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Abstract: Model-driven development of real-time safety-critical systems requires to
support refinement of behavioral model specifications using, for example, timed sim-
ulation or timed bisimulation. Such refinements, if defined properly, guarantee that
(safety and liveness) properties, which have been verified for an abstract model, still
hold for the refined model. In this paper, we propose an automatic selection algo-
rithm selecting the most suitable refinement definition concerning the type of model
specification applied and the properties to be verified. By extending the idea of test
automata construction for refinement checking, our approach also guarantees that a
refined model is constructed correctly concerning the selected and applied refinement
definition. We illustrate the application of our approach by an example of an advanced
railway transportation system.

1 Introduction

Innovation in embedded real-time systems is increasingly driven by software [SW07].

Since embedded real-time systems often operate in safety-critical environments, errors in

the software may cause severe damages. Thus, ensuring correct operation and safety of

the software is mandatory, but challenging due to its high complexity. High complexity is

not only a result of the complexity of the system in terms of its size but in addition, due to

its strict real-time requirements. Embedded real-time systems require the system (and all

its components) to produce the expected (correct) output no later than at a given point in

time.

Model-driven software development addresses these challenges by building formal mod-

els of the software instead of implementing it directly. These models can be used to

verify safety and liveness properties of the system under development using model check-

ing [BK08]. For embedded real-time systems, timed automata [AD94, BY03] have proven

to be a suitable model to support model checking [ACD93, BY03]. Model checking, how-

ever, does not scale for large systems. Therefore, an underlying component model is

defined in such a way that it supports compositional verification, i.e. parts of the model
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are verifiable independently.

In a little more detail, components, e.g. RailCab and TrackSection in Figure 1, communi-

cate via protocols (specified by timed automata) which define a sequence of timed message

exchanges. Message exchange, in turn, is using connectors and, in case of asynchronous

communication, buffers for storing incoming messages. Connector and buffer behavior is

also specified using timed automata. A so-called abstract model of such a protocol that

includes a model of the connector and possibly message buffers is verified to prove that it

fulfills a given (safety) property ϕ. Then, the abstract protocol behavior is assigned to a

component and usually refined according to the needs and context of the individual com-

ponent. Note, that abstract protocols are defined in such a way that they become reusable

in various contexts and for various components, possibly even in different systems.

A common approach is to check such a refinement for correctness rather than verifying

ϕ for the refined protocol behavior again. Checking refinement for correctness is guar-

anteeing a correct refinement according to the definitions as given in Section 3. Such an

approach makes formal verification of distributed systems, whose subcomponents commu-

nicate via protocols, a lot more scalable. Buffer and connector behavior specifications (e.g.

by timed automata) do not need to be taken into account anymore when the refinement of

protocols is checked for correctness.

However, a number of different refinement definitions have been proposed in the literature.

Depending on the particular type of protocol which is refined, they might all be useful

when building a system. In general, a refinement definition needs to be as weak as possible

for enabling reuse of an abstract protocol in as many different contexts as possible, but as

strong as necessary for guaranteeing that ϕ holds for the refined protocol behavior. That is

especially useful if the same abstract behavior is used multiple times in the same system.

RailCab
railcab

TrackSection
tracksection

railcab tracksection

Protocol

Behavior
Buffer Buffer

Protocol

Behavior
Connector |= φ

?
|= φ

Abstract

Behavior

Refined

Behavior

Refinementi

Figure 1: Overview of the Refinement Approach

Currently, the selection of a suitable refinement definition is left to the developer and his

expertise without giving him any further tool support. If the developer selects a too weak

refinement definition, it is not guaranteed that ϕ holds for the refined protocol behavior.

If the selected refinement definition is too strong, the refinement check might reject the

refined protocol behavior although it fulfills ϕ. This may happen, e.g., if the refined model

removes behavior that is irrelevant for ϕ, but which is checked by the too strong refinement
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definition. In this paper, we provide an automatic selection algorithm selecting a suitable

refinement definition based on the type of model, for example timed vs. untimed, as

well as the specification of the property ϕ. As a basis, we identify the commonalities and

differences of the six most relevant existing refinement definitions for distributed real-time

systems.

The main contribution of this paper is an algorithm to support automatic checking of a

correct protocol refinement based on an extension of the approach described in [JLS00].

In [JLS00], a so-called test automaton is automatically constructed to verify correct re-

finements. The test automaton encodes both, the abstract model and the constraints of the

selected refinement. The constraints specify the allowed deviation of the refined system

model from the abstract model. If (and only if) the refined system model violates one of

the constraints, the test automaton enters a special error location indicating that the refine-

ment is not correct. However, that approach is restricted to just one refinement definition

(namely timed ready simulation which is explained below). Our extensions of [JLS00]

provide for the construction of test automata for all the mentioned different refinement

definitions. They include, in particular, the notion of asynchronous communication via

buffers and thus a very important type of communication and corresponding refinement

definition for distributed real-time systems. Checking refinement definitions for that case

has not been considered before.

In this paper, we will use the RailCab system1 as a case study for an embedded real-time

system. The vision of the RailCab project is a railway transportation system where au-

tonomous vehicles, called RailCabs, travel on existing track systems. Since RailCabs op-

erate autonomously, collision avoidance on track has to be realized by software, only. For

avoiding collisions, each RailCab must register at track sections for gaining admission be-

fore entering. This communication is safety-critical and must obey real-time requirements

to ensure that a RailCab comes to a stop before entering a track if it has no admission.

In our case study, we show how the same abstract behavior can be refined for four dif-

ferent types of track sections. Each type of track section requires the abstract behavior

to be refined differently. Using our approach, we succeeded in showing the correctness

of the refinements by using different refinement definitions for the different types of track

sections.

The paper is structured as follows: In Section 2, we introduce timed automata. Section 3

presents the most relevant refinement definitions and the corresponding selection criteria

using the RailCab example. The construction of the test automaton is given in Section 4.

We discuss related work in Section 5 before concluding the paper in Section 6.

2 Timed Automata

In our approach, we use timed automata as a behavior model for the components within a

system. They extend finite automata by a set of real-valued clocks [AD94, BY03]. Clocks

measure the progress of time in a system and allow for the specification of time-dependent

1http://www.railcab.de
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behavior. In essence, that means that the output of the automaton does not only depend on

its inputs, but also on the points in time at which the inputs are received.

Based on its clocks, a timed automaton specifies time guards, clock resets, and invariants.

A time guard is a clock constraint that restricts the execution of a transition to a specific

time interval. A clock reset sets the value of a clock back to zero while a transition is

fired. Invariants are clock constraints associated with locations that forbid that a timed

automaton stays in a location when the clock values exceed the value of the invariant. In

combination, time guards and invariants define the time intervals where transitions may

fire at run-time.

In addition to guards and resets, transitions may carry messages that specify inputs and out-

puts of the timed automaton. Input messages are denoted by ?, output messages by !. We

assume an asynchronous communication of the timed automata. Messages are sent over

a connector and put into a buffer on the receiver side as shown in Figure 1. By providing

explicit timed automata for the buffers and the connector, we map the asynchronous com-

munication of our timed automata to the synchronous communication of timed automata

as used in [BY03].

In timed automata, transitions are not forced to fire instantaneously if they are enabled.

Instead, the automaton may rest in a location and delay. For many applications, this is not

sufficient because they require that transitions fire immediately if a certain message has

been received. As a result, transitions can be marked as urgent. If an urgent transition is

enabled, it fires immediately without any delay [BGK+96].

RailCab

Idle

cl: c1; buffer: none

NoEntry

enterDenied?
TrackSection

Idle

var int rcWaiting; cl: c2, c3; buffer: none

CheckRequest

c2≤50

enterAllowed!

Wait

c1≤50

request!

{c1:=0}

Drive

c1≤200

[c2≤10]

RailCabOnTS

c2≤250

{c1:=0}

RailCabLeft

c2≤260
sectionLeft?

confirm!

Leave

c1≤250

sectionLeft!

confirm?

[c2≥40]
{c1:=0}

{c1:=0}

enterAllowed?

Wait

c2≤10

request?newSection!

confirm!

[rcWaiting==0]

{c2:=0}

{c2:=0}

[rcWaiting>0]

{rcWaiting--}

NewRailCab

c3≤10

Process

c3≤10

request?

{rcWaiting++}

enterDenied!newSection!
[c2≤200]

{c3:=0}

newSection?

Figure 2: Abstract Behavior for Entering a Track Section

Figure 2 shows an example of two timed automata. They specify the protocol behavior

of the abstract model of Figure 1. The automata specify a simplified registration protocol

where RailCabs register at a track section to be allowed to enter it. Initially, both automata

are in the Idle locations. Then, the track section sends newSection to an approaching

RailCab. The RailCab requests to enter the track section by sending a request. The request

is received by the track section which sends enterAllowed. Then, the RailCab switches to

Drive and enters the track section. If another RailCab approaches, the track section sends

newSection and switches to NewRailCab. In this case, it denies the request by sending

enterDenied. The track section uses the variable rcWaiting to store the number of RailCabs

waiting for entry. A RailCab finally sends sectionLeft after it left the track section which

is confirmed by the track section. If there are RailCabs waiting, the track section switches
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to Wait for processing the next request. Otherwise, it switches to Idle.

The interaction of RailCabs and a track section is safety-critical, because RailCabs may

come into collision if a RailCab enters a track section after the track section denied the

entry. However, we also want to ensure that RailCabs are actually allowed to enter the

track section. We use model checking to prove that the model fulfills such safety and

liveness properties which ensure correct behavior. In the example, we need to verify two

properties. First, we verify “If a track section sends enterDenied, then the RailCab will

not send sectionLeft until the track section sends enterAllowed”. If sectionLeft occurred

before, this would imply that the RailCab entered the track section without being allowed

to do so. Second, we verify “In all system states, there exists a path where the track section

eventually sends enterAllowed.” for checking that progress is possible.

We specify such properties formally by using the timed computation tree logic

(TCTL, [ACD93]) and verify them using model checking. In TCTL, the first property

is formalized as follows:

AG(enterDenied ⇒ A(¬sectionLeft W enterAllowed)) (1)

AG denotes that the formula in parentheses holds globally in all states of all execution

paths. An occurrence of enterDenied implies that on all execution paths sectionLeft does

not occur (¬sectionLeft) until enterAllowed occurs which is modeled by AW . The prop-

erty uses a so-called weak until (W) [BK08, pg. 327]. In contrast to the normal until (U) it

does not require enterAllowed to occur eventually. A weak until, however, can be mapped

to the standard TCTL operators [BK08, pg. 327].

The second property is formalized by:

AG(EF enterAllowed) (2)

The operator EF denotes that enterAllowed is eventually sent.

3 Refinement Definition and Selection

A refinement definition relates an abstract model and a refined model of the same system

as shown in Figure 1. It defines how the behavior defined by the refined model may

deviate from the behavior defined by the abstract model. A restrictive refinement definition

guarantees that verified safety and liveness properties still hold for the refined model. A

less restrictive refinement definition leaves developers more flexibility to adapt the abstract

model to a component and, thus, allows for more possible refined models. Finding a

suitable refinement definition is, thus, a trade-off between flexibility upon building the

refined model and properties that are preserved by the refined model.

In this section, we explain the six most relevant refinement definitions for embedded real-

time systems informally due to space restrictions. Those are simulation [BK08], bisimu-

lation [BK08], timed simulation [WL97], timed bisimulation [WL97], timed ready simu-

lation [JLS00], and relaxed timed bisimulation [HH11]. For the informed reader, please
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note that we only consider so-called weak variants of the refinements [WL97]. These weak

refinements abstract from any internal behavior which is defined by transitions not carry-

ing a message, but performing an internal computation. It is sufficient to consider only

weak variants because the protocol specifications, which are the subject of this paper, only

specify message exchange between components.

Simulation requires that the refined model only includes sequences of messages that are

specified already by the abstract model. The refined model, however, may remove se-

quences of messages. Thus, simulation preserves any CTL*-formulas [BK08] only con-

taining ∀-path quantifiers. Formulas with an ∃-path quantifier are not preserved because

the path fulfilling the property might be removed. For preserving CTL*-formulas with

∃-path quantifiers, we use bisimulation. It requires that the refined model includes exactly

the same sequences of messages as the abstract model.

For timed automata, variants of simulation and bisimulation have been developed that

impose conditions on the timing of messages. These conditions are absolutely necessary

to refine protocols of real-time systems. Like the (untimed) simulation, variants of a timed

simulation only preserve properties containing ∀-path quantifiers while variants of a timed

bisimulation also preserve properties containing ∃-path quantifiers.

Timed simulation [WL97] requires that the refined model only includes sequences of mes-

sages that are specified already by the abstract model. In addition, the refined model

only specifies sending or receiving a message in the same or a restricted time interval. If

the abstract model uses urgent transitions, timed simulation is not sufficient. As shown

in [JLS00], timed simulation does not guarantee that if the refined model R simulates an

abstract model A, the composition with any other model B, R ‖ B, simulates A ‖ B. As

a solution, [JLS00] presents a new refinement definition: the timed ready simulation. In

addition to the conditions of a timed simulation, it requires the refined model to preserve

all urgent transitions including their timing.

A timed bisimulation requires that the refined model includes exactly the same sequences

of messages and specifies exactly the same time intervals as the abstract model. There-

fore, timed bisimulation is a very strong refinement definition and preserves all TCTL

properties. Using an input buffer for messages allows to relax the conditions of timed

bisimulation. We call this relaxation relaxed timed bisimulation [HH11]. The relaxed

timed bisimulation enables to extend the time intervals for received messages, but requires

that the upper bounds of time intervals for sending messages are exactly the same as in the

abstract model. It preserves all CTL*-formulas and all TCTL formulas only referring to

the latest sending of messages.

For illustrating the selection of a refinement definition, we provide examples of two re-

finements of the abstract track section behavior of Figure 2. Figure 3 shows the behavior

of a railroad crossing on the left and the behavior of a normal track section on the right.

In addition, the RailCab system contains switches and stations which also execute refined

versions of the abstract track section behavior of Figure 2. We omit the behavior descrip-

tions for switches and stations due to space restrictions.

Informally speaking, the two automata specify the following behavior: If a RailCab wants

to enter a railroad crossing, the railroad crossing must close the gates. The transition from
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Railroad Crossing

Idle

var int rcWaiting; cl: c2, c3; buffer: none

CheckRequest

c2≤50[c2≤10]

RailCabOnTS
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RailCabLeft
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sectionLeft?

confirm!
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c3≤10

Process

c3≤10
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{rcWaiting++}

enterDenied!newSection!
[c2≤200]

{c3:=0}

CloseGate

c2≤40

Approve

c2≤50

int.closeGate!

int.gateClosed?

enterAllowed!

NormalTrackSection

Idle

var int rcWaiting; cl: c2, c3; buffer: FIFO

CheckRequest

c2≤50

enterAllowed!

[c2≤40]

RailCabOnTS

c2≤250

RailCabLeft

c2≤260
sectionLeft?

confirm!
[c2≥40]

Wait

c2≤40

request?newSection!

confirm!

[rcWaiting==0]

{c2:=0}

{c2:=0}

[rcWaiting>0]

{rcWaiting--}

NewRailCab

c3≤10

Process

c3≤10

request?

{rcWaiting++}

enterDenied!newSection!
[c2≤200]

{c3:=0}

Figure 3: Refined Behavior for Railroad Crossings and Normal Track Sections

CheckRequest to RailCabOnTS is split into several transitions and intermediate locations

that close the gates by using an internal message closeGate prefixed by int. After the gate

responds that it is closed (gateClosed), the railroad crossing switches to Approve. Then, it

sends enterAllowed and enters the RailCabOnTS location. In case of a normal track section,

we only need to check whether the track is free. That, however, does not take as long as

closing the gates at a railway crossing. Therefore, we may receive the input message later

in a refined behavior utilizing the input buffer. Figure 3 shows the refined behavior for

a normal track section. We relax the time guard of transition Wait to CheckRequest to

c2 ≤ 40. The remaining behavior remains unchanged.

After specifying the refined behavior models of Figure 3, we need to choose a suitable

refinement definition for checking for a correct refinement. The choice of a suitable re-

finement definition depends on the verified properties to preserve as well as the character-

istics of the (timed) automata used to model the system. Figure 4 summarizes the selection

algorithm in form of a decision tree.

no clocks clocks

Simulation Bisimulation

only

"-quantifiers else

only "-quantifiers

Timed Ready

Simulation

urgent

transitions

no urgent

transitions

Relaxed Timed

Bisimulation

Timed

Simulation

no buffer
input

buffer

Timed

Bisimulation

input

buffer no buffer

else

Figure 4: Decision Tree for Selecting a Refinement Definition

We can extract the necessary information for deriving a decision based on the decision tree

by a syntactical analysis of both, the properties and the automata. For the first decision in

the tree, we need to analyze whether the automata use clocks or not. Second, we check

whether the properties only contain ∀-path quantifiers as, e.g., Property 1 in Section 2,
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or whether they also contain ∃-path quantifiers as, e.g., Property 2. Third, we analyze

whether the abstract automaton uses urgent messages. Finally, we need the information

whether the automata use a buffer for incoming messages provided by the developer.

In our example of Figure 3, the two refined automata need to preserve Properties 1 and 2 of

Section 2. As a result, the decision algorithm selects the timed bisimulation for the refined

model of the railroad crossing and it selects the relaxed timed bisimulation for the refined

model of the normal track section. According to these definitions, the refinements given

in Figure 3 are correct.

4 Test Automata Construction

Test automata have been introduced in [JLS00] as an approach for verifying refinements

for timed automata. The basic idea of this approach is to encode the abstract model and

the conditions for a correct refinement as a timed automaton TA, called test automaton

(Figure 5). These conditions define whether the developer is allowed to extend or restrict

the time intervals for communication, or even to completely remove message sequences.

Test constructs in TA encode which changes are allowed and which are not, according to

the conditions of the particular refinement definition (cf. Section 3).

Abstract System Model A Refined System Model R

Test Automaton TA

Parallel Test System (TA || R)

[Error State Reachable]

Construct Test Automaton

Parallel

Composition

Reachability Analysis

[Else]

false true

Refinement Definition

...

...

Algorithm

Artifact

Control Flow

Figure 5: Verification using Test Automata

For the verification, we build the composed model TA ‖ R, i.e. the parallel composition

of TA with the refined model R [BY03]. Then, we perform a reachability analysis on

TA ‖ R. During the reachability check, TA communicates with the refined automaton R

for detecting disallowed deviations from the message sequences of the abstract automaton

A. If the conditions of the refinement definition are not fulfilled, the special error location

Err in TA becomes reachable. Otherwise, the refinement is correct.

Our test automaton construction generalizes and extends the construction as given

in [JLS00]. The original construction only checks for a timed ready simulation. Our

approach, on the contrary, supports checking all six refinement definitions given above

(Figure 4). We extend the original approach of [JLS00] by introducing additional test
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constructs. This section explains how to construct TA such that Err becomes reachable in

TA ‖ R iff the selected refinement definition is not fulfilled for A and R.
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Figure 6: Construction Schema for our Test Automata

Figure 6 presents the schema for the construction of the part of TA which is derived from

a single transition LA −→ LA
′ in the abstract model. TA contains three kinds of test

constructs, marked with (1)-(3) in Figure 6. These are explained in the following.

First, TA must include all sequences of messages as defined by A, because all refinement

definitions allow these sequences to be included in R. To model this in TA, we define a

corresponding transition LTA −→ LTA
′ (1) for each transition LA −→ LA

′ in A. The

transition labels will be explained below.

Second, transitions LTA −→ Err (2) are defined for all sent and received messages

which are not specified at outgoing transitions of LA in A. One such transition is defined

for each time interval in which a given message cannot be sent or received by A in LA.

If the developer refined A to R by adding communication not allowed by the refinement

definition, these transitions make Err reachable. This so-called forbidden behavior must

be checked for all refinement definitions, as none of them allows to add completely new

message sequences in R (cf. Section 3).

Third, all variants of bisimulation (cf. Section 3) require that all sequences of messages

specified in A are still included in R. Also, timed ready simulation requires all urgent com-

munication in A to still be included in R. For checking this so-called required communica-

tion, TA includes up to three locations C1, C2, and C3 (for each transition LA −→ LA
′)

(3). Transitions LTA −→ CX , CX −→ N , and CX −→ Err are established for each of
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these locations CX(X ∈ [1, 2, 3]). If the developer refined A to R by removing message

sequences, TA can reach Err via C1, C2, or C3. Successful tests for required commu-

nication lead to location N via C1, C2, or C3. Note that reaching N only indicates a

successful test for one particular transition and does not allow any further conclusions

about the correctness of the refinement.

The labels of the three test constructs for TA depend on the specific refinement definition to

check. We explain these labels in the following. We refer to [Bre10] for further technical

details of the construction.

(1) Label definitions for allowed communication We create the labels for the transi-

tions LTA −→ LTA
′, modeling the message sequences allowed in R, as follows. Com-

pared to the corresponding abstract transition LA −→ LA
′, we invert the direction of all

messages, i.e., input becomes output and vice versa. The symbol µ refers to the original

message, µ denotes the inverted one. This inversion ensures that TA and R can synchro-

nize in TA ‖ R whenever a sequence of messages is specified in both. Note that we use

the ‖-operator of UPPAAL[BY03].

Untimed simulation and bisimulation, as well as relaxed timed bisimulation each allow R

to extend the time intervals defined in A. The time guard of each transition LTA −→ LTA
′

in TA is extended or removed accordingly by the function widen (Figure 6). Depending on

the refinement definition to check, given by ref in (Figure 6), widen returns a modified

time guard as follows. For untimed simulation and bisimulation, widen returns a time

guard that is always true, because time plays no role for these refinement definitions.

For relaxed timed bisimulation, the time guard returned by widen depends on the transi-

tion LA −→ LA
′. If LA −→ LA

′ carries an input message, the returned time guard is

always true. For these transitions, the relaxed timed bisimulation allows to extend time

intervals arbitrarily. If LA −→ LA
′ carries an output message, the returned time guard is

the maximum of the upper bound of the time guard g of LA −→ LA
′ and the invariants

of LA. This time guard models the condition of relaxed timed bisimulation that messages

in R may not be sent later than in A. Earlier sending, however, is permitted by this time

guard.

For the other three refinement definitions (timed simulation, timed bisimulation, and timed

ready simulation), widen returns the original time guard g, intersected with any invariants

of LA. This time guard defines the same time interval as specified for the abstract transition

LA −→ LA
′, because these refinements do not permit R to extend any time intervals of

A.

(2) Label definitions for forbidden communication For each message µj in the alpha-

bet of A which is not sent or received by any outgoing transition LA −→ L′

A in LA, one

transition LTA −→ Err is defined (cf. Figure 6). These transitions check for additional

messages in R, which are not defined by A in the current location LA. We need this check

for all refinements, because none allows adding additional message sequences. The transi-

tion defined for a message µj carries the inverted message µj . This transition synchronizes

with R, if R sends or receives the forbidden message µj . Then, Err becomes reachable
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in TA ‖ R. We define the time guard of LTA −→ Err to be always true, because R may

never offer µj , regardless of time.

For each message µj in the alphabet of A, which is sent or received by an outgoing tran-

sition LA −→ L′

A in LA (µ = µj in Figure 6), further transitions LTA −→ Err are

defined. These transitions check whether the time intervals for sent or received messages

in R are extended in comparison to the time intervals defined in A. We need this check

for all timed refinements, because they do not allow R to extend the time intervals of A.

Relaxed timed bisimulation allows extended time intervals in R, but forbids later sending

of messages. To determine the time intervals where R may not define µj , we consider all

transitions with µj in LA. We write gij to refer to the time guard of the i-th transition

with message µj in LA. We create the conjunction of the negations of all these guards gij ,

each one modified by widen (see above). The result are those time intervals in which µj

is not defined in LA. One transition LTA −→ Err is defined for each of these intervals.

Each transition defined for µj carries the inverted message µj . If R sends or receives the

forbidden message µj when no transition defining µj in LA is enabled in A, R can syn-

chronize with one of the transitions LTA −→ Err in TA. Then, Err becomes reachable

in TA ‖ R.

(3) Label definitions for required communication C1 checks whether a message µ

which is defined in A by a transition LA −→ LA
′ is also defined by R during the time

interval in which LA −→ LA
′ is enabled. We need this check for timed bisimulation

and timed ready simulation, because they do not allow R to restrict the time intervals for

messages that were defined in A. For the transition LTA −→ C1, we take over the time

guard g of LA −→ LA
′ and intersect it with the invariant I(LA) of the location LA.

This makes C1 reachable during the time interval in which LA −→ LA
′ is enabled. The

urgent transition C1 −→ N carries the message µ. Whenever R can send or receive µ, it

synchronizes with C1 −→ N , leading to N in TA ‖ R. For C1 −→ Err we define no

time guard. Err becomes reachable via C1 −→ Err in TA ‖ R, whenever C1 −→ N

is not enabled. Because C1 −→ N is urgent, it has precedence over C1 −→ Err and

prevents it from triggering while R sends or receives µ. If at any point in the time interval

g ∧ I(LA), in which LA −→ LA
′ is enabled, R does not send/receive µ, Err becomes

reachable via C1 in TA ‖ R.

C2 checks whether a message µ which is sent in A by a transition LA −→ LA
′ is also

sent by R at the end of the time interval in which LA −→ LA
′ is enabled, or later. We

need this check for the relaxed timed bisimulation. This refinement requires that the upper

bounds of time intervals for sending messages in R are exactly the same as in A. The test

construct (2) already checks that these time interval bounds are not raised in R. C2 checks

that they are also not lowered, i.e. R must be able to send µ at least up to the upper bound

in A. The latest time at which LA −→ LA
′ is enabled is defined by the upper bound

high(g) of the time guard g and the invariant I(LA) of LA, whichever is more restrictive.

To ensure that C2 is entered only up to this time, we set the time guard of LTA −→ C2 to

high(g) ∧ I(LA). The urgent transition C2 −→ N carries the message µ to synchronize

with R if it defines µ. We set the time guard of C2 −→ Err to cTA = tmax, to only

allow reachability of Err after a maximum amount of time tmax has passed. The value
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tmax is chosen high enough not to be reached in any actual execution of the system. If R,

after reaching C2, still sends µ, the urgent transition C2 −→ N forces TA to enter N in

TA ‖ R. Reachability of Err is prevented in this case. If R never sends µ after this time,

cTA = tmax eventually becomes true. Then, Err becomes reachable via C2 in TA ‖ R.

C3 checks whether a message µ which is defined in A by a transition LA −→ LA
′ is

also defined by R at an arbitrary time. We need this check for untimed bisimulation and

(the untimed condition of) relaxed timed bisimulation. These refinements require message

sequences defined by A to also be defined by R but do not restrict timing. As above, the

urgent transition C3 −→ N carries the message µ to synchronize with R when R defines

µ. In the time guard of LTA −→ C3, we check cTA = 0 to make C3 reachable only right

after TA entered LTA. The special clock cTA is reset with every transition LTA −→ LTA
′.

Checking cTA = 0 ensures that the time interval, in which R may fulfill the check by

defining µ, starts directly after the last message exchange. It can not be reduced by TA

entering C3 at a later time. As for C2, we intersect the time guard of LTA −→ C3 with

high(g) ∧ I(LA). This intersection ensures that C3 is not reachable after the latest time

the abstract transition LA −→ LA
′, defining µ, is enabled. This is the case when LA

is entered with clock values already higher than the time guard of LA −→ LA
′. Then,

R is not required to define µ either and C3 is not reachable. We set the time guard of

C3 −→ Err to cTA = tmax (see above). Err only becomes reachable in TA ‖ R if R

never defines the message µ after TA entered location LTA by a previous synchronization.

Otherwise, the urgent transition C3 −→ N synchronizes with R and forces TA into N .

Implementation We implemented the automatic generation of the test automata based

on a given refinement definition as described in [Bre10]. In addition, we support to verify

that the refinement holds based on the parallel test system TA ‖ R.

5 Related Work

We discuss related work from two areas. First, we review related work on approaches that

support multiple refinement definitions. Second, we discuss related work on test automata.

Reeves and Streader [RS08a, RS08b] identify commonalities and differences of refinement

definitions for process algebras and unify them in a generalized definition, but provide

neither a selection nor a verification algorithm. Sylla et al. [SSdR05] present a refinement

definition program including a refinement check where the refinement is parameterized

by a particular LTL formula [BK08] such that only this particular formula is preserved.

In contrast to our approach, both do not consider real-time properties. In [Bey01], Beyer

introduces timed simulation for Cottbus Timed Automata which are a special kind of timed

automata. We cover this refinement definition in our refinement check.

Test automata are used by [ABBL03] for model checking temporal properties specified

in SBBL (Safety Model Property Language) on timed automata rather than verifying cor-

rect refinements. The test automata construction follows the same idea of encoding the

conditions for correctness into the states of an automaton. The generated test constructs,
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however, are different. The approaches [GPVW96] and [Tri09] perform LTL model check-

ing [BK08] on (timed) Büchi automata and encode the properties in automata as well.

Again, the construction differs from our approach.

6 Conclusion and Future Work

In this paper, we present an automated automata-based refinement check for timed au-

tomata. Based on the (timed) automata used to specify the abstract and refined model of

the system and the verified properties, we automatically select the most suitable refinement

definition out of a set of six refinement definitions. The most suitable refinement definition

is the least restrictive refinement definition that preserves all verified properties. Then, we

automatically generate a so-called test automaton which encodes the abstract model and

the conditions of the corresponding refinement. Our construction extends the construction

of [JLS00] by additional test constructs. Using the test automaton, we verify whether all

relevant properties still hold for the refined model.

Our approach enables developers of real-time systems to reuse (abstract) verified models

of protocols that are specified in terms of (timed) automata. By verifying the correctness

of refinements, we ensure that all verified properties are preserved. We relieve the devel-

oper from choosing a suitable refinement definition by automatically identifying the most

suitable refinement based on the given model and the verified properties.

Future works will investigate whether we can relax the restrictions that currently apply

to our test automaton construction. At present, the construction only allows to check for

a correct refinement of a single timed automaton. Checking refinements for networks of

timed automata requires to build a product automaton for the network [BY03]. We plan

to investigate how the construction can be extended such that the explicit construction of

the product automaton is not necessary. Furthermore, we want to extend the presented

construction of refinements and test automata to dynamic communication structures. In

a dynamic communication structure, the concrete communication topology may change

during run-time which requires timed automata to be instantiated and deinstantiated dy-

namically.
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