An ontology-driven approach to support
semantic verification in business process modeling

Michael Fellmann', Frank Hogrebe?, Oliver Thomas', Markus Niittgens®

"Universitit Osnabriick,

Institut fiir Informationsmanagement und Unternehmensfiihrung,
Fachgebiet Informationsmanagement und Wirtschaftsinformatik,
Katharinenstraf3e 3, 49069 Osnabriick
{Michael.Fellmann|Oliver.Thomas } @uni-osnabrueck.de

*Universitit Hamburg,

Fakultiat Wirtschafts- und Sozialwissenschaften,
Lehrstuhl fiir Wirtschaftsinformatik,
Von-Melle-Park 5, 20146 Hamburg

{frank.hogrebe|markus.nuettgens} @wiso.uni-hamburg.de

Abstract: This paper presents an ontology-driven approach that aims at supporting
semantic verification of semi-formal process models. Despite the widespread use
of these models in research and practice, the verification of process model infor-
mation is still a challenging issue. We suggest an ontology-driven approach ma-
king use of background knowledge encoded in formal ontologies and rules. In the
first step, we develop a model for ontology-based representation of process mo-
dels. In the second step, we use this model in conjunction with rules and machine
reasoning for process model verification. We apply our approach using real-life
administrative process models taken from a capital city.

1 Introduction

1.1 Motivation

Models are important to manage complexity. They provide a means for understanding
the business process, and understanding already is a benefit. This is indicated by a study
from Gartner revealing an increase in efficiency of 12 percent gained solely by docu-
menting actions and organizational responsibilities in process models [Me05, p. 4].
Moreover, process models serve for optimization, reengineering and implementation of
supporting IT systems. Due to the importance of process models, model quality and
correctness is important. According to ISO 8402, quality is “the totality of characteristics
of an entity that bear on its ability to satisfy stated and implied needs”. Facets of quality
are — amongst others — appropriateness in respect to the abstraction level of the represen-
tation (scale), detail of representation (granularity), compliance (conformance to rules

99

and regulations), adequate coverage of the model object, usefulness and correctness.
We concentrate on correctness as the most fundamental quality aspect. Among the as-
pects of correctness are fundamentally: (a) syntax and formal semantics (structure and
grammar), (b) linguistic aspects (labels) and (c) semantics (content). There is much re-
search on (a) e.g. to detect deadlocks in works such as [MeAa(O7]. Aspects of (b) are
increasingly focused in the scientific community to ensure compliance to naming con-
ventions, see e.g. [PeWe09], but (c) has been neglected so far: semantic correctness
means that the facts captured in the model about an object are (assumed to be) true. We
call the latter aspect “semantic verification”. A major problem regarding semantic verifi-
cation is how to automate it. This problem is rooted in natural language being used for
labeling model elements, thus introducing terminological problems such as ambiguity
(homonyms, synonyms) and other linguistic phenomena. Model creators and readers do
not necessarily share the same understanding as the concepts they use are usually not
documented and mix both discipline-specific terminology and informal, ordinary lan-
guage. Therefore it is hard for humans to judge if a model is semantically correct and
almost impossible for machines (apart from using heuristics) because the model element
labels are not backed with machine processable semantics. The result is that the machine
cannot interpret the contents of model elements, i.e. what is “inside the box” (rectangle,
shape). Our solution approach is to encode the model element semantics in a precise,
machine readable form using ontologies. Further, we then use rules to encode constraints
used for verifying aspects of semantic correctness.

1.2 Prospects of Semantic Verification

The proposed approach of semantic verification allows performing additional checks on
process models. Such checks are possible by annotating process models with instances
of a formal ontology containing terminological knowledge of the domain under consid-
eration. The ontology in conjunction with an inference engine can then be used to auto-
matically verify several aspects of models based on the semantics of the individual
model elements. This decoupling from human labor makes semantic verification scalable
even in incremental approaches to model construction where a model has to be re-
verified repeatedly. An important additional benefit thereby is that the semantic verifica-
tion rules can be formalized on a more abstract and generic level and the inference en-
gine interprets them with the help of both explicitly encoded and inferred knowledge
from the ontology. Therefore, it is possible to formulate semantic verification rules in a
more natural and understandable way that accommodates to the nature of generic rules
such as guidelines, best practices, conventions, recommendations or laws being rather
abstract in order to ensure broad applicability.

The paper is organized as follows. In section 2, we provide an overview of tools and
approaches in the state-of-the-art of model validation and verification. In section 3, we
present a case study that motivates our approach. We present our approach of semantic
verification, a rule classification and examples illustrating the application of such rules
to the real-world problems of the case study in section 4. In section 5, we describe the
limitations of semantic verification and in section 6, we look at future research.

100

2 State-of-the-Art

The verification of models has focused mainly the syntax and formal semantics so far. In
this sense, verification abstracts from the individual semantics of model elements which
is given by natural language and concentrates on formal procedures. Such procedures
partly originate from software engineering [Gr91] where they are discussed under the
terms “model checking” and “theorem proving” [ChBr08]. These approaches concern
dynamic aspects of model execution which are verified using finite state automata
(FSM). In the area of process modeling, independent formal criteria have been devel-
oped such as ,,soundness®, ,relaxed soundness* or ,,well-structuredness® which are used
to detect shortcomings such as deadlocks, missing synchronizations and other defects
regarding the formal semantics [Me09]. These criteria clearly go beyond merely check-
ing the conformance of a model to its Meta model or grammar of the modeling language.
There are some tools supporting these verifications such as the bflow™ toolbox
(www.bflow.org) or the EPC-Tools (wwwcs.uni-paderborn.de/cs/kindler/research/EPC
Tools). Research concerning formal verification is still an active field; new approaches
consider e.g. the verification of access constraints in semi formal models [WMMO09],
verification in the context of hierarchical models [SCA07] or workflows [TBBOS].

However, a major problem still is that verification rules are exposed to frequent changes
due to the dynamics of the contemporary legal and economic world. Some efforts ad-
dress this problem area of rule dynamics and suggest graphical modeling languages such
as BPSL (Business Property Specification Language) [LMX07] or suggest capturing the
required rules implicitly by providing negative examples [SiMe06] or by patterns
[SPHO4]. Nonetheless, a fundamental problem is still, that most approaches require a
rather fine grained specification of rules conflicting with the rather abstract nature of
rules required for semantic verification in the sense of guidelines, best practices or gen-
eral principles. First approaches in this direction therefore explore the use of rules to-
gether with semantic process descriptions [ThFe09] and describe frameworks for seman-
tic verification related to compliance [EISt08]. These approaches therefore rely on more
formally defined semantics in comparison to e.g. glossaries or technical term models
[KuRo098].

We extend the state-of-the-art by showing that ontology-based representations of process
models enable the formulation of generic verification rules which are then applied to
concrete process models using an inference engine in order to automate semantic verifi-
cation. We apply our approach to real-world problems and therefore demonstrate that
semantic verification is not only feasible, but also proves to be useful for solving real-life
problems.

101

3 Case study

The municipality we took as our case is one of the biggest cities in the country we ac-
complished our research (region capital city). It has about 580,000 inhabitants and the
public administrative authorities are employing about 9,100 employees, distributed over
about 440 administration buildings. The structure is decentralized and subdivided into
seven departments, each with 48 assigned offices and institutes. Based on Fat Client
Server architecture, the 6,000 IT-jobs are workplace-based and completely linked to
each other via a communication system throughout the city. In view of the increasing
international competition, the city is requested to rearrange its product and process orga-
nization, particularly as the support of enterprise-related activities becomes increasingly
an essential position factor in the international competition. In the city, about 99% of the
enterprises have less than 500 employees and can be considered as small or medium-
sized enterprises, these are about 40,000 enterprises.

The strategic goal of the city is to make the place even more attractive for enterprises in
terms of their competitiveness with a long-lasting effect. This shall be achieved by mak-
ing the enterprise-related offers and services of the city even easier to access for enter-
prises, in terms of a One-Stop eGovernment. To reach this goal, the city has to model
about 550 enterprise-related administrative processes. The process setting is highly rele-
vant for the capital city, because several of the procedures are used about 15,000 to
25,000 times per year by the companies. After having started the project we detected
several inconsistencies in the collected data. Subsequently, we describe the modeling
problems that we lay open.

3.1 Terminological problems

= (T1) Due to the fact that laws and regulations are regularly made by jurists and not
by IT-experts, terms and facts of cases are often differently named although the
meaning of two terms is the same. For example, the terms “admission” and “per-
mission” were found in 334 administrative process models, but the terms always
had the same meaning and the same process-related consequence.

= (T2) Another terminology problem occurs concerning the fact that in the munici-
pality we have examined no rules were arranged to allow only one preferred term
for one correspondent meaning. For example, some modelers (14) used “address”
and some (8) “mailing address”, or modeler used abbreviations, like “doc” instead
of “document”.

So, there is a lack of terminological modeling rules. These terminology problems hin-
dered the identification, comparison and further use of the administrative process models
(e.g. in process automation) in the city we focused on.

102

3.2 Verification problems

The administrative process models had also several errors regarding the correct sequence
processing. Subsequently, we show the core modeling errors of process sequence con-
flicts (V1-V4) and in process sequence conformance (V5):
= (V1) In 64 process models, the event “admission free of charge” was followed by
the (wrong!) function “start payment process”.
= (V2) As part of a preliminary check, which is executed in every application process
at the beginning, the civil servants check the completeness of the submitted docu-
ments. In 41 of these process models, we found after the event “documents un-
completed” the (wrong!) event “preliminary check complete”, although documents
were still missing.
= (V3) In 32 process models we found after the event “application is not licensable”
the (wrong!) function “send admission”.
= (V4) The next step after the preliminary check is an in-depth check of the admis-
sion case. This row is strictly followed. But in 13 of the administrative process
models, we found the two checks reversed.

So, there is a lack of element flow rules like: After X must (must not) follow Y.

= (V5) If a process contains the event “procedure is billable”, the same process must
also contain a function “calculate charge”. But in 21 of the relevant process models,
no such function was found.

So, there is a lack of element occurrence rules like: If a process contains X, the process
must (must not) contain Y.

4 Ontology-driven approach for semantic verification

4.1 Ontology-based representation of process models

A first step towards semantic verification of semiformal process models is the represen-
tation of the process models using a formal ontology language such as the Web Ontology
Language (OWL) standardized by the World Wide Web Consortium (w3.org/2004/
OWL). We use this ontology language, as it has gained a broad acceptance both inside
and outside the Al and Semantic Web community. The use of the ontology-based repre-
sentation is twofold. On the one hand, it allows the connection of process models with
domain knowledge in order to improve the interpretation and derive new facts not ex-
plicitly specified by the modeler but relevant for verification. On the other hand, it pro-
vides for a machine processable representation enabling the automation of such deriva-
tions and therefore using logic and reasoning to automate verification tasks. The ontol-
ogy-based representation of process models consists of creating a model representation
in the ontology (step 1) and the annotation of domain knowledge to that representation
(step 2) (cf. Fig. 1) which are described subsequently.

103

The creation of a process model representation in the ontology is done by considering its
graph structure. For each node, an instance is created in the ontology and for each arc, a
property is created in the ontology connecting the two nodes which are at the end of the
arc. This step can be executed automatically using the capabilities of a transformation
language such as XSLT. The instances created in the ontology are instances of the
classes shown in the left part of Fig. 1 which reflects the well-known Workflow Patterns.
The properties having their domain and range on the p:ProcessGraphNodeClass are
used to represent direct connections between model elements (property p:connectsTo
being a sub-property of p:flow) as well as the set of following elements which can be
reached without traversing an exclusive decision point such as an XOR-Gate (transitive
property p: followedBy) or which can be reached by an arbitrary path along the flow in
the process model (transitive property p:flow). We use the namespace-prefix p: for
indicating the process space in general and ex: for indicating example data that is
strongly intertwined with the concrete process fragment being used for illustrative pur-
poses. Due to space limitations, we have omitted the translation of BPMN-lanes into
organizational units in the ontology which can be represented by properties
p:assignedTo which are added to each node in a lane. Currently, we also omit pools for
the sake of simplicity.

The annotation of the process model representation with domain knowledge via the
p:equivalentTo-properties shown in the right part of Fig. 1 provides for the semantic
specification of the model elements with machine processable semantics. Domain on-
tologies can be built by leveraging existing ontologies (cf. section on the state-of-the-
art), using reference models, ontologizing industrial standards or extracting structures
out of IT-systems such as database schemas. Also, top-level or upper ontologies may be
used as a basic backbone structure that helps bootstrap ontology development and reach-
ing ontological commitment on how to think about the world in the sense of a shared
“contract” between the different involved stakeholders. In the example of Fig. 1, we
have used the SUMO-ontology as a backbone structure providing basic distinctions such
as between abstract and physical entities forming the basis of the subsumption hierarchy.
This hierarchy not only serves for disambiguation purposes (e.g. service as subclass of
ComputerProcess VS. subclass of Product). It also provides for the specification of se-
mantic verification rules on varying levels of generality. This enables the specification of
rather generic verification rules such as guidelines and best practices and letting an in-
ference engine do the work of verifying whether a specific model is compliant or not.
So, for example, a government agency could have the guideline that immediate feedback
should be given on each application. If a process model starts with a citizen having filed
her tax return and contains an activity “send feedback via e-mail”, then the inference
machine can prove that this process complies with the guideline as “tax return” is sub-
sumed by “application” and “feedback via e-mail” is subsumed by “feedback”.

Beyond such simple subsumption reasoning, an inference engine can also be used to
automatically derive more complex conclusions. Automatic classification of instances
for example could be achieved by using class expressions composed of intersection,
union and complement which are available in OWL and which rely on propositional
logic. Also, automatic classification can leverage existential restrictions of properties on
classes as well as restrictions on their domain and ranges thus relying on a fragment of

104

first order logic. Moreover, OWL and most of the current ontology languages also pro-
vide for specific characteristics of properties such as symmetry, transitivity, reflexivity
etc. leading to additional conclusions in regard to the structure of a process graph repre-
sented in the ontology. While we use ontology for both, representing a process graph and
inferring new facts about it, we use rules to express constraints for verification. Before
we show the application of such rules to solve the case problems described in section 3,
we will introduce them in the next section.

Step 1: Model representation Step 2: Annotation of domain knowledge
p:flow
p:followedBy

p:connectsTo

:F'rocessGrathde
4

Domain representation

D
s:ContentBearingObject

[ex:check_admission‘ [ex check_ resu\t] [ex admission‘ |ex notification‘

equivalentTo equivalentTo eqmvalentTo equivalentTo
" A exe exeS X
, 5]
p:connectsTo piconnectsTq p:connectsTo :connectsT %
©
p:connectsTo p connectsTo 2
ok
Check Admission Check Admission
admission admission
Notification Notification
Legend
— > Specialization ——> Property instance/ BPMN sequence flow
O Ontology class @ BPMN task — |nstantiation Annotation relationship
D Ontology instance <> Data-based XOR ~wmemp - Property definition @ BPMN end-event, type message, sending

Fig. 1: Ontology-based representation of process models

4.2 Semantic verification rules

According to the IEEE 1012-1998 definition [IEE98] “verification” means to check
whether an artifact and/or its creation comply to a set of given requirements hence focus-
ing on artifact-internal aspects. This understanding of verification is in contrast to valida-
tion which means ensuring that an artifact is eligible for the intended purpose [De02]
thus focusing on artifact-external aspects and human judgment and experience. Intui-
tively, verification of process models is more amenable to machine processing than vali-
dation, given the fact that the model elements are annotated with machine processable

105

semantics and the verification rules are formalized. Due to the fact that our approach
suggests also using terminological and domain knowledge (encoded in ontologies) for
verification, we call our verification rules “semantic verification”. If the focus of a rule is
the structure of a process (e.g. the sequence of actions), then we call such a rule element
flow rule. If the focus of the rule is the occurrence of model elements in arbitrary posi-
tions in the model, then we call such a rule element occurrence rule. These basic rule
types may be mixed in practical applications, such that any combination of two types
may be combined to a single rule. For example, if an organizational unit “government
representative” is present anywhere in the process (element occurrence rule), then an
additional sequence of activities such as “report results to head of administration” has to
be performed (element flow rule) involving at least one information system for archiving
the results.

4.3 Application to the case problems

In this section, we provide practical examples for each of the basic semantic verification
rule types introduced in the previous section illustrating how our approach of semantic
verification can be applied to the case problems given in section 3. Fig. 2 illustrates the
application of an element flow rule (on the left side) and an element occurrence rule (on
the right side). At the bottom layer, fragments of a process described by using BPMN are
displayed. Model elements targeted by the verification rules are highlighted (dark-red
filling with white labels). Above the model layer, the ontology is displayed consisting of
a model representation part and a domain representation part. The semantic verification
rules using the classes and instances of the ontology are displayed above the ontology.
The rules are displayed in an informal notation with variables prefixed by question
marks, class memberships written as functions with one argument and predicates (prop-
erties in the OWL-terminology and edges in the graph-terminology) as functions with
two arguments. To improve comprehensibility, the rules have additionally been para-
phrased using natural language at the topmost layer.

Regarding rules, there are a number of non-web-based ontology languages, such as
OCML and Ontolingua, which make it possible to formulate rules without an extension.
The ontology language OWL, used in this article, only supports the formulation of rules
via extensions (apart from simple property chains in OWL 2.0). Such an extension is the
Semantic Web Rule Language (SWRL) [HPB04] which extends OWL with IF-THEN-
rules in the form of a logical implication. The rules presented in the examples are of this
nature and can be formalized using SWRL. They have the general form of antecedent =
consequent — i.e. if the antecedent (body) of the rule is true, then the consequent (head)
must also be true. Since the consequent consists of error messages, it will not be true in a
literal sense, it rather will be generated if the antecedent matches and the rule is executed
(fired).

In the following, we elaborate on some of the abstractions and inferences possible by
using terminological and domain knowledge. They are an important merit of our ap-
proach as they provide for the formulation of rather generic semantic verification rules
applicable to concrete models by automated machine reasoning:

106

Element flow rule: Terminological knowledge is used in stating that ex:check
permission is the same as ex:check admission. Hence, using this terminological
knowledge, the p:equivalentTo property between ex:al and ex:check admission
can be inferred. Moreover, as p: followedBy is a transitive property, the triple ex:a1
p:followedBy ex:a3 can be inferred. As ex:a3 is annotated with an ontology in-
stance that belongs to the class of p:Prechecking activities, the antecedent of the
rule is satisfied and the rule fires.

Element occurrence rule: The example makes use of a class definition by enumera-
tion resulting in ex:receipt child benefit app being classified as an individual
of p:UnbillableProcStartEvent. The rule fires because there is another node in
the process that is annotated with an individual belonging to the class
p:FeeCalculation. Obviously, the rule is specified rather generic and will fire if
two nodes are annotated with instances classified as members of the two classes
p:UnbillableProcStartEvent and p:FeeCalculation.

Element flow rule Element occurrence rule
Example: A preliminary check of a permission must not follow after an Example: If a process contains a start event indicating that it's
in-depth check. free of charge, then no fee calculation can occur in this process.
p:equivalentTo(?nodel, ex:check admission) p:equivalentTo(?nodel, ?event) *
~ p:followedBy(?nodel, ?nodeZ) p:UnbillableProcStartEvent?event) * 8
~ p:equivalentTo(?node2, ?activity) p:equivalentTo(?node2, ?activity) z
~ p:PreChecking(?activity) => error! p:FeeCalculation(?activity) => error!
p:PreChecking p:UnbillableProcStartEven p:FeeCalculation 5
2
(o3
. 5
owl:sameAs ' { owI.oIneOf } e
=
O |ex.pre-check_admission\ [ex.rece\pt_child_benefit_appI [ex.calc_apphcation_fee| %
(=]
p-equivalentTo p eqhiva\entTo p-equivalentTo p:equivalentTo p:equivalentTo
. h E
exal 8
s
o
3
O
=

Key — addition to figure 1

In-depth Preliminary
check of check of

Receipt of child no

problems benefit application

permission permisson

Calculate
fees for
application

~{ owl:oneOf }— Class membership by enumeration
= « ==) [nferred property

Fig. 2: Element flow rule and element occurrence rule

The examples presented to exemplify the rule

types have in common, that they use facts

that are explicitly known (either declared or inferred). The general pattern of this is a ~ b
-> error. However, both rules can also be modified to the form of a » -b -> error, i.e.

107

if some facts a (fragments of a process graph) are known, some other facts b (again
fragments of a process graph) should not be present in the knowledge base and the fail-
ure to derive them should be treated as a form of (weak) negation. This implies closed
world reasoning (as opposed to open world reasoning) and negation as failure (NAF).
Ontologies in the Sematic Web adhere to the open world assumption (OWA), which
makes sense in an open and networked environment such as the web.

According to the OWA, facts that are not explicitly stated in the knowledge base are not
false but instead unknown or undefined. In contrast to that, to verify process models it
would be useful to at least temporarily assume to know all the facts and hence switch to
closed world reasoning. This sort of reasoning requires negation as failure (NAF) and
can be introduced using the Jena built-in rule engine ARQ (jena.sourceforge.net/ ARQ/)
which provides this feature using procedural built-in primitives which can be invoked by
the rules. Each primitive is implemented by a Java object and additional primitives can
be created and registered by the user. To achieve closed world reasoning using NAF, the
primitive noValue (?subject, ?predicate, <?object) can be embedded in a rule
which will cause a rule to fire if no matching triple can be found. With closed world
reasoning, semantic verification rules such as the following examples would be possible:

= Element flow rule: If there is a preliminary check, the in-depth check always has to
be performed afterwards.

= Element occurrence rule: If the process starts with an event indicating that this
process is billable, then somewhere in the process there must be an activity “calcu-
late fee”.

Furthermore, tools such as Jena or the SQWRL query language implemented in the Pro-
tégé-editor also provide built-ins for counting, geo-related reasoning and many other
possibilities which enhance the power of semantic verification rules.

4 Limitations of semantic verification

Clearly, semantic verification rules have some limitations. To begin with, they should
not be regarded as a surrogate for verifications related to the meta-model or the grammar
of the used modeling language. They are rather complementary to such verifications and
correct models form the basis for additional semantic verification checks. Also, aspects
regarding the execution semantics of models such as soundness, relaxed soundness etc.
dealing mainly with the absence of deadlocks and livelocks are not covered by our ap-
proach due to its complimentary nature.

Further limitations of semantic verification rules are that they depend on the availability
of an ontology and the annotation of process models. While in other areas such as the life
sciences huge ontologies have been developed and standardized, the field of administra-
tion still lacks authorities who develop and standardize ontologies. However, this prob-
lem may partly disappear if the terminology problem will be solved, e.g. by defining
structured vocabularies which bootstrap the development of ontologies. Also, current
tools for process model annotation are mostly in the state of research prototypes. In par-

108

ticular, functionalities for semi-automated annotations and annotation suggestions based
e.g. on annotations previously made in the current model or the whole model repository
etc. have to be developed in the future in order to enable comfortable and cost-effective
semantic verification. Also, aspects of ontology management have to be considered since
ontologies are not automatically a shared knowledge representation. A major limitation
of the current approach is that it is agnostic to the control flow of process models. At the
moment, the only exception of that is the property p: followedBy connecting only nodes
which form a sequence when the model will be executed and so it provides for rules such
as “b should not be executed after a”.

5 Conclusion and further Research

The approach presented in this paper showed how to use ontologies, rules and reasoning
for the semantic verification of process models. Future versions of our approach will
tackle some of the described limitations. As a next step, we plan to integrate a further
pre-processing step which will mark the nodes in the graph according to their succession
of logical connectors such as AND, XOR and OR. The capturing of information on such
local contexts of parallelism or exclusivities to the ontology based representation of
process models will allow advanced semantic verification rules such as “resource x must
not be used in parallel branches” or “activity x and activity y should always be executed
exclusively”.

References

[ChBr08] Chapurlat, V., Braesch, C. (2008): Verification, validation, qualification and certifica-
tion of enterprise models: Statements and opportunities. In: Computers in Industry 59,
Nr. 7, pp. 711-721

[De02] Desel, J. (2002): Model Validation - A Theoretical Issue? In: Esparza, J., Lakos, C.
(Eds.): Application and Theory of Petri Nets 2002: 23rd International Conference,
ICATPN 2002, Adelaide, Australia, June 24-30, 2002, Proceedings. Springer, Berlin,
(2002), p. 2343

[EISt08] El Kharbili, M., Stein, S. (2008): Policy-Based Semantic Compliance Checking for
Business Process Management. In: Loos, P., Niittgens, M., Turowski, K., Werth, D.
(Eds.): Modellierung betrieblicher Informationssysteme (MobIS 2008) - Modellierung
zwischen SOA und Compliance Management. 420. RWTH Aachen (CEUR Workshop
Proceedings), pp. 165-177

[Gro1] Gruhn, V. (1991): Validation and verification of software process models. In: Proceed-
ings of the European Symposium on Software Development Environments and CASE
Technology. Berlin, Springer

[HPB04] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M. (2004):
SWRL: A Semantic Web Rule Language: Combining OWL and RuleML, W3C Mem-
ber Submission 21 May 2004. W3C. http://www.w3.org/Submission/SWRL/. Ac-
cessed at 2010-05-01

[IEE98] IEEE 1012-1998. http://www.techstreet.com/standards/IEEE/1012_1998?prod-uct id=
31920. Accessed at 2010-05-01

109

[KuR098]

[LMX07]
[Me05]

[Me09]

[MeAa07]

[PeWe09]

[SiMe06]

[SCA07]

[SPH04]

[ThFe09]

[TBBOS]

[WeLa08]

Kugeler, M.; Rosemann, M. (1998): Fachbegriffsmodellierung fiir betriebliche Infor-
mationssysteme und zur Unterstiitzung der Unternehmenskommunikation. In: Fach-
ausschuss 5.2 der Gesellschaft fiir Informatik e. V. (GI) (Ed.): Informationssystem-
Architekturen, 5, pp. 8-15

Liu, Y., Miiller, S., Xu, K. (2007): A static compliance-checking framework for busi-
ness process models. In: IBM Systems Journal 46, Nr. 2, pp. 335-361

Melenovsky, M.J. (2005): Business Process Management's Success Hinges on Busi-
ness-Led Initiatives. Stamford, CT: Gartner Research

Mendling, J. (2009): Empirical Studies in Process Model Verification. In: Jensen, K.,
van der Aalst, W. M. P. (Eds.): Transactions on Petri Nets and Other Models of Con-
currency II. 5460. Berlin, Springer, pp. 208-224

Mendling, J., van der Aalst, W.M.P. (2007): Formalization and Verification of EPCs
with OR-Joins Based on State and Context. In: Krogstie, J., Opdahl, A.L., Sindre, G.
(Eds.): Proc. of the 19th International Conference on Advanced Information Systems
Engineering (CAiSE 2007), 11-15 June 2007, Trondheim, Norway. Berlin: Springer
(LNCS), pp. 439453

Peters, N., Weidlich, M. (2009): Using Glossaries to Enhance the Label Quality in
Business Process Models. In: Niittgens, M., Rump, F. J., Mendling, J., Gehrke, N.
(Eds.): 8. Workshop der Gesellschaft flir Informatik e.V. (GI) und Treffen ihres Ar-
beitskreises "Geschiftsprozessmanagement mit Ereignisgesteuerten Prozessketten
(WI-EPK)" Berlin, 26.11-27.11.2009, pp. 75-90

Simon, C., Mendling, J. (2006): Verification of Forbidden Behavior in EPCs. In: Mayr,
H. C., Breu, R. (Eds.): Proceedings of the GI Conference Modellierung (MOD2006),
March, 22 - 24, 2006, Innsbruck, Austria, pp. 233-242

Salomie, 1., Cioara, T., Anghel, 1., Dinsoreanu, M., Salomie, T. I. (2007): A Layered
Workflow Model Enhanced with Process Algebra Verification for Industrial Processes.
In: Proceedings of the 2007 IEEE International Conference on Intelligent Computer
Communication and Processing, September 6-8, Cluj-Napoca, Romania, pp. 185-191
Speck, A., Pulvermuller, E., Heuzeroth, D. (2004): Validation of business process
models. In: Proceedings of the 17th European Conference on Object-oriented Pro-
gramming (ECOOP), July 21-25 2003, Darmstadt, Germany. Berlin et al., Springer
Thomas, O., Fellmann, M.: (2009) Semantische Prozessmodellierung — Konzeption
und informationstechnische Unterstiitzung einer ontologiebasierten Reprisentation von
Geschéftsprozessen. In: Wirtschaftsinformatik 51, Nr. 6, 2009, pp. 506-518

Touré, F., Baina, K., Benali, K. (2008): An Efficient Algorithm for Workflow Graph
Structural Verification. In: On the Move to Meaningful Internet Systems: OTM 2008:
Proceedings of the OTM 2008 Confederated International Conferences, CooplS, DOA,
GADA, IS, and ODBASE 2008. Part I. Berlin, Springer, pp. 392-408

Wecker, G., van Laak, H. (2008) (Eds..): Compliance in der Unternechmenspraxis:
Grundlagen, Organisation und Umsetzung. Wiesbaden : Gabler

[WMMO09] Wolter, C., Miseldine, P., Meinel, C. (2009): Verification of Business Process Entail-

ment Constraints Using SPIN. In: Proceedings of the 1st International Symposium on
Engineering Secure Software and Systems. Berlin, Springer, pp. 1-15

110

