not affected by noise, this does not necessarily imply that the gait authentica-
tion application is also not affected by noise. As the body of work fronting noise injection
continues to grow, there has never been a study exploring the impact of noise on behav-
ioral biometric authentication. It is this focus on behavioral biometric authentication that
separates our work from all past research on this problem.
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3 EXPERIMENTAL DESIGN

The general flow behind our methodology is as follows: (1) We implement the authenti-
cation applications (i.e., gait and handwriting authentication), and (2) We implement the
noise injection mechanism and concurrently study its impact on both the authentication
applications. Below, we briefly describe the implementation of our applications and their
associated data collection experiments before presenting the performance evaluation in
Section 4. All the applications used during our research were covered under the same
Institutional Review Board approval.

3.1 Implementing the Authentication Applications

Gait authentication: We implemented a sensor-oriented application which collects gy-
roscope and accelerometer sensor data. After installing this app on Samsung Galaxy S6
phone, we had participants use the app for gait authentication experiment which involved
users walking along a corridor (in order for us to monitor their gait). The experiment in-
volved 21 users who participated over two sessions that were at least 1 day apart. These
users placed the phone in their front-left pocket while they undertook the experiment.

Handwriting authentication: For this application, we implemented an Android smart-
watch application that captures accelerometer and gyroscope sensor data on an LG Urbane
smart-watch. The application captures a user’s hand movement pattern during writing.
Again, data was collected from 21 subjects who wore the watch as they wrote text from a
randomly assigned document. Each subject participated in 2 different writing experiments
that were conducted on two different days.

Data processing and Machine Learning frameworks for the 2 authentication apps:
Having collected data for the two authentication applications, the core application logic
was implemented offline as we applied Machine Learning algorithms to the collected data.
The accelerometer and gyroscope data was collected in the form of {ts,x,y,z} where ts is
the timestamp of that particular sensor value and x, y, z are the sensor values along the
three axes x, y, and z respectively. At each timestamp, we then computed the magnitude
m =

√
(x2 + y2 + z2) .

To smooth the time series for each of the x, y, z and m components, we computed a simple
moving average based on a window of 3 consecutive sensor readings. The time series ob-
tained from this step was then broken into sliding windows with a 50% overlap between
consecutive windows. Gait authentication used 10-second windows while handwriting au-
thentication used 15-second windows. This difference in window size was a result of tun-
ing the applications to a setting which gave the best performance. From each window we
extracted several features motivated by feature-sets reported in well-performing systems
in previous research. In particular, we used the features reported in [Pr14] for gait authen-
tication and the features used in [GSMS17] for handwriting authentication. Due to space
limitations, we do not provide the detailed feature listings in this paper.
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After feature extraction, we normalized these features using the min-max scheme to a
range between 0 and 1, and performed classification using python scikit-learn framework.
We tried out several classification algorithms to assess how they would perform with our
data. The Support Vector Machine (SVM — with a polynomial kernel and C value of
1000), and Logistic Regression (LR) were selected after producing the best performance.
Data from each user’s first session was used for training while data from the second session
was used for testing. The ratio of genuine to imposter samples was 1 to 2 for both training
and testing datasets. The instances of impostors were randomly selected.

3.2 Implementation of Noise Injection-Based Defenses

Past studies have implemented several variants of noise injection. For example in [DBC16]
[Da16], noise exhibiting three different probability distributions (i.e. uniform, laplace and
gaussian distributions) was used. In [SMS16] on the other hand, only uniformly distributed
noise was used. For purposes of signal obfuscation, uniformly distributed noise is in gen-
eral more robust than other noise distributions since it offers the highest entropy over a
given bound, making it the most challenging form of noise for any attack which seeks to
reconstruct the original signal.

Like was done in [SMS16], our designs are hence based on uniformly distributed noise
due to its strong defensive credentials. Our noise was drawn from a uniform distribution
whose maximum and minimum accelerometer and gyroscope values were obtained from
the minimum and maximum sensor values registered during Attacks #1 and #2. We refer to
these minimum and maximum values as the base range that we later modify when studying
the attack under varying settings. Uniform noise was injected at a random interval between
3 and 8 milliseconds.

Algorithm 1 summaries our implementation of noise injection. Like previous works (e.g.
[DBC16]), our noise injection is offline — i.e., noise is injected into already collected sen-
sor data. This approach is convenient for repetitive experiments such as ours, yet simulates
the behavior of a sensor producing data that has been perturbed by noise. The algorithm
inputs a stream of sensor data ωsensor, its start timestamp tsstart , its end timestamp tsend ,
the lower and upper bound of the time interval for noise injection rangets, and the lower
and upper noise bound rangenoise ; and outputs ωnoisy sensor , a modified stream of sensor
and noise data. The Random() function draws a value randomly from uniform distribution
within a given range while MergeAndSort() merges the two given sensor data streams and
sorts them according to dates. Lines #8 - #12 are used to generate a timestamped series of
noise data ωnoisy data that is later merged and sorted with the original sensor data according
to the new timestamps. Line #15 produces the obfuscated sensor data, ωnoisy sensor , which
is used in our experimental results in the next section.
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ALGORITHM 1: Noise Injection
Input: ωsensor , tsstart , tsend , rangets , rangenoise

1 // ωsensor: Sensor data

2 // tsstart: Start timestamp of sensor data

3 // tsend: End timestamp of sensor data

4 // rangets: Lower and upper bound of time interval

5 // rangenoise: Lower and upper noise bound

Output: ωnoisy sensor

6 // Modified noisy sensor data

7

8 ωts,noisy data← /0
9 tsnoise← tsstart

10 while tsnoise < tsend do
11 tsnoise← tsnoise +Random(rangets)

12 ωnoisy data←{tsnoise,Random(rangenoise)}
13 ωnoisy sensor←MergeAndSort(ωnoisy data,ωsensor)

14

15 return ωnoisy sensor

4 EXPERIMENTAL RESULTS

4.1 Baseline Performance of the Authentication Applications

In this subsection, we present the baseline performance of the authentication applications
before noise injection is performed. The results presented here will serve as a benchmark
for assessment of the extent of performance degradation in the later subsections after noise
injection is implemented.

Table 1 shows the baseline performance of user authentication. The performance is ex-
pressed in terms of the mean F-score and the standard deviation of F-scores across the
user population. For both the SVM and Logistic Regression classifiers, user authentication
saw mean F-scores above 80%. These results are comparable with findings from previ-
ous research (e.g., see [GSMS17, Pr14]), which implies that our noise injection evaluation
should give a realistic reflection of the state-of-the-art.

Authentication SVM LR
Mean Std Mean Std

Gait 83.57 2.69 82.27 3.63
Handwriting 87.35 1.14 85.18 1.54

Tab. 1: Average F-Scores and standard deviation of F-scores registered across the user population
for both handwriting and gait-based user authentication
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4.2 Evaluating the Impacts of Noise Injection

In this subsection we explore the impacts of noise injection on gait and handwriting au-
thentication applications. For each key observation made, we present: (1) the observation,
(2) evidence in support of the observation, and, (3) the implications of the observation on
the state-of-the-art. We will analyze the global and user-level impacts of noise injection
based on the classes stipulated by the biometric menagerie [YD10, MTM14, Wa12]. We
briefly introduce the biometric menagerie before presenting the main results.

The biometric menagerie: The biometric menagerie (also known as the ”Doddington
zoo” [R.98, YD10]) is a framework through which the users of a biometric system are cat-
egorized into groups based on: (1) how they perform when matched against themselves,
and, (2) when matched against others. The mechanism categorizes users into different ani-
mals based on how they perform. Lambs are the users who are vulnerable to impersonation,
while goats are those users who are unsuccessful at authenticating against their own pro-
files. Sheep on the other hand are the users who exhibit good authentication performance
while wolves are users who are exceptionally successful at impersonating others.

The lambs and goats are poor users (due to issues cited above with their authentication
performance) while sheep are the good users. Because the dynamics of animal behavior
in the menagerie provide fine-grained details on, and strongly influence, the performance
of a biometric system, the biometric menagerie is at the heart of many performance en-
hancement and evaluation mechanisms in both benign and adversarial settings (e.g., see
[Wa12]). We will use the biometric menagerie for a part of our noise injection analysis so
our findings can easily be interpreted in the context of existing frameworks and past work
built around the menagerie. The discussion on the impacts of noise injection follows.

Observation #1: At a noise threshold of 1 × the base range, both applications had a
statistically significant dip in F-score relative to that seen when no noise was injected.
On increasing the amount of noise further, gait authentication performed better than the
handwriting authentication.
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Fig. 2: Global impact of noise injection on the average F-Scores obtained for gait-based authentica-
tion and handwriting-based authentication. The error bars indicate one standard deviation, and are
plotted at only whole number boundaries, 1, 2, 3, etc., to avoid cluttering the figure.
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Authentication Application P-value
Gait 8.9 ×10−5

Handwriting 9.1 ×10−5

Tab. 2: p-values obtained from the Wilcoxon Signed rank test under the null hypothesis of noise
injection having no effect on application accuracy and the alternative hypothesis of noise injection
causing a reduction in accuracy. The p values indicate strong evidence in favor of rejecting Ho (i.e.,
noise injection significantly reduced application performance for all three applications).

Evidence in support of Observation #1: Figure 2 and Table 2 summarize our evidence in
support of Observation #1. The p values in Table 2 were obtained from a series of Wilcoxon
Signed rank tests that were run with the following null and alternative hypotheses for each
of the two applications. Ho: The F-scores seen before noise injection did not differ from
those seen after the first threshold of noise injection (i.e., at Noise = 1× base range on
Figure 2). Ha: The F-scores seen before noise injection were greater than those seen after
the first threshold of noise injection.

At the 5% significance level, we rejected Ho for both applications, indicating that noise
injection significantly reduced the application F-scores/performance. Note that we only
ran the statistical tests to compare the performance before noise injection with that seen
after the injection of a very low amount of noise since this is sufficient to showcase the
minimum impact of noise injection. Also note that at each noise threshold, we compute 20
different F-scores via cross validation; hence the statistical tests run at each threshold are
between two 20-dimensional vectors. Figure 2 shows the observed pattern over a wider
range of noise thresholds, explaining the rest of Observation #1.

Implications of Observation #1 on research in this area: Observation #1 provides strong
evidence against the notion that noise injection can thwart the attacks without significantly
impacting the benign applications. The two applications studied exhibit variations in be-
havior, however, they all see a significant dip in F-score even with low amounts of noise.

In Observation #1, we have taken a coarse-grained view of application performance —
i.e., we have studied each application in terms of a global mean F-score. In Observation
#2, we take a deeper look at each application, exploring the impact of noise injection on
each user in our authentication applications.

Observation #2: The decrement in global mean F-score seen due to noise injection mostly
manifested as an increment in one of the two classes of poor performing users: the lambs.

Evidence in support of Observation #2: Figure 3 shows the evolution of the biometric
menagerie under noise injection. Gait authentication attained a monotonic increment in
the number of lambs as the amounts of noise injected increased (see Figure 3a). Figure
3a shows that about 80% of the user population had become lambs and about 10% of the
animals had become goats when noise injection reached the highest threshold.

On the other hand, Figure 3b shows that handwriting authentication attained a similar
trend (i.e., monotonic increment in the number of lambs as the amounts of noise injected
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(a) Gait authentication
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(b) Handwriting authentication

Fig. 3: Illustration of how noise injection morphs the biometric menagerie as the amounts of noise
injected increase. The figure shows that noise injection increased the proportion of one of the two
classes of poor performing users (i.e., the lambs) and not the other (i.e., the goats).

increased) except for the last noise threshold. At that last noise threshold, about 50% of
the users became lambs and about 5% had become goats (see Figure 3b).

Overall, Figure 3 reveals that there were increments in the number of lambs at all thresh-
olds of noise injection. The figure also shows that handwriting authentication attained
slightly higher numbers of users who were simultaneously lambs and goats at different
thresholds of noise injection.

Implications of Observation #2 on research in this area: To get a deeper understanding
of the effects of noise and how it might better be tuned to co-exist with the benign applica-
tions, its necessary to look beyond the global application behavior and study the ”atomic”
dynamics (in this case user-level dynamics) influencing the observed global behavior. For
example, for the two biometric authentication applications studied in our investigations,
observations on the animal transitions in the menagerie could be fed into well-known the-
oretical models of animal behavior in the menagerie (e.g., see [MTM14]). This could in
turn enable fine-grained sensitivity analysis on the impacts of the noise, or how the system
could be tuned to withstand it. A global mean accuracy number would not provide nearly
as much information as this.

5 DISCUSSION AND CONCLUSION

We have shown that, contrary to what has been reported in recent works, noise injection is
not a viable defense against side-channel attacks that use sensor data.

Application Impact: We found that the average F-score for the authentication applications
was degraded by up to 23% for the base range of noise and dropped up to 30% with 10
times the base noise range. Even within the same authentication application, there was
significant variation in impact as shown in Figure 3. These impacts could make using
some applications difficult or impossible for users.
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Alternate Noise Approaches: An alternate solution to globally injecting noise into all sen-
sor streams would be categorizing apps according to noise tolerance. If an app needs high
granularity data, it would be provided sensor data with less noise. However, this would re-
quire significant infrastructure changes to allow for app specific sensor noise making this
solution infeasible.

Other alternative solutions would be (1) requiring mobile apps to request permission to
use any sensor, a policy in common with other sensors on Android phones, such as GPS,
and (2) implementing new permissions that allow certain apps to restrict sensor data e.g.,
a banking application could request permission to deactivate all accelerometer and gyro-
scope sensor usage on the phone while the user is typing in their pin.

Conclusion: In this paper, we have studied the impact of sensor noise injection on two
widely studied biometric authentication applications (i.e., gait and handwriting authenti-
cation). We have found that both applications see significant degradation in performance
after moderate amounts of noise are injected into the data stream. Further, we have found
that different categories of users are affected differently by the noise injection. The paper
calls for more rigorous research on the impact of noise injection on a wide range of appli-
cations before it can be universally deployed a defensive scheme in mobile and wearable
devices.
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