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Abstract: Development of distributed systems is complicated by the absence of
reliable global timing, concurrency, and nondeterminism. To deal with these
obstacles log files are produced by an instrumented system facilitating analysis,
testing, and debugging. This paper presents a formal framework for the analysis of
distributed system logs based on event trace concept. A partially ordered trace of
events executed by a distributed system is modeled by a collection of
communicating automata. We present an implementation of the analysis approach
in SDL based on ObjectGEODE. A formalization of a property of an event trace,
being a replica of another trace, is discussed.

1. Introduction

Concurrency and distribution have emerged as viable options for the design of complex
systems. Although asynchrony and geographic distribution add to the value of
distributed systems; the same characteristics render especially their validation, testing
and maintenance difficult. Meanwhile, the possibility of using formal methods as a
means for the development and validation of distributed systems restores the hope that
both time-to-market and validation cost could be slashed. Once a formal specification of
the behavior of a system becomes available, many development activities, such as code
generation and test derivation could easily be automated. However, the development of
distributed systems rarely yields formal specifications of their behavior that would make
formal methods fully applicable. Recognizing this fact, research in both academia and
industry aims at developing tools for debugging and testing that do not require formal
specifications in the first place. Such tools usually rely on monitoring functions and
produce log files of execution traces that can be analyzed further. This type of analysis is
also known as passive testing.
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The analysis of distributed system logs is also performed routinely by system
administrators. However, effectiveness of manual analysis is low since patterns of
interactions could be masked due to a concurrent and distributed character of the system.
Thus, the development of tools and methods for automating the process of analyzing log
files is important to diagnose and troubleshoot problems in distributed systems and
networks faster and by lesser cost.

A general approach to trace analysis taken in this research is outlined as follows. The
distributed system is instrumented in a way that events executed by the distributed
processes are collected. Such events typically denote the send and receive of messages,
local actions, and others. A trace is produced that includes all the events collected during
a system run, and an appropriate analysis tool could be employed to check the trace
against some user-defined properties. There exists a large body of work on developing
various tools to visualize traces, see e.g. [Bl93, LF98, Wa00]. Their goal is to facilitate
efforts of the designer or tester for locating and correcting bugs by filtering out unrelated
information and by offering a proper visualization of traces. The analysis is performed
manually either online (simultaneously with the system execution) or post mortem.
Another group of methods targets the analysis phase by offering means to verify certain
properties in the distributed system under test (SUT), see, e.g. [DC94, Fr94, Ja94].

Developing a tool for checking properties in execution traces, one faces the choice of
either elaborating algorithms for a specific class of properties and implementing them in
a specialized tool or relying on a general-purpose model checker. In the first scenario,
the daunting task is to implement the algorithms from scratch. On the other hand, reuse
of an off-the-shelf model checker allows the tool developers to count on reliable, highly
sophisticated, and versatile products, in which many years of research and development
have already been invested.

In this paper, we present an automata-based approach to model traces collected during
the execution of a distributed system. Our approach relies on a partially ordered set
(poset) of events, where the partial order is the traditional happened-before relation
[CL85], and its related lattice, known as the lattice of ideals, consistent cuts or, simply,
global states. Intuitively, such a lattice represents the joint behavior of the distributed
processes observed in a SUT. We propose to model the processes of the SUT using finite
automata. Then, we prove that the composition of these automata is isomorphic to the
lattice of ideals of the poset, which allows us to translate the problem of property testing
in event traces to a typical model checking problem. Our framework for modeling and
analysis of traces treats both synchronous and asynchronous communications
simultaneously.

From the theoretical perspective, our framework can be considered as a generalization of
the framework proposed in [Ch95], where event causality is studied in traces with
synchronous or asynchronous communications. While the authors mention the
possibility of dealing with traces in both communication modes, they do not provide a
formal treatment of such traces. The communication of threads running on a single
machine is naturally modeled by rendezvous, while the interaction of threads running on
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machines that are geographically distributed is essentially asynchronous message
passing. Moreover, rendezvous could be used as an abstraction of some message
exchange patterns. This explains the mixed nature of the framework developed in this
paper. Instead of modeling synchronous communication by a pair of events, as is done in
several previous works, we use just a single abstract rendezvous event. This allows us to
treat an event trace simply as a partially ordered set of events, so existing techniques
based on partial orders remain applicable. Notice also that [Ch95] as well as [En02]
mostly concentrate on studying the hierarchy of various classes of traces, while we
elaborate on modeling partial orders using automata for the purpose of analysis.
Compared to [En02], as well as to other papers on the semantics and model checking of
message sequence charts (MSC) [AY99, LL97], our framework includes local events
and rendezvous that are ignored there. In [LL95], a global state graph (Büchi automaton)
is built from an MSC similar to [Fr94] and [Ja94], which consider the ideal lattice. The
paper [Ja94] describes an approach for trace analysis based on building the ideal lattice
from a trace and demonstrates that property verification could be performed while the
lattice is built. The class of properties is restricted to those allowing automata
representation (e.g., LTL), while the use of a general model checker advocated in this
paper allows us to consider more complex properties. Our early attempt to formalize
distributed trace modeling and analysis is presented in [He03]. This work presents a
revised and generalized definition of the event trace along with other contributions.

This paper is organized as follows. In Section 2, we formally define event traces that
include send, receive and local events, as well as rendezvous. In Section 3, we detail our
approach of modeling distributed processes by means of automata. Section 4 explains an
implementation of our approach based on the commercial tool ObjectGEODE. Then, in
Section 5, we discuss a specific property of trace, related to the problem of trace replay.

2. Event Traces

A distributed system consists of sequential processes P1, …, Pn that perform local
actions and communicate by exchanging messages and by performing rendezvous
(synchronization points). In our framework, a process reports its own actions by
generating a finite non-empty set Ei of events that are classified into mutually exclusive
sets of local (l), send (s), receive (r), and rendezvous (z) events, that are the only events
observable outside the system. A local event indicates some change in the state of a
process. Let match (r) be the send-receive matching function, which for the receive r of
each message yields the corresponding send of the same message. The use of such a
function (and not an arbitrary binary relation) is motivated by the fact that each message
is sent only once. If a message is repeated we consider it as a completely new message,
so we could rely on the well-established poset theory rather than on the theory of
pomsets. Clearly, there is no “hanging” unmatched receive events if and only if the
matching function is completely-defined, the absence of “hanging” sends corresponds to
a surjective function, and the case where multi-casting is not involved corresponds to an

99



injective matching function. The inversion of the matching function match-1 consists of
all pairs (s, r) such that s = match(r). It is called the send-receive precedence relation and
denoted ≺p. The send-receive precedence relation is a strict partial order. Rendezvous
events are the only common events between processes; in other words, any non-empty
set Ei ∩ Ej, where i ≠ j, contains only rendezvous events.

Each event occurs in a process Pi only once; the events of a process Pi constitute a
couple Ti = (Ei, ≺i) called the local trace of Pi. In the simplest case, process Pi is
sequential, so the events in Ti are totally ordered and each ≺i is an irreflexive total order.
However, in this work, we do not restrict ourselves to sequential processes. We allow
each process Pi to be concurrent, and ≺i to be a partial order. Some events of the same
process could be concurrent because a log tool reports them as such or their execution
order is not important for some reasons. Thus, the definition of event trace in [He03] is
generalized here to account for the fact that local orders are not necessarily total orders.

Fig. 1: A trace diagram

The happened-before relation ≺ on the set of events E of the system P1, …, Pn, E = E1 ∪
... ∪ En, with send-receive matching function match is a transitive closure of the ≺p ∪
≺1 ∪ ... ∪ ≺n (that is the smallest transitive relation which contains local orders and
send-receive precedence relation).

A couple consisting of the set of events and the happen-before relation (E, ≺) is said to
be an event trace if the happened-before relation ≺ on the set of events E is irreflexive
(no event happens before itself). Since the happened-before relation is transitive by
definition, an event trace is defined when the relation on E is a strict partial order.

A diagram of an event trace is shown in Fig. 1. Unconnected bullets correspond to local
events, and bullets connected by edges to receive events matching send events for
messages m1, m2, and m3.

Let Σ be a set, and < be a strict partial order on this set. A set P ⊆ Σ is called an ideal if e
∈ P and e′ < e implies e′ ∈ P. Let I(Σ, <) denote the set of all the ideals for pair (Σ, <).
It is known that I(Σ, <) and a set inclusion relation form a lattice, which we denote by
(I(Σ, <), ⊆) and call it the ideal lattice.
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The ideal lattice of an event trace (also called the lattice of consistent cuts or global
states) represents all the possible interleavings of events and provides a simple way to
check properties of concurrent systems [Ja94].

Here, the question arises how to build the ideal lattice of an event trace. Several methods
have already been discussed, see, e.g., [Ja94]. However, the practicality of such methods
can be viewed only in light of satisfying the goal of trace analysis: verifying properties
based on an event trace. The work in [Ja94] proposes an efficient method to build the
ideal lattice and indicates the possibility of using a standard model checker to verify
properties on the lattice directly, a task that any well known tool, e.g., SPIN [Ho97],
SMV [SMV], or ObjectGEODE [Te02], could solve. The use of the obtained lattice as
an input to a model checker faces a scalability problem since the model checker could
simply reject a specification whose size exceeds its input capacity. We believe that a
more efficient solution to the problem lies in applying a model checker to a modular
specification instead of a monolith one. Indeed, modular specifications are more
compact and allow a model checker to fully exploit sophisticated search techniques
avoiding a full state space search inevitable in case of monolith specifications.

3. Modeling Event Traces Using Automata

In this section, we describe how a given event trace is modeled by a system of
communicating automata and demonstrate that the system exactly characterizes the
happened-before relation of the event trace, i.e., the composition of the automata and the
lattice of ideals are isomorphic. We first recall a few definitions from automata theory.

An automaton A is a tuple <Σ, Q, q0, →A, Qf>, where Σ is a finite set of actions, Q
represents a finite set of states, q0 is the initial state; →A ⊆ Q × Σ × Q is a transition
relation, and Qf ⊆ Q is a set of final states. We use the operator || to compose automata.
Given A1 = <E1, Q1, q01, →A1, Qf1> and A2 = <E2, Q2, q02, →A2, Qf2>, the composition
automaton, denoted A1 || A2, is a tuple < E, Q, q0, →, Qf>, where E = E1 ∪ E2, q0 = (q01,
q02); Q ⊆ Q1 × Q2, →, and Qf are the smallest sets obtained by applying the following
rules.

• If q1 -a→1 q′1 and a ∉ E2 then (q1, q2) -a→ (q′1, q2).
• If q2 -a→2 q′2 and a ∉ E1 then (q1, q2) -a→ (q1, q′2).
• If q1 -a→1 q′1 and q2 -a→2 q′2 then (q1, q2) -a→ (q′1, q′2).
• Qf = Q ∩ (Qf1 × Qf2).

The composition is associative; it can be applied to finitely many automata. The
composition of n automata C1 … Cn is an automaton C = C1 || … || Cn over the alphabet
E = E1 ∪ … ∪ En.
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3.1 Ideal Lattice Automaton

An ideal lattice is usually visualized as a graph, called the covering digraph [Ja94], in
which nodes represent the elements of the poset and edges represent the relations
between the elements (with the omission of transitive edges). We represent the ideal
lattice by an automaton, called the ideal lattice automaton, which corresponds to the
covering digraph and is defined as follows.

Given an set Σ=along with a partial order < on Σ, the ideal lattice automaton of Σ=and < is
a tuple <Σ, I(Σ, <), ∅, →T, {Σ}>, where Σ is the set of actions, I(E, <) is the set of states
and ∅ is the initial state, →T = {(P, a, R) | P, R ∈ I(Σ, <), R = P ∪ {a}, and R ≠ P}, {Σ}
is the set of final states.

Each word accepted by the ideal lattice automaton of the event trace contains exactly one
instance of an event in E and thus defines a total order that is a linearization of the
happened-before relation ≺, i.e., the word is one possible interleaving of the events in
the trace. The accepted language of the ideal automaton consists exactly of all
linearizations of the strict partial order ≺ [Ja94, BP82].

The states of the ideal lattice automaton of an event trace represent all possible states of
the system that generated the event trace; thus we can use the ideal lattice automaton to
check properties of the system exhibited during its execution. The ideal lattice
automaton is minimal.

3.2 Composition of Automata

Given an event trace (E, ≺), we define a system of communicating automata, where n
ideal lattice automata of local traces model the processes P1, …, Pn that accept the
corresponding local traces T1, …, Tn, respectively, and automata that model message
delays inherent to asynchronous communication.

Each message delay automaton is an ideal lattice automaton of two totally ordered
events that reflects the precedence of a send event over the matching receive. Let C be a
composition of automata that are the ideal lattice automata of local traces and message
delay automata.

Theorem 1. The composition automaton C and the ideal lattice automaton T are
isomorphic.

The proof is omitted due the lack of space. It is based on the fact that if the transitive
closure of a union of posets is a poset itself, then the lattice automaton of the closure is
isomorphic to the composition of the lattice automata of posets. The proof of Theorem 1
for the case of the totally ordered local traces is presented in [He03].
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The theorem shows that the composition of the automata representing local traces and
the ideal lattice automaton of the distributed system can be used interchangeably to
reason about the system. In particular, model checking technology can be applied on the
composition of automata rather than using the monolithic ideal lattice automaton to
check properties on the collected traces of distributed systems more efficiently.

4. Using SDL Tools in Trace Analysis

To implement our approach we use SDL (Specification and Description Language). SDL
is formal, visual, and based on an extended automata (EFSM) language that is
standardized by the ITU [Z100]. It is widely used in the telecommunication area but
gains also popularity in others safety critical fields such as automotive, aerospace, and
medical software.

Use of an extended automata language to model simple automata may seem
unnecessary. However, SDL treats different message-related data and allows dealing
with variables, predicates, and elements of programming to model local partial orders in
a natural and compact way. Among available SDL model checkers, we chose
ObjectGeode as it provides a powerful extended automata based property specification
language GOAL, rendezvous extensions to standard SDL, and, even more interestingly,
it supports individual message channels that allow one to model the message delay
automata. However, to ensure compatibility with other SDL model checkers, we define
our system of communicating automata based on the standard SDL [He99] as suggested
in [MZh99]. While not all features described in theory are implemented yet, e.g., mixed
communications, our tool supports already many features not discussed above, such as
basic process and event abstractions and a property specification interface based on a
repository of a commonly used property specification repository [Dw99]. For detailed
analysis of the trace, not only property satisfaction, but also existence of linearizations
on which the property holds is checked (property satisfiability). Such linearizations, as
well as counter-example linearizations, on which the property does not hold, if detected,
could be generated as ObjectGeode scenarios and visualized.

Previously, we reported case studies of the trace-based analysis of a track controller
[Ul03] and a sliding window protocol implementation [He03]. The block diagram and a
snapshot of the tool are shown in Fig. 2 and Fig. 3, respectively. A snapshot of
ObjectGeode tool is shown in Fig 4.
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Fig. 2: The block diagram of the method

Fig. 3: The TRAYSIS tool
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Fig. 4: Model checking results

5. Replay of Event Traces

The problem of replay or reproducing traces of distributed systems is important for
regression testing, performance evaluation, especially after an engineering change of the
system under consideration, for test harness generation for a given part of the system
from recorded event traces, as well as for debugging and fault location. It is
acknowledged [Di96] that replay could only be achieved on a certain level of
abstraction, however, the problem of determining an appropriate abstraction level has
not yet been addressed in a formal way. In this paper, we study the conditions under
which one trace could be considered as a replica of another trace with a different
happened before relation. In other words, we attempt to define an abstraction level that
differs from the mere equality of the happened-before relations.

Most works on replay simply provide platform specific solutions, such as modifications
of the system or development of special environments for trace replay. The replay tools
[Di96] attempt to deliver exact reproduction of a trace. Since this is usually impossible
for realistic traces and systems; some of the tools provide a mechanism to report a failure
of the replay, others do not. We believe that the problem needs a more formal setting.
Specifically, a formal definition of which trace replays another trace is required. Such a
definition should be weaker than mere trace equality.

Consider an event trace extracted from a log file consisting of Send and Receive events
produced by an instrumented distributed system. Local events of communicating
processes are usually abstracted in the context of replaying event traces. Let each event
have a timestamp in the log file and other parameters indicating the type, source and
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destination of the transmitted message among other properties. Each local order in the
event trace that is determined from timestamps of events is a total order.

The definition of event traces in Section 2 implies that a given log file reproduces a
given event trace if it contains a replica of the event trace. It is intuitively clear that
uncontrollable behavior of the distributed system, which once yielded a given event
trace, may prevent the system from reproducing the same trace next time the system is
executed. Therefore, the question arises whether the replication condition could be
relaxed to take in account specific types of uncontrollable behavior.

Uncontrollable behavior could sometimes be caused by inherent concurrency of actions
taken by a constituent process alone. Each process is only instrumented to generate Send
and Receive events, nothing can be deduced about its internal structure or behavior. It is
just a black box whose external behavior is reflected in the given trace, but the process
may run in fact on several processors enabling concurrent execution of actions. A
process might possess also several communication ports where events occur
independently. Two messages received within a short time interval might not necessarily
be processed in the order received. Events emitted by a process are time-stamped. It is
reasonable to restrict the analysis to the case when the instrumented processes always
serialize even concurrent events. This implies that the difference of timestamps of two
consecutive events emitted by a process may sometimes be within a margin of errors of a
time-stamping mechanism. No definite conclusion could be made about the actual order
of the corresponding actions executed by the process. When the given trace is to be
replayed such actions may happen in any order. Hence, each local order is replaced by a
partial order based on a given error margin for timestamps.

This allows us to state a weaker definition of replay relation on traces, namely, that two
traces should not contradict to each other, rather than exactly reproduce each other.

Given two event traces over the same event set E with the happened-before relations ≺
and ≺′, we say that one event trace reproduces another one if ≺ ∪ ≺′ is irreflexive.

It is obvious that two event traces reproduce each other if and only if they have a
common interleaving of events (linearization).

The replay relation is symmetric but not transitive. If we further relax the requirement
for traces to be defined on the same set of events, the resulting definition of the replay
property could fit the needs of regression testing, where certain new events
corresponding to added functionality could be ignored.

When the replay property of traces is formally defined, the problem of enforcing replay
reduces to identification of a minimal set of causal dependencies that should be imposed
on the system (by modification, process wrapping, etc) to guarantee trace reproduction.
This constitutes our current research.
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6. Conclusion

We presented a generalized formal framework for modeling event traces of distributed
systems that starts from a log file collected during execution of the system. The model of
an event trace consists of a collection of communicating automata that allows one to
reason about properties of the system using standard model checking techniques.

Our future work will concern the development of a library of pre-defined property
templates, as well as methods and tools for trace replay.
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