
Getting Prime Cuts from Skylines over
Partially Ordered Domains

Wolf-Tilo Balke1, Ulrich Güntzer2, Wolf Siberski1
1Forschungszentrum L3S

Universität Hannover
Appelstr. 4

30167 Hannover
balke@l3s.de

siberski@l3s.de

2Institut für Informatik
Universität Tübingen

Sand 13
72076 Tübingen

ulrich.guentzer@informatik.uni-
tuebingen.de

Abstract: Skyline queries have recently received a lot of attention due to their
intuitive query formulation: users can state preferences with respect to several
attributes. Unlike numerical preferences, preferences over discrete value domains
do not show an inherent total order, but have to rely on partial orders as stated by
the user. In such orders typically many object values are incomparable, increasing
the size of skyline sets significantly, and making their computation expensive. In
this paper we explore how to enable interactive tasks like query refinement or
relevance feedback by providing ‘prime cuts’. Prime cuts are interesting subsets of
the full Pareto skyline, which give users a good overview over the skyline. They
have to be small, efficient to compute, suitable for higher numbers of query
predicates, and representative. The key to improved performance and reduced
result set sizes is the relaxation of Pareto semantics to the concept of weak Pareto
dominance. We argue that this relaxation yields intuitive results and show how it
opens up the use of efficient and scalable query processing algorithms. Assessing
the practical impact, our experiments show that our approach leads to lean result
set sizes and outperforms Pareto skyline computations by up to two orders of
magnitude.

1. Introduction

Due to the ever growing volume of database content and the personalization needs in
information searches, human preferences already play an essential part in today’s
information systems. This is because mere SQLstyle queries only too often produce
empty or too numerous results. First approaches at cooperative databases as those by
[LL87, Mo88], handled user queries that retrieved empty results with respect to a
database instance by automatic relaxation of query predicates. Using score values to
express the utility of database objects with respect to a query, cooperative queries come
in various flavors:
• Top-k queries (see e.g. [GBK00, FLN01]) have shifted retrieval models from exact

matching of attribute values to the notion of best matching database objects. Top-k
models rely on basic scorings of objects for each query predicate and a utility
function to aggregate the objects’ total scores.

64

• Skyline queries extend this principle to cases where still score-based preferences
exist for each query predicate, but no utility function is a-priori known to
compromise between predicates (see e.g. [BKS01,TEO01,PTF03,BGZ04]). Skyline
approaches adopt the principle of Pareto optimality, i.e. only those objects are
returned, where no object exists in the database having better or equal predicate
values.

• Multi-objective retrieval [BG04] finally allows for the interleaved evaluation of
arbitrary compositions of skyline and top-k queries with proven instance-optimal
complexity.

Especially the skyline paradigm has proven its usefulness in a variety of applications
(e.g., digital item adaptation [KB06] or location-based services [HJ04]), since users
generally cannot be expected to provide sensible weightings for a utility function. But
while score-based approaches generally allow for efficient query evaluation, their
expressiveness in terms of human user preferences remains rather limited, cf. [Fi99].
With the use of preferences modelled as strict partial orders with intuitive “I like A
better than B” semantics ([Ch02, Ki02]), this lack of expressiveness was remedied at the
price of more expensive query evaluation. A first evaluation algorithm of such partial
order preference queries was given only recently by [CET05]. Also here the Pareto
principle was used for evaluating queries involving several partial order preferences:
• In [Ki02] and [CET05] a strong Pareto dominance principle called Pareto

accumulation is used: an object has to be better or identical in all attribute values
for the query predicates, and strictly better in at least one to dominate another
object.

• In contrast [Ch03] and [BG05] propose a weak Pareto dominance principle called
Pareto composition, where an object’s attribute values has to be better, identical or
incomparable in all predicates, and strictly better in at least one to dominate another
object.

The Pareto principle extends querying capabilities and the result set contains all possible
best database objects with respect to arbitrary utility functions. On the other hand Pareto
sets grow exponentially in size with increasing numbers of preferences [Be78]. Thus,
typical tasks during the query process (like query refinement) rather need a good (and
efficiently computed) overview over skylines.

For instance, [KRR02] presents an online algorithm where users can influence the order
in which skyline objects are produced. Eventually the entire skyline is calculated, but at
every stage of the computation users can provide a direction where most relevant objects
might be expected. The work in [BZG05] also relies on user interaction, by presenting
the user with a representative sample of the expected skyline set, and then exploiting
user feedback to elicit an appropriate utility function for the final result ranking. [KP05]
proposes to cover the skyline set with ε-spheres where each center of a sphere is a
representative for all skyline objects within a distance of at most ε. This set of
representatives is subsequently returned to the user. However, the computation of an
ε-sphere cover was shown to be NP-hard for more than 2 independent predicates.
Moreover, the calculation of such approximations always needs expensive computations
of the entire skyline. These approaches only focus on total-order preferences: all objects

65

can be compared in each predicate, which makes combinations of different predicates
simple. Due to the indifference property in partial order preferences the Pareto
combination leads to even bigger result sets: if an object is incomparable to other objects
with respect to just a single preference, it still is Pareto-optimal and thus part of the
skyline, even if it is the least preferred object with respect to all other preferences. In
practical applications such incomparability often occurs: users can be indifferent
between items and very rarely model preference relations between all possible attribute
values for a query predicate anyway.

Recent research in [Ki05] has started to combat such indifference in partial order
preferences by means of ‘substitute values’. The substitute values (SV) semantics
assigns equal usefulness to some incomparable values. Still, this semantics only
remedies a small number of cases and is comparable in size and evaluation time to the
complete skyline.

Our goal is somewhat more ambitious. We want to efficiently provide ‘prime cuts’ of the
skyline that can be used in an interactive query process. These prime cuts have to be
both manageable in size and representative of the Pareto skyline. In this paper we
present an innovative algorithm for the efficient computation of such prime cuts which
relies on weak Pareto dominance, as defined in [BG05]. Weak Pareto dominance
changes the preference semantics to an even higher degree than SV semantics. The
resulting ‘restricted skyline’, i.e., all objects not weakly Pareto dominated, contains
intuitively appealing objects, can be derived surprisingly efficient, and thus will deliver
our prime cuts. The contribution of our approach is therefore twofold:
• Restricted skylines derive manageable subsets of the partial order skylines (useful

e.g. as a preview, or for query refinement) by taming the effects of incomparability.
Our evaluation shows that sizes of restricted skylines are usually lean.

• Our approach allows to efficiently approximate these restricted skylines without
having to compute the entire Pareto set first. Query processing relies on progressive
iteration of ranked result lists for each predicate and allows for pruning.

In the following we will give a motivating scenario for partial order skylines and explain
the semantics of the restricted skyline set. We will present the efficient evaluation
algorithm for restricted skylines and perform extensive experiments to prove the
practical applicability.

2. Weak Pareto Dominance and Restricted Skylines

The following example will illustrate Pareto skylines and lead to the basic notion of
weak Pareto dominance.

Example 1: Given preferences P1 on car types and P2 on colors in Figure 1 and the
following database instance: a green roadster, a black coupé, a blue SUV, a yellow truck
and a pink limousine. None of them are dominated. The green roadster is maximal in P1.
It does not dominate the black coupé, because black color is preferred over green.
Furthermore, the user is indifferent between black and blue cars, thus the blue SUV is

66

not dominated by the black coupe, nor dominated by the green roadster because of P2.
Though the yellow truck has the worst car type, the user has not given any judgment on
its color, thus making it incomparable. Finally, the pink limousine is completely
incomparable to all other objects. Thus, the Pareto skyline contains all five elements.

Using the normal definition of Pareto sets, in Example 1 the entire database would have
to be retrieved and returned to the user. Since a user usually is interested in refining
queries according to the most promising result objects, retrieving a sophisticated
selection from the skyline is a far more cooperative behavior. Our restricted skyline is
such a selection. But on what grounds can we select ‘better’ objects from the full Pareto
skyline?

Generally speaking, skyline queries are only sensible if no ordering or weightings
between individual predicates are provided. Otherwise utility-based ranking schemes
such as top-k queries would be far more efficient to use. Pareto sets are designed to
consist of all optimal objects with respect to all possible utility functions. Therefore,
selecting a subset of the skyline will always ignore objects that are nevertheless optimal
for some utility function. In other words, any selection will consider some utility
functions as being more probable than others. Such an assessment has to be based on
heuristics. We rely on the heuristic that all user preferences should be relaxed evenly and
as little as possible, i.e. the relaxation scheme should be fair. In any case, a selection
doesn’t have to be the final result set. If it can be computed reasonably fast and yields
manageable result sets, it can also be used as a good starting point for focused searches
such as the online algorithm in [KRR02] or the feedback algorithm in [BZG05]. Since
our selection relies on weak Pareto dominance, we will formalize its semantics in the
following definition (cf. Pareto composition in [Ch03]):

Definition 1: (weak Pareto dominance)
Let O be a set of database objects and x, y ∈ O. An object x is said to weakly dominate
object y with respect to partial order preferences P1, …, Pn, if and only if there is an
index i (1 ≤ i ≤ n) such that x dominates y with respect to Pi and there is no index j (1 ≤ j
≤ n) such that y dominates x with respect to Pj. That means, with >P denoting the
domination with respect to partial order P:

x weakly dominates y <=> ∃ i (1 ≤ i ≤ n): x >Pi y ∧ ¬∃ j (1 ≤ j ≤ n): y >Pj x

We call the set of all non-weakly-dominated objects the ‘restricted’ skyline. Please note
that for total order preferences, weak and strong Pareto dominance coincide, because

roadster

SUV

preference P1

truck

coupé

blue

red

grey

black

green

preference P2

limousinepink
truckyellow

roadstergreen
SUVblue
coupéblack
typecolor

limousinepink
truckyellow

roadstergreen
SUVblue
coupéblack
typecolor

database instance
Figure 1. Partial order preference example

67

there are no incomparable objects. Let us reconsider our example and see what changes,
if we restrict the skyline set using weak Pareto dominance.

Example 1 (cont.): Consider the objects from above under the notion of weak Pareto
dominance (Figure 2). There is still no weak dominance relation between the green
roadster, and the black coupé, because black color is preferred to green, but a roadster is
deemed better than a coupé. However, both of them now weakly dominate the yellow
truck and it can be removed in the restricted skyline. Removing the yellow truck seems
indeed a very intuitive thing to do, because P1 tells us that everything is better than a
truck and the user, although voicing explicit color preferences, did not express his/her
opinions on yellow cars. Moreover, we have to take a closer look at the relation between
the black coupé and the blue SUV. The user is indifferent between both colors. But the
black coupé fits his/her car type wishes to a higher degree, hence is probably more
desirable. The weak dominance relation reflects this semantics: the blue SUV is weakly
dominated by the black coupé and can be removed. Please note that the pink limousine
with incomparable predicate values only is still not dominated by anything and will thus
also be part of the restricted skyline. This reflects the notion that an item may be
desirable, even if a user was not aware of it when formulating the query.

In the end, the result size in our small example is almost halved and only less intuitive
candidates have been pruned. Our work in [BG05] shows that restricted skylines are a
proper subset of the normal skyline, i.e. the strong Pareto set. The same applies to the
substitute values skyline, as shown in [Ki05]. Finally, it can be shown that the restricted
skyline is always a subset of the SV-skyline.

3. Efficiently Computing Restricted Skylines

Unlike numerical skylines, any partial order algorithm needs to handle object
incomparability. This makes algorithms on total orders (such as NN [KRR02] and BBS
[PTF03]) unsuitable. In contrast we rely on a scheme using topologically ordered lists:
for each query predicate a list of all database objects sorted according to the respective
user preference is created. Incomparability can be resolved by exploiting the level order
of the preference. The algorithm’s main challenge is to determine, if all relevant objects
have already been seen. In each query evaluation our algorithm therefore first computes
possible value combinations (so-called l-cuts), which guarantee safe pruning: if a set of

black
coupé

blue SUV

green
roadster

yellow truck

pink
limousine

Figure 2. Sample weak dominance graph

68

objects instantiate any l-cut no relevant object can exist in the tails (higher than level l)
of the sorted lists. The creation of the sorted lists and the calculation of the pruning
thresholds are only dependent on preference size, not on database size, and therefore fast
to compute.

3.1 Level Order for Partial Order Preferences

For pruning, we have to arrange for sorted access to objects for each query predicate:
possibly relevant objects should be returned earlier than rather irrelevant objects. To
create a proper sorting from the given partial preference orders, we use a simple breadth
first topological ordering defining ‘levels’:

Definition 2: (level order)
Let P be a partial order preference. A value v is said to belong to level l or level(v) = l
with respect to P, if and only if the longest path from any maximum attribute value in P
to v consists of (l - 1) edges. Values not explicitly expressed in P belong to level 1. We
denote the set of all values in level l as levell := {v | level(v) = l}.

Analogously, a database object x is said to be in level l with respect to P, iff its attribute
value is in level l.

This notion of levels imposes an intuitive sorting: all maximum (i.e. non-dominated)
objects of P are on level 1, all objects that are only dominated in P by maximum objects
are on level 2, and so on. We call this order level order. In the special case of numerical
or total order preferences the level corresponds to each object’s rank, if objects with
identical scores/attribute values are considered to have equal rank. But for partial orders
this level order has another nice property:

Lemma 1: (level order domination)
Let O be a set of database objects and x, y ∈ O. Then object x can only dominate object y
with respect to a partial order preference P, if level(x) < level(y) with respect to P.

Proof: If x dominates y there is a path of length q > 0 from x to y in P. Thus it directly
follows from the definition of levels by longest paths in Definition 2, that:

 level(x) < level(x) + q ≤ level(y). ■

blue

red

grey

black

green

preference P2

Level 1

Level 2

Level 3

Level 4

Figure 3. Level order example

69

Though objects can only be dominated by objects in smaller levels, due to the partial
order semantics they do not have to be dominated by all objects in these levels, but can
also be incomparable. For example, blue cars are in a smaller level than grey cars for our
preference P2, although both are incomparable (see Figure 3). In the following we will
assume all database objects to be accessed in level order for each preference.

Note that it is not necessary to compute a complete object index based on the level order
for each incoming query. Instead, the database maintains object sets clustered by value,
i.e., the sets of objects sharing the same value for a predicate. Then, creating a list in
level order just means to sort references to these sets, not to sort all database objects.
Since user preferences are typically rather small, producing level orders is fast even for
large databases.

3.2 Identifying the Pruning Thresholds

In the last section we have defined a sorted list of objects for each predicate. For pruning
we introduce the concept of l-cuts. While iterating over the lists, we have to check
whether all relevant (i.e. not weakly dominated) objects have been accessed already.

Definition 3: (l-cut of preference orders)
For a partial order preference P and natural number l, a subset of values C ⊆ P is called
l-cut, if

(a) ∀ v ∈ C : level(v) ≤ l
(b) ∀ (w ∈ P\C) ∃ v ∈ C : v >P w

A set of database objects D forms an instance of an l-cut C if for each v ∈ C ∃ o ∈ D: o
has attribute value v. An l-cut C is minimal, if no subset C’ ⊂ C is an l-cut.

The intuitive meaning of l-cuts is to form sets of attribute values that if instantiated by
database objects, dominate all object values beyond the l-th level. Every completely
instantiated level of values forms a trivial l-cut. But generally l-cuts will be much
smaller, and in the following we only need to consider minimum l-cuts.

Example 1 (cont.): Every single red car is instance of a 1-cut with respect to P2. A 2-cut
is instantiated by any pair of a blue and a black car. Regarding preference P1, every
roadster is instance of the 1-cut, every coupé instantiates a 2-cut, and so on.

For efficient pruning in our skyline evaluation we have to allow for quick tests whether a
set of objects instantiating an l-cut has already been accessed. Hence, our first step in
query evaluation is to compute all minimal l-cuts for each preference dimension. If we
later find some object set instantiating any such cut we have found a pruning threshold.
We now present a simple way to calculate minimal l-cuts. We first split the preference
graph into levels, according to Definition 2:

70

Algorithm 1 (calculating attribute value levels)
0. Select level1 as the set of all maximum attribute values in a preference graph P, i.e.

all attribute values that are not dominated by any other attribute value.
l := 1

1. levell+1 := ∅
2. While there are attribute values in levell do

2.1. Consider the next attribute value x in levell
2.2. For each attribute value y directly dominated by attribute value x with respect

to P do
2.2.1. If y ∉ level0 ∪…∪ levell +1,

 then levell +1 := levell +1 ∪ {y}
2.2.2. If y ∈ levelj for some j ≤ l,

 then remove y from levelj and set
 levell+1 := levell+1 ∪ {y}

3. If levell+1 is not empty, set l := l+1 and proceed with step 1.

From these level sets, we can now determine minimal l-cuts. Obviously, each complete
set levell is a cut candidate, because all objects having attribute values in levelj with l < j
are dominated by some object having an attribute value from set levell. Moreover, if we
replace some cut element by any object dominating that cut element, the resulting set
still forms a cut. Thus, to find all possible cut candidate value sets, we have to
systematically enumerate all possible replacements. For this purpose, we first build a cut
candidate value set from each complete levell and then exhaustively replace attribute
values by dominating values. Finally we remove redundant values to identify minimal
cuts.

Algorithm 2 (calculating minimal cut value sets)
0. Given n sets of attribute values level1 ,…, leveln as output by algorithm 1 and

initialize candidates1,…, candidatesn := ∅, replace1,…, replacen := ∅ and
minimalcuts1,…, minimalcutsn := ∅.

1. For l := 1 to n do
1.1. If levell ∉ candidatesl

 then candidatesl := candidatesl ∪ {levell}
1.2. For j := 1 to |levell| do

1.2.1. Consider the j-th attribute value aj in an enumeration of levell and
initialize
replacej := ai

1.2.2. For each y with aj <P y and y ∉ replacej do replacej := replacej ∪ {y}
1.3. Generate all possible combinations {x1,…,x|level l|} with xl ∈ replacel and in

each combination remove redundant attribute values, i.e. duplicates and values
dominated by another value in the set.
candidatesl := candidatesl ∪ {x1,…,x|level l|}

1.4. Consider all candidate sets cand in candidatesl and if no subset of cand is in
candidatesl, mincutsl := mincutsl ∪ {cand}

71

Algorithm 2 is exponential in the size of the partial order preference. However, this size
is typically rather small, and l-cut computation is always independent of the actual
database size. Therefore, query processing efficiency is dominated by the actual skyline
computation described in the next subsection. Please not that we nevertheless include the
cost of the minimal l-cut computations in the query processing times in all our
experiments.

3.3 Correctly Pruning Database Objects

In each preference we identified all minimal l-cuts. Now we are ready to present a way
for pruning irrelevant parts of the database without missing elements of the restricted
skyline. This is the major component needed to build an efficient evaluation algorithm
for partial order preference queries under the weak Pareto dominance paradigm. The
following theorem will show a sufficient condition to correctly prune database objects:

Theorem 1: (absence of false negatives)
Let O be a set of database objects and S1,…, Sn be level-ordered lists of O with respect to
partial order preferences P1,…,Pn. Let o1,…,ok ∈ O and assume that o1,…, ok have
already been accessed in all level ordered lists and {o1,…, ok } form an l-cut with respect
Pi for some numbers i and l. Then no object that for all 1 ≤ j ≤ n occurs on a higher level
than l in Sj can be part of the restricted skyline.

Proof: Let {o1,…, ok } be as defined above and u ∈ O be an object that has not yet been
accessed in any Pj (1 ≤ j ≤ n). For the sake of contradiction we will assume that object u
belongs to the restricted skyline set, i.e. it is not weakly dominated by any other object.
Since {o1,…, ok} form an l-cut in Pi, u has to be dominated by some object om (1 ≤ m ≤ k)
with respect to Pi. Because we have assumed u to be not weakly dominated by any
object, there has to be at least one preference where u dominates om Since om has already
been accessed in all Pj and u has not yet been accessed with respect to any Pj, its level
levelj(u) ≥ levelj(om). Now according to Lemma 1 u cannot dominate om in any
preference and thus must be weakly dominated. This contradicts the assumption of u
being part of the restricted skyline. ■

coupé

roadster

truck

SUV

limousine

preference P1

blue

red

grey

black

green

preference P2

limousinegrey
SUVgreen
SUVblue
coupéblue
typecolor

limousinegrey
SUVgreen
SUVblue
coupéblue
typecolor

database instance

Figure 4. False positives due to pruning

72

Now we know that unseen objects can never be part of the restricted skyline and can be
correctly pruned after we have a completely known set of objects that instantiates an l-
cut. Unfortunately, due to the intransitivity of weak Pareto dominance, in some rare
cases an unseen object could still weakly dominate a member of the restricted skyline
candidate set, thus resulting in a false positive.

Example 3: Given preferences P1 on car types and P2 on colors in Figure 4 and the
following database instance: a blue coupé, a blue SUV, a green SUV and a grey
limousine. Let us assume that we have iterated over the sorted lists up to level 2 in each
preference, i.e. we have seen all roadsters, coupés and SUVs and all red, blue and black
cars. Given the database instance, we have accessed the blue coupé, blue SUV and green
SUV. Moreover the first two items have been accessed in both preferences and form a 2-
cut with respect to P1. Following theorem 1 we can now prune all remaining objects, i.e.
the grey limousine. This pruning is indeed correct, since the grey limousine is weakly
dominated by the blue coupé. But whereas neither the blue coupé, nor the blue SUV
dominate the green SUV, it is dominated by the pruned grey limousine and thus a false
positive in the restricted skyline set.

As we can see from Example 2, preference graphs where such false positives can occur
have to consist of long isolated branches and the database instance should be rather
sparse on top objects. In fact, finding these conditions in all preferences is very unlikely
(cf. Section 4.7).

3.4 Efficiently Approximating the Restricted Skyline

For computing the correct restricted skyline we have to
• derive the Pareto skyline,
• test all elements against all other database objects for weak Pareto dominance, and
• finally remove all weakly dominated objects.
However, this is very inefficient since for Pareto skyline computation with partial order
preferences usually all database objects have to be accessed (for example on a database
with only 500,000 tuples and 5 partial order preferences calculating the Pareto skyline
takes about 22 minutes). Exploiting sorted lists and the pruning condition defined in
section 3, in the following algorithm we will take a few false positives into account.
However, in return we may prune large parts of the database and thus get an efficient
query processing, while still always correctly deriving all objects of the restricted skyline
(for example calculating the approximate restricted skyline in the same scenario and
setting as above takes only 35 seconds).

73

Algorithm 3: (approx. restricted skyline computation)
0. Given a set of database objects O and a query containing n partial order preferences

P1,…, Pn; given a set of n sorted lists S1,…, Sn of O with respect to P1,…,Pn in level
order. Initialize a set for all accessed objects accessed := ∅, sets for all objects
accessed in the n lists accessed1,…, accessedn := ∅, a set for all objects already
accessed with respect to all preferences complete := ∅, and a set for all objects
currently under consideration current := ∅. Compute all sets of minimal cuts
mincutsi,l for the 1 ≤ i ≤ n preferences and 1 ≤ l ≤ maxleveli levels, using Algorithms
1 and 2. Initialize a counter for the levels l := 1, for the current preference i := 1.

1. If none of the preferences P1,…,Pn has an l-th level, then return ∅ as the restricted
skyline and terminate. If preference Pi has no l-th level, proceed with step 4.

2. Get all attribute values of level l for the i-th preference Pi and iterate over list Si
retrieving all objects having any of these attribute values into the set current.

3. If current ≠ ∅ then
3.1. accessedi := accessedi ∪ current and accessed := accessed ∪ current
3.2. complete := accessed1 ∩ … ∩ accessedn
3.3. If there exists some set of objects C ⊆ complete such that the respective set of

i-th attribute values of the objects in C is equal to some element of mincutsi,l,
i.e. the objects in C instantiate an l-cut with respect to Pi and have already been
accessed in all lists S1,…, Sn, do

3.3.1. For j := i+1 to n do get all attribute values of level l for the j-th preference
Pj (if level l exists in Pj) and iterate over list Sj. Union all objects having
any of these attribute values with the sets accessedj and accessed like in
step 3.1.

3.3.2. complete := accessed1 ∩ … ∩ accessedn
3.3.3. Compare all objects from set accessed pairwise for weak domination and

subsequently remove all weakly dominated objects from set accessed.
3.3.4. Return the set accessed as the restricted skyline and terminate.

4. If i < n, then set i := i+1, else set i := 1 and l := l+1. Set current := ∅ and proceed
with step 1.

Basically the algorithm iterates over the preference information in a round robin fashion.
It considers all objects that form a level in a preference. Of course instead of using sorted
lists, all objects with a certain attribute value could also be retrieved using a database
index (step 2). The algorithm then checks if an l-cut has been instantiated by completely
known objects on the current level, and – if not – proceeds to process the next
preference. Whenever a round is complete, it proceeds to the next level. If an l-cut has
been instantiated by completely known objects, the current level is completed in all
preferences and all higher levels are pruned (which is correct according to Theorem 1).
The algorithm then checks for weak dominations and removes all dominated objects.

74

4. Evaluation

To evaluate the performance of our algorithm and compare skyline sizes, we conducted
extensive experiments with various parameter settings. To avoid bias, both data and
preferences are synthesized randomly, and we show averages over multiple runs in our
evaluation. The database content is generated according to several different distributions.
Preferences are generated based on several parameters:
• Preference size. The number of attribute values in a preference.
• Preference depth. The number of levels in the preference graph (cf. Definition 2).
• Edge ratio. The ratio between nodes and edges in the preference graph, i.e. the

average node degree.

We evaluated different scenarios to study the influence of these parameters. In all
scenarios, we measured the time required to compute the skylines (runtimes) and the
skyline sizes for the restricted skyline, substitute values (SV) skyline and Pareto skyline.
For restricted skyline computation, we use the algorithm described in Section 3. For all
other skylines, we need to do a pair-wise object comparison for all object pairs1.

Table 1 shows our default configuration used as baseline setting. In all experiments,
parameters not explicitly mentioned are set to these default values. We ran all
experiments on a 2.4 GHz AMD Opteron64 Dual-processor Linux machine, equipped
with 20GB main memory. The algorithm is not (yet) parallelized, therefore only one
processor was actually used. Memory consumption was not regularly captured. We only
measured it for the largest database size (1 million objects), where the computation of
restricted skylines required 811MB.

In the next sections, we describe each experiment and its outcome in detail. Please note
that we always use a logarithmic scale for both time and size to suit the large differences
between skyline types.

1 The BBS+ or SDC+ algorithms described in [CET05] may yield better runtime results for the Pareto skyline
case. However, the experiments in [CET05] show results only for queries including 1 or 2 partially ordered
preferences, and due to the underlying R-Tree indexing structure performance is bound to suffer for higher-
dimensional skyline queries.

Parameter Value
Database size 25000
Data distribution Uniform
Number of preferences 5
Preference size 15
Isolated incomparable values 0
Preference depth 5
Edge ratio 1.2

Table 1: Default evaluation settings

75

4.1 Influence of database size

To determine the influence of the database size in terms of our algorithm’s scalability,
we varied the number of database objects between 50.000 and 1.000.000. Restricted
skylines are in all cases computed by about two orders of magnitude faster than SV and
Pareto skylines (see Figure 5a). In absolute figures, runtimes for Pareto skylines of more
than 15 minutes on a powerful server can hardly be considered practical. Our algorithm
can compute the skyline about two orders of magnitude faster. The dominant operations
are pair-wise object comparisons which proceed for each object until a) a dominating
object is found or b) the object has been compared to all others. Due to the weakened
domination definition case a) occurs much more frequently in our approach.
Additionally, on average far fewer comparisons are required until a dominating object is
found. Figure 5b shows that the restricted skyline size starts very small (32 for 50.000
objects) and stays manageable even for large databases (297 for 1 million objects). In
contrast, SV and Pareto skylines always comprise several thousand objects, already an
unacceptable size for practical usage, e.g., in query refinement or relevance feedback. In
summary, our proposed skyline algorithm scales well in terms of computation and
skyline size.

4.2 Influence of query dimensionality

The goal in this scenario was to see how the number of preferences specified in a query
affects skylines. After a small decrease in skyline sizes for 2-3 dimensions (where domi-
nation relationships are not yet outweighed by incomparability between the growing
number of possible pairs of dimensions), the SV and Pareto skylines are touched by the
curse of dimensionality. Like comparable work shows: their sizes quickly increase
significantly up to nearly the whole database. On the other hand, the restricted skyline
size only increases slightly (see Figure 6b). But what is more, even for large numbers of
preferences it is still computed about an order of magnitude faster than SV and Pareto
skylines, as shown in Figure 6a. We can state that the restricted skyline approach makes
interactive refinement or feedback in high-dimensional skyline querying practical.

1

10

100

1000

10000

50
00

0

15
00

00

25
00

00

35
00

00

45
00

00

55
00

00

65
00

00

75
00

00

85
00

00

95
00

00

Database size (# of objects)

si
ze

 (#
 o

f o
bj

ec
ts

)

Restricted

SV

Pareto

1

10

100

1000

10000

50
00

0

15
00

00

25
00

00

35
00

00

45
00

00

55
00

00

65
00

00

75
00

00

85
00

00

95
00

00

Database size (# of objects)

tim
e

(s
ec

)

Restricted

SV
Pareto

Figure 5. Database size effect on a) runtime and b) skyline size

76

4.3 Influence of preference size and shape

In this experiment, we varied the preference size between 5 and 30 attribute values.
Figure 7a shows that between 5 to 20 attribute values, SV and Pareto skyline sizes grow
up to 20%, rsp. 25% of the database. Further increase of preference sizes doesn’t show a
significant impact on skyline sizes. In contrast, the restricted skyline shrinks to a
minimum at preference sizes of 20, and then stays fairly constant. For preference depth,
we see a different picture (Figure 7b). Pareto and SV skyline shrink notably when
increasing depth from 2 to 15. This happens due to the reduction of incomparable
attribute values. For depth 15, we already get a linear dominance order, without any
incomparable value pairs left. For this case, Pareto, SV, and restricted skylines becomes
identical, since weak and strong dominance coincide.

1

10

100

1000

10000

5 10 15 20 25 30

preference size (# of attribute values)

si
ze

 (#
 o

f o
bj

ec
ts

)

Restricted

SV

Pareto

1

10

100

1000

10000

100000

2 3 4 5 6 7 8 9 10 11 12 13 14 15

preference depth (# of levels)

si
ze

 (#
 o

f o
bj

ec
ts

)

Restricted
SV

Pareto

Figure 7. Influence of a) preference size and b) preference depth on skyline size

0,1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

of preferences

tim
e

(s
ec

)

Restricted

SV

Pareto

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

of preferences

si
ze

 (#
 o

f o
bj

ec
ts

)

Restricted

SV

Pareto

Figure 6. Preference dimensionality effect on a) runtime and b) skyline size

77

4.4 Influence of Skewed data distribution

For our next set of experiments, we changed the distribution of our data collection.
Using a Zipf distribution, we varied skews from uniform (skew parameter -1.0) to highly
skewed (0.0). In the latter case, the most preferred attribute values in each preference is
already assumed by 14% of all database objects. As we can see in Figure 8a, with
growing skew the different skyline types coincide more and more. With so many objects
having top attribute values, the chance for incomparability gets lower, and a set of rather
similar top objects is bound to dominate the whole rest of the database. Similar effects
can be observed when shifting the head of the Zipf distribution to the least preferred
objects, thus creating a multitude of overall bad objects. In both cases, the restricted of
skyline is computed an order of magnitude faster than the Pareto skyline.

4.5 Influence of Gaussian data distribution

Finally, we investigated the influence of Gaussian data distribution on skylines. Varying
the standard deviation, we measured sizes and runtimes. This distribution encourages the
creation of objects with medium preferred attribute values in all preferences. As
Figure 8b shows, the restricted skyline size constantly stays about two orders of
magnitude lower than in the Pareto and SV semantics case, independently of the
standard deviation. Also here, the restricted skyline is computed about a magnitude
faster than Pareto and SV skylines.

4.6 Coverage of Pareto by Restricted Skyline

To investigate how good the Pareto skyline is covered by the restricted skyline, i.e., how
representative our selection from the original skyline set is, we performed a separate
evaluation. We compared the coverage of the restricted skyline over the full Pareto
skyline with the coverage of a random sample of the Pareto skyline. As measure for

1

10

100

1000

10000

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0

skew

si
ze

 (#
 o

f o
bj

ec
ts

)

Restricted
SV

Pareto

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10

standard deviation

si
ze

 (#
 o

f o
bj

ec
ts

)

Restricted

SV

Pareto

Figure 8. a) Zipf skew and b) Gaussian distribution effect on skyline size

78

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

of preferences

av
er

ag
e

m
in

im
um

 d
is

ta
nc

e

Restricted
Pareto Random Sample

Figure 9. Average minimum distance

coverage, we use the average minimum distance of all Pareto skyline points to the
objects in the restricted skyline. Small average minimum distances show a good
approximation of the original set. To calculate this measure, we select for each object in
the Pareto skyline the nearest object of the restricted skyline, and compute their
Euclidean distance. As we have no natural numeric distances, we use again the level
order to translate preference differences to numeric difference: for each preference P, the
object value v is replaced with the numeric value v’ = levelP(v) / maxlevelP. The same
measure is used to compute the coverage of an equally large random sample of the
Pareto skyline. Such a random sample can bee seen as optimal regarding
representativeness, with respect to its size. As shown in Figure 9, the restricted skyline
exhibits nearly the same coverage as the random sample. This shows that the restricted
skyline does not bias toward a specific area of the Pareto skyline.

4.7 Occurrence of False Positives

In all described settings, besides computing the restricted skyline according to
Algorithm 3, we also computed it by exhaustive comparison of all database objects, to
identify false positives. Even with our small edge ratio of 1.2, we did not encounter a
single false positive. A closer look shows that it is indeed highly improbable to create
preference graphs with long isolated branches, while at the same time having a database
instance where the values at dominating positions are not occupied by some object.

5. Summary and Conclusions

Although skylines on partial order domains gain importance in practical applications due
to their intuitive query capabilities, their evaluation times and especially their large result
set sizes are still hampering their usefulness in typical interactive tasks, such as query
refinement or for providing relevance feedback. Therefore the concept of weak Pareto
dominance has recently been introduced, allowing to derive the restricted skyline.
Restricted skylines generally allow to retrieve only the best matching objects with

79

respect to the user’s preferences. Moreover, the relaxed semantics of restricted skylines
usually lead to intuitive results.

For fast query processing, we designed an efficient evaluation algorithm to approximate
restricted skylines. It iterates over object lists for each preference, topologically sorted
according to the level order of the respective preference. Hence, our algorithm allows for
the pruning of possibly large irrelevant chunks of the database with proven correctness.
While the complete restricted skyline is retrieved, some false positives can theoretically
occur in the approximation. However, our evaluation indicates that these cases are very
rare, and the amount of false positives is negligible in practice.

To quantify the practical impact of our approach, we performed extensive experiments.
Varying preference characteristics and data distributions, our experiments show that
restricted skylines are efficient to compute, as well as lean in size. Restricted skylines
can be computed generally up to two orders of magnitude less expensive than Pareto
skylines and stay lean even in the face of growing database sizes. They are also
significantly less prone to the curse of dimensionality in face of larger numbers of user-
provided preferences. Moreover, compared to similar-sized, representative random
samples of the original Pareto skyline, restricted skylines do not exhibit a significant
bias.

In summary, restricted skylines together with the proposed evaluation algorithm do
indeed provide useful ‘prime cuts’ of the original Pareto skyline to the user: efficient to
compute, suitable for higher dimensions, and representative.

Our future work will focus on reconciling skyline computations with utility-based
ranking schemes, at least up to a certain point. In that respect, our level-ordering and
sorted object lists can be seen as a first step towards mappings from purely qualitative
rankings to approximate utilities for characteristic attribute combinations.

References

 [BG04] W.-T. Balke, U. Güntzer. Multi-objective Query Processing for Database Systems. In
Proc. of the Int. Conf. on Very Large Databases (VLDB), Toronto, Canada, 2004.

[BG05] W.-T. Balke, U. Güntzer. Efficient Skyline Queries under Weak Pareto Dominance. In
Proc. of the IJCAI-05 Multidisciplinary Workshop on Advances in Preference Handling
(PREFERENCE), Edinburgh, UK, 2005.

[BGZ04] W.-T. Balke, U. Güntzer, J. Zheng. Efficient Distributed Skylining for Web Information
Systems. In Proc. of the Int. Conf. on Extending Database Technology (EDBT), LNCS
2992, Heraklion, Crete, Greece, 2004.

[BZG05] W.-T. Balke, J. Zheng, U. Güntzer. Approaching the Efficient Frontier: Cooperative
Database Retrieval Using High-Dimensional Skylines. In Proc. of the Int. Conf. on
Database Systems for Advanced Applications (DASFAA), Beijing, China, 2005.

[Be78] J. Bentley, H. Kung, M. Schkolnick, C. Thompson. On the Average Number of Maxima
in a Set of Vectors and Applications. In Journal of the ACM (JACM), vol. 25(4) ACM,
1978.

[BKS01] S. Börzsönyi, D. Kossmann, K. Stocker. The Skyline Operator. In Proc. of the Int. Conf.
on Data Engineering (ICDE), Heidelberg, Germany, 2001.

80

[CET05] C. Chan P. Eng, K. Tan. Stratified Computation of Skylines with Partially Ordered
Domains. In Proc. of the Int. Conf. on Management of Data (SIGMOD), Baltimore, MD,
USA, 2005.

[Ch02] J. Chomicki. Querying with Intrinsic Preferences. In Proc. of the Int. Conf. on Extending
Database Technology (EDBT), LNCS 2287, Prague, Czech Republic, 2002.

[Ch03] J. Chomicki. Preference Formulas in Relational Queries. In ACM Transactions on
Database Systems (TODS), Vol. 28(4), 2003.

[FLN01] R. Fagin, A. Lotem, M. Naor. Optimal Aggregation Algorithms for Middleware. In ACM
Symp. on Principles of Database Systems (PODS), Santa Barbara, USA, 2001.

[Fi99] P. Fishburn. Preference Structures and their Numerical Representations. Theoretical
Computer Science, vol. 217, 1999.

[GBK00] U. Güntzer, W.-T. Balke, W. Kießling. Optimizing Multi-Feature Queries for Image
Data-bases. In Proc. of the Int. Conf. on Very Large Databases (VLDB), Cairo, Egypt,
2000.

[HJ04] X. Huang, C. Jensen. In-Route Skyline Querying for Location-Based Services. In Proc.
of the Int. Workshop on Web and Wireless Geographical Information Systems (W2GIS),
Goyang, Korea, 2004.

[Ki02] W. Kießling. Foundations of Preferences in Database Systems. In Proc. of the Int. Conf.
on Very Large Databases (VLDB), Hong Kong, China, 2002.

[Ki05] W. Kießling. Preference Queries with SV-Semantics. In Proc. of the Int. Conf. on Ma-
nagement of Data (COMAD), Goa, India, 2005.

[KB06] B. Köhncke and W.-T. Balke. Personalized Digital Item Adaptation in Service-Oriented
Environments. In Proc. of the Int. Workshop on Semantic Media Adaptation and
Personalization (SMAP 2006), Athens, Greece, 2006.

[KP05] V. Koltun, C. Papadimitriou. Approximately Dominating Representatives. In Proc. of the
Int. Conf. on Database Theory (ICDT), Edinburgh, UK, 2005.

[KRR02] D. Kossmann, F. Ramsak, S. Rost. Shooting Stars in the Sky: An Online Algorithm for
Skyline Queries. In Proc. of the Int. Conf. on Very Large Data Bases (VLDB), Hong
Kong, China, 2002.

[LL87] M. Lacroix, P. Lavency. Preferences: Putting more Knowledge into Queries. In Proc. of
the Int. Conf. on Very Large Databases (VLDB), Brighton, UK, 1987.

[Mo88] A. Motro. VAGUE: A User Interface to Relational Databases that Permits Vague
Queries. In ACM Transactions on Office Information Systems (TOIS), vol. 6(3), 1988.

[PTF03] D. Papadias, Y. Tao, G. Fu, et.al. An Optimal and Progressive Algorithm for Skyline
Queries. In Proc. of the Int. ACM SIGMOD Conf. (SIGMOD’03), San Diego, USA,
2003.

[TEO01] K.-L. Tan, P.-K. Eng, B. C. Ooi. Efficient Progressive Skyline Computation. In Proc. of
Conf. on Very Large Data Bases (VLDB’01), Rome, Italy, 2001

81

