Automating Regression Verification

Dennis Felsingl, Sarah Grebingl, Vladimir Klebanov!, Philipp Riimmer?, Mattias Ulbrich"*

Karlsruhe Institute of Technology, Germany
2Uppsala University, Sweden
Hulbrich@kit.edu

Abstract: Regression verification is an approach complementing regression testing
with formal verification. The goal is to formally prove that two versions of a program
behave either equally or differently in a precisely specified way. We present a novel
automatic approach for regression verification that reduces the equivalence of two re-
lated imperative integer programs to Horn constraints over uninterpreted predicates.
Subsequently, state-of-the-art SMT solvers are used to solve the constraints. We have
implemented the approach, and our experiments show non-trivial integer programs
that can now be proved equivalent without further user input.

One of the main concerns during software evolution is to prevent regressions, i.e., to pre-
vent breaking existing functionality when implementing new features, fixing defects, or
during optimization. Undetected regressions can have severe consequences and incur high
cost, in particular in late stages of development, or in software that is already deployed.
Currently, the main quality assurance measure against regressions is regression testing.
Regression verification is a complementary approach that attempts to achieve the same
goal with techniques from formal verification. This means establishing a formal proof of
equivalence of two program versions. In its basic form, we are trying to prove that the two
versions produce the same output for all inputs. In more sophisticated scenarios, we want
to verify that the two versions are equivalent only on some inputs (conditional equivalence)
or differ in a formally specified way (relational equivalence). If successful, regression ver-
ification offers guaranteed coverage, while not requiring additional expenses to develop
and maintain a test suite. Unlike for standard functional verification, one does not need
to write and maintain complex specifications (which can be a significant bottleneck in the
verification process).

A number of approaches and tools for regression verification exist already, but the majority
of them are not automatic and require the user to supply inductive invariants. We present
an approach and a tool for automatic regression verification of imperative programs with
integer variables. We use automatic invariant generation techniques to infer sufficiently
strong coupling predicates between programs—and thus prove behavior equivalence.

Our approach is targeted towards showing equivalence of programs with complex arith-
metic and control flow, a kind of programs poorly supported by existing automatic ap-
proaches. It works well whenever sufficiently “simple” coupling predicates over linear
arithmetic exist that prove program equivalence, which is often the case in practice. An
example is given in Figure 1, which shows two versions of a recursive computation of the

75

int g(int n) { int g(int n, int s) {

int r = 0; int r = 0; PPy
\ /
if (n<=0) { if (n<=0) { wlp
r = 0; r = s; »L
} else { } else { VC
r = g(n-1) + n; r = g(n-1, nts);
} }
return r; return r; |ELDARICA| | 73 |
} }
© X Vv
(a) basic version P4 (b) optimized version Py
Figure 1: Computing the n-th triangular number Figure 2: Architecture of

our approach

n-th Gaussian triangle number. The original version is in (a), while the improved version
in (b) is tail-recursive and can be executed without growing the callstack. To enable this
optimization, an accumulator parameter s has been added to the signature of g for collect-
ing and passing on intermediate results. As a consequence, g in P} performs summation
from the end of the interval, while g in P, starts from the beginning. Using our method,
P; and P, can be proved to compute the same result fully automatically.

Figure 2 sketches the workflow of our approach: a frontend translates the two programs
into efficient logical verification conditions (VC) for program equivalence using a spe-
cially tailored weakest liberal precondition calculus (wlp). This translation is completely
automatic; the user does not have to supply the coupling predicates, loop invariants, or
function summaries. The produced VC are in Horn normal form and are passed to an
SMT solver for Horn constraints (such as ELDARICA [RHK13] or Z3). If the solver suc-
ceeds in finding a solution, the programs are equivalent. Alternatively, the solver may
show that no solution exists (i.e., disprove equivalence) or time out.

Our method for automatic regression verification has been implemented in a tool called
REVE, accessible as a web service at http://formal.iti.kit.edu/improve/.
The effectiveness of our technique has been proved by applying it to a collection of small
but non-trivial benchmarks. A complete account of our method can be found in [FGK T 14].

References

[FGK™14] Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Riimmer, and Mattias Ul-
brich. Automating Regression Verification. In Automated Software Engineering (ASE
2014), pages 349-360. ACM, 2014.

[RHK13] Philipp Riimmer, Hossein Hojjat, and Viktor Kuncak. Disjunctive Interpolants for Horn-
clause Verification. In CAV’13, pages 347-363. Springer-Verlag, 2013.

76

