
Stefanie Betz, Ulrich Reimer (Hrsg.): Modellierung 2016 Workshopband,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 87

The potentials of a code generator which faces the stress

ratio of requirements engineering processes in agile

development projects

David Kuhlen1, Andreas Speck2

Abstract:

The agile software development method is common in many software development companies
worldwide. The following paper approaches an universal problem of agile development projects in
the whole software development branch of industry. Unfortunately, in many cases, the requirements
are incomplete and the projects are under-specified. Imprecise requirements and specifications cause
not only problems in the development, but they also result in inaccurate cost estimations. This leads
to problems even in the development and in the requirements engineering. Moreover, the lack of
clear specifications may lead to further customer requests at the development time. They might be
realized at very high costs. This increases the time pressure for the developers. In order to realize the
software in time, the developers lower the quality level of the code. A lack of quality causes tech-
nical debts which reduces the economic efficiency of the system considerably. A potential solution,
proposed in the paper, is the use of code-generation systems. The use of a code generator could offer
potentials to improve the processes of requirements engineering. The support of these generators
enables the software developers to focus on the requirements engineering. As the generated code
contributes directly to the sprint goal, this approach could be well accepted by the developers. The
potentials of such a concept are investigated.

1 Introduction

In agile development projects the developers may decide to skip (or shorten) the process of

a comprehensive requirements engineering [Sc13]. Without requirements engineering the

software producer might save the effort and finish the project faster [Hr14]. The focus on

activities which fulfil the sprint goal is typical for agile projects. However, requirements

engineering is a long-term goal. It is not attractive, particularly in short iterations. Never-

theless, good requirements engineering methods help to reduce the error rate of a software

system from 0,23 to 0,08 per function point [Hr14]. Increased time pressure enhances the

risk of technical debts. The quality of the requirements engineering process results from

its contribution to reduce technical debts. There emerges the trend to ignore the long-term

profitability [Al12].

1 Datenlotsen Informationssysteme GmbH, Technische Beratung, Beim Strohhause 27, 20095 Hamburg,

David.Kuhlen@nordakademie.org
2 Christian Albrechts Universität zu Kiel, Abteilung, Hermann-Rodewald-Straße 3, 24098 Kiel,

aspe@informatik.uni-kiel.de



88 David Kuhlen, Andreas Speck

1.1 Research Question

Agile software development has to solve many challenges. The impact of code generation

on these challenges should be examined. The paper should investigate the impact of the

use of a code generator on the challenges of requirements engineering processes in agile

software development. It tries to show how the universal problem of the whole software

development branch of industry could be solved by the application of a code generator.

In the following sections it has to be examined which potentials a code generator offers, in

order to solve the stress ratio of requirements engineering in agile development projects.

At first, the stress ratio in agile projects has to be analysed. Secondly, the impact of a code

generator on the stress ratio has to be assessed. At last, standards for a code generator

should be formulated. These standards have to be fulfilled by a code generator in order to

aid agile projects.

1.2 Related Work

This work bases on various researches in different fields. It includes research on technical

debt, on code generation, on requirements engineering and on agile process models. In this

section, just a few works will be described, which have a special impact on this paper.

[Al12] and [MS12] described that technical debt harms the long-term profitability of soft-

ware development projects. Ultimately, the savings have a negative impact on the main-

tainability of a software. Like every debt, it has to be repaid with interest. Thus technical

debt is similar to financial debt which shows its impact. In order to prevent technical debts,

their financial consequences have to be transparent. Previous publications recommend doc-

umentation of technical debts in an own backlog, with its financial impact [Al12]. Unfor-

tunately, this impact cannot be determined easily [KS14]. Therefore, this method might be

hard to apply in practice.

Techniques of code generation have been investigated intensively. An example for a tech-

nique, which expresses specified procedures graphically, is the Business Application Mod-

eler (BAM). BAM allows checking business process models. The graphical tool bases on

the Eclipse Graphical Editing Framework (GEF) [Sp11]. A code generator can consist

of the combination of a Domain Specific Language (DSL) and a possibility for graphical

modelling. The Domain Specific Language enables the code generation. The graphics ed-

itor allows the generation of corresponding diagrams. This generator could be realized by

the combination of Eclipse Graphiti and Xtext. To support the requirements engineering

by a code generator it is important to link the generator with the domain. Pulvermüller and

Speck describe the XOpt generation concept. In this concept, a hierarchical structure con-

sists of generic operators, which are domain-independent. For the adaptation to a specific

domain, domain-dependent operators are refined [PS04].

The field of process analysis of software development approaches is topic of [KS15].

Kuhlen and Speck consider the phase of business process modelling as substantial. They



A code generator which faces the stress ratio of requirements engineering processes 89

explained software development process to vary by the selected development approach.

Because requirements were considered as main cost drivers during the development, the

model, which describes the process of development, could be used to calculate the average

execution costs.

2 Challenges of agile process models

The agile methodology influences the entire project. A reduction in the phase of conception

is often justified by the fact that requirements are changing continuously. This shortens

several aspects of the process of requirements engineering. [Hr14] explains one to three

per cent requirements changes per month!

Abb. 1: Model of an agile development process inclusive requirements engineering activities

In Figure 1 the model of an agile development process is illustrated. A special emphasis is

put on the requirement engineering activities in this model. As displayed in the diagram,

the process consists of several activities which are arranged in a cycle. As explained by

[KS15], this cyclic repetition during the requirements increases the costs of the whole

process.

"Embrace the Change" leads to requirements that are rarely analysed. An agile process

gives developers and customers a certain amount of freedom in terms of content design of

software requirements. However if the effort of a requirement is not estimated correctly,

the effort for a successful implementation will be difficult to assess at the end. In order to

keep the project deadline, software developers partially reduce the quality of implementa-

tion. These savings act primarily on those aspects, which have not been described in any

design requirement scarce. In the process, this leads to technical debts.

2.1 Requirements engineering in agile development projects

In agile development projects, the time budget of requirements engineering is often re-

duced. This is legitimized by the fact that requirements change rapidly in any case. There-

fore, it is common to perform the requirements analysis only as it is required for the control



90 David Kuhlen, Andreas Speck

of the project. For those reason requirements descriptions do not have to contain many de-

tails of the specification. However, this leads to the risk that important details are missing

before development could start (see cycle in Figure 1). The agile process model does not

ensure that a written concept will be formulated between developers and customers. In or-

der to reduce the time used for the analysis of the details, representatives of the customers

will be integrated in the development process. It is assumed that the customer represen-

tatives can resolve ambiguities, resulting from the limited requirement conception during

the software development process.

2.2 Technical debts and quality of code in agile development projects

Technical debts are savings in the production of software which deteriorate the quality of

the service provided [Al12]. Typically, it is caused by the use of "short-cuts", thus save

development time. When developers avoid the use of "best practices" or conventions, they

can quickly find out what their requirements are. Many developers also avoid documenta-

tion in order to win speed [Ka12].

The use of agile software development often results in savings of time and money. This

decreases the process costs. It is typical in agile development projects (where the circum-

ference is less rigidly formulated) to regard the function set to be implemented as flexible

in contrast to the firm constant of development time.

If developers are developing more and more functionality in a defined period of time,

then this pressure on costs misleads the building up of technical debts [MS12]. In agile

software development projects, technical debts can occur any time. Technical liabilities

are accepted as inevitable and periodic. Therefore, iterations for their solution become

scheduled [Al12]. The scheduling of such "bug fix" iterations is not optimal.

These iterations lead to the parts of the request, which become implemented in a later

iteration. Better, requirements should be implemented undivided and technical debts would

consequently not arise [Al12].

2.3 Effort estimation in agile projects

When using traditional development methods, (e.g. the waterfall model) it was not pos-

sible to define requirements completely in advance [Ar14]. As the requirements always

change, a new development paradigm developed - the agile process model. Agility is often

equated with "unpredictability" in software development. Instead, it focuses on flexibility

and responsiveness to market changes [Ec13]. The description of this flexible process in

formal terms of a process model is hard, but necessary to analyse its performance.

Many agile methods focus on the development of code without waiting for formal re-

quirements analysis [CR08]. A comprehensive elaboration of concepts is not seen as an

advantage. This leads to inaccurate goals (which cannot be measured) at the beginning of

a sprint.



A code generator which faces the stress ratio of requirements engineering processes 91

A cost analysis is a regular part of the requirements engineering. This analysis defines

a budget, which must not be exceeded by the implementation. It has to be large enough

to prevent the formation of technical debts. The budget must therefore not be too large,

otherwise it can lead to the risk that additional features are developed which did not belong

to the first scope. This risk can increase because of the communication with the customers.

The execution of a comprehensive requirements engineering for projects with high com-

plexity and duration is criticized as being impossible [Ec13]. However, most of the devel-

opment projects have to pass a business approval process, which assesses this viability. To

obtain estimation rapidly a technical expert analyses the project quickly [Ar12]. Estima-

tions, which are created without a reasonable investigation, will be proven wrong which

harms the economics of the project. To increase its quality, those who are responsible for

the implementation often perform the estimation. They are liable for the accuracy of the

estimation [Al12].

3 Potentials of a code generator to solve the stress ratio

The success of a software development depends on four variables: time, functionality,

resources and technical debts [Al12]. A process of a code generator has a positive effect

on three of these variables: the time, the functionality and the technical debts. All these

variables were affected by requirements engineering.

3.1 Generation leads to better estimations

A code generator shifts effort in development to the requirements engineering. It enables

a process where larger parts of the software become configured instead of developed by

the formulation of source code. This could increase the overall performance of the devel-

opment process.

The application of a code generator leads to a formal procedure. The formal procedure

ensures that all necessary steps are taken and all details are collected which are important

in order to perform a valid estimation.

An improvement in the cost estimation is a key element in the success of a development

project. Although every estimation inherent uncertainty about the future, the companies

which can create better estimations are able to compete better on the market than others

[Ca11].

3.2 Impact on Requirements Engineering

The use of a code generator changes the process of software development. As mentioned

above, a code generator has to replace development time for the requirements engineering.



92 David Kuhlen, Andreas Speck

Abb. 2: Model of an agile development process in which a code generator is used

Therefore, the time of requirements engineering has to donate more than just investing the

time in the development of a new functionality.

Figure 2 illustrates the process of software development which uses a code generator. This

process is similar to the development process in Figure 1. The differences between the

models are highlighted in green colour in the diagram. As displayed, the integration of a

code generator in the development process allows building a required functionality without

the need of developing a new functionality in a common way. However if it is not possible

to fulfil a requirement by the use of the code generator, the classic development part of

the process starts. Therefore, the integration of a code generator leads to a gateway and a

probability that validates the execution of classic development.

By using a code generator, business requirements could be expressed in a high-level lan-

guage (like UML). The expression of these business objects leads to a source code, which

fulfils requirements partially, or complete (depending on the complexity and the possi-

bilities of the generator). With this procedure, the development team has to focus on the

requirements first.

A valid requirements engineering can be the basis of effort estimation. The quality of the

estimations can be improved when more time is devoted to the analysis of the requirements

engineering [Ar12]. However, customers will not demand less functionality of software

vendors [Al12].

Finally, a code generator enables new ways of traceability. The traceability of requirements

to source codes is especially relevant for subsequent changes of the requirements [Hr14].

3.3 Impact on technical debt

Generated source would regard to the given conventions and the generator would not take

"short cuts". This would ensure that relevant models could be understood at any time.

The maintainability of software will also be easier if bug fixes have not been incorporated

[MS12]. If errors become fixed in the models, the correction can be realised through a



A code generator which faces the stress ratio of requirements engineering processes 93

new code generation. So the quality of source would not become injured after multiple

corrections. This could increase the process performance in long terms.

4 Standards for a code generator

Concentration on the essentials has a central meaning in agile software development. To

reduce technical debts, requirements engineering has to take an important role. Therefore,

unattractive, time-consuming and perhaps apparently unnecessary activities need to con-

tribute to the fulfilment of the sprint goal directly. The use of a code generator can make

this possible.

4.1 Modelling procedures in the requirements engineering

It is possible to express requirements in various ways. Only a bounded subset of these

requirements engineering methods are used in agile development projects. Thus, require-

ments analysis should provide a basic understanding about the customers needs [CR08].

The methods of the classic requirements engineering include the creation of state diagrams

and activity diagrams. These methods describe the process of functionality in formal terms.

In contrast, in agile projects less formal and detailed methods are used to describe require-

ments.

In agile requirements engineering, there are essentially six different methods used to inves-

tigate more details of requirements [CR08]: (1) Direct communication with the customer,

(2) Cyclic repetitions of small analysis, (3) Prioritization of requirements, (4) Scheduling

changes in requirements, (5) Prototyping, (6) Test-Driven Development.

The cyclic repetition of the requirement analysis helps to gain detailed information on the

requirement [CR08]. This analysis takes place mostly at the beginning of iteration. It does

not result in a fully formulated specification. A code generator has to fit into this process

model. Therefore, it has to be possible to add contents iteratively, in the entire project.

The design of the code generator needs to separate the generated source sharply from the

source which was written manually.

4.2 Performance needs for a code generator

A code generator could use the requirement specification to produce a source, which meets

the request. This should not lead to increasing efforts for the specification and the imple-

mentation. The description of algorithms has to be simple enough so that the process of the

generator would not become a barrier. It also needs formal descriptions of the algorithm

to provide a source code. Being formal is not easy at any time.

If the requirements analysis just provides general information, it would only be possible to

generate objects on the same level of abstraction. In order to increase the benefit of code



94 David Kuhlen, Andreas Speck

generation, it is necessary to express the content of a required algorithm. Therefore, the

result of functionality and its computation path has to be designed in the requirements engi-

neering. Large descriptions are produced which demonstrate how complex it is to perform

computations in concepts. This level of detail enriches the project. Software manufacturers

want to make sure that the requirements of their customers are fulfilled. Therefore, they

describe what has to be done.

An example of a solution could be realized by XML transformation languages (XSLT).

Fötsch and Pulvermüller describe transformation languages by building new high-level

operators on top of existing ones, based on the generic XML operator hierarchy concept.

The higher the level of the operators is, the more similar they get to everyday languages.

This improves the readability and maintenance of code [FP09].

4.3 Specification of the Generator

If developers implement a business function, they begin to define different business ob-

jects. An object could represent a data record which itself consists of different objects.

Therefore, the developers build hierarchical structured objects. Each object could get its

own business functions. After the developers have built the business objects, they can iden-

tify the business process that deals with these objects.

Abb. 3: Specification of the operator’s hierarchy

The business view will be taken during the phase of requirements engineering. Require-

ments analysts start with thinking about the requirement by designing the overall process.

The overall process is often described in a formal way. During the process, business ob-

jects are used (build, work, destroy). The use of these objects will be described by using

more details. Therefore, different functions will be described. On the opposite, technical

analysts (for example developers) start with defining memory objects. They look at the

requirement from a technical perspective (technical view). After designing objects, they

implement business functionality. Therefore, technical analysts start working on a deep

technical level and go in the direction of a business level. On the other side, business

designers proceed in the direction of the implementation (Cf. Figure 3).



A code generator which faces the stress ratio of requirements engineering processes 95

The hierarchical structure of business objects can be presented in a class diagram. In devel-

opment projects the requirements engineering often stops after describing the functions.

The code generator has to support the analysis on different levels of abstraction.

The analysis should start on the highest level of abstraction, which is typical for the re-

quirements engineering. From this point on, the analysis should go deeper so that more

details of the requested functionality can be analysed. The different levels of operations

are displayed in Figure 3. The requirements analysis goes from the outside to the inside

of the layers. The development starts inside and goes out of the layers. By this specifica-

tion, the code generator also defines a metric. The quality of results depends on the effort

software producers want to invest in the requirements engineering.

5 Conclusion

A further step is the refinement of the generator systems and their validation in commercial

software development operations. This could show the savings which are realized by the

code generator. It has to be checked to which extend this efficient approach leads to a

reduction of software development.

Literaturverzeichnis

[Al12] Allman, E.: Manageing Technical Debt. COMMUNICATIONS OF THE ACM, 5(5):50–
55, March 2012.

[Ar12] Armour, P., G.: The Business of Software The Goldilocks Estimate. COMMUNICATIONS
OF THE ACM, 55(10):24–25, 2012.

[Ar14] Armour, P. G.: The Business of Software Estimation Is Not Evil. COMMUNICATIONS
OF THE ACM, 57(1):42–43, 2014.

[Ca11] Cantor, Murray: Calculating and improving ROI in software and system programs. Com-
munications of the ACM, 54(9):121–130, 2011.

[CR08] Cao, Lan; Ramesh, Balasubramaniam: Agile Requirements Engineering Practices: An em-
pirical Study. Software, IEEE, 08(1):60–67, February 2008.

[Ec13] Eckstein, Dipl-Ing Jutta: Agilität – ein Baustein der dritten industriellen Revolution. HMD
Praxis der Wirtschaftsinformatik, 50(2):77–83, 2013.

[FP09] Foetsch, Daniel; Pulvermueller, Elke: A Concept and Implementation of Higher-level XML
Transformation Languages. Journal on Knowledge-Based Systems (KNOSYS), 22(3):186
– 194, April 2009.

[Hr14] Hruschka, Dr. Peter: Business Analysis und Requirements Engineering. Carl Hanser Verlag
München, 2014.

[Ka12] Kamp, P.-H.: The Hyperdimensional Tar Pit. COMMUNICATIONS OF THE ACM,
55(3):52–53, 2012.



96 David Kuhlen, Andreas Speck

[KS14] Kuhlen, David; Speck, Andreas: Wertanalyseverfahren für Kundenanforderungen. In
(Plödereder, Erhard; Grunske, Lars; Schneider, Eric; Ull, Dominik, eds): INFORMATIK
2014 Big Data - Komplexität meistern. volume P-232 of Lecture Notes in Informatics
(LNI) - Proceedings, Gesellschaft für Informatik e.V. (GI), Stuttgart, pp. 2317 – 2322,
September 2014. Thanks to Prof. Dr. Andreas Speck and Prof. Dr. Hinrich Schröder.

[KS15] Kuhlen, David; Speck, Andreas: Business process analysis by model checking. In (Cer-
avolo, Paolo; Rinderle-Ma, Stefanie, eds): 5th International Symposium on Data-Driven
Process Discovery and Analysis SIMPDA 2015. Vienna, Austria, pp. 154–170, December
2015.

[MS12] McKeen, James D; Smith, Heather A: Effective Application Maintenance. Communication
of the Association for Information Systems, 30(5):73–82, 2012.

[PS04] Pulvermüller, Elke; Speck, Andreas: XOpT-XML-based composition concept. In: Pro-
ceedings of the 3rd International Conference on New Software Methodologies, Tools, and
Techniques (SoMeT’04). volume 111, Citeseer, Proc. of 3rd International Conference on
Software Methodologies, Leipzig, Germany, pp. 249–262, September 2004. IOS Press,
pages , 2004.

[Sc13] Schwaber, K.; Sutherland, J.: , Der Scrum Guide Der gültige Leitfaden für Scrum: Die
Spielregeln, July 2013. Zuletzt Abgerufen am 06.09.2014.

[Sp11] Speck, Andreas; Feja, Sven; Witt, Sören; Pulvermuller, Elke; Schulz, Marcel: Formalizing
business process specifications. Computer Science and Information Systems, 8(2):427–
446, 2011.


