Mathematical structures for modeling semantics, uncertainty, and cognitive processes

Günther Wirsching¹

Abstract: This talk investigates mathematical structures which are useful for designing cognitive machines with special emphasis on their mathematical properties.

Semantics. Starting point is modeling *semantics* by *order-deterministic pomsets* as defined in [Re96]. It is clear that any syntax tree and any feature structure can be represented by a pomset, hence this model is appropriate for 'literal semantics' as considered in [CEEJKL13, Kapitel 3]. On the other hand, in [WHKLR12] it is suggested that more basic 'pragmatic semantics' as considered in [Sk57, p. 14] and [WL13] are describable by feature-value-relations, and hence also by pomsets.

The *prefix relation* is a partial order on the class of pomsets, or on any set of pomsets over a fixed common alphabet. When we restrict attention to order-deterministic pomsets, then, as is shown in [Re96], the prefix relation has infima and finite suprema. If we have two feature structures which admit *unification* [CEEJKL13, Abschnitt 2.3.3], we obtain this unification by regarding the feature structures as order-deterministic pomsets and taking their supremum.

Uncertainty. For modeling *uncertainty*, consider valuation maps $\Phi: \mathbb{U} \to \mathbb{X}$ defined on a given (finite) set \mathbb{U} of *semantic units*, and associating a *valuation* $\Phi(u) \in \mathbb{X}$ de each semantic unit $u \in \mathbb{U}$ (cf. [WL14]). The valuation $\Phi(u)$ represents uncertainty: when $\mathbb{X} = [0,1]$, an element $x \in \mathbb{X}$ could be interpreted as a probability, or as a fuzzy value. In the present abstract setting, the set \mathbb{X} is not fixed, and other interpretations are also conceivable.

Decision. Now consider also *partial valuation maps* $\Phi : \mathbb{V} \to \mathbb{X}$, where $\mathbb{V} \subseteq \mathbb{U}$ is subset. Denote the domain of definition of a (partial) valuation map by $\mathbb{D}(\Phi)$. Then *decision* is an operation restricting a given (partial) valuation map Φ to some subset

$$\mathbb{D}(\nabla\Phi)\subset\mathbb{D}(\Phi)\subset\mathbb{U}.$$

leading to a partial valuation $\nabla \Phi := \Phi|_{\mathbb{D}(\nabla \Phi)}$ which only valuates the semantic units corresponding to the decision. The elements of $\mathbb{D}(\nabla \Phi)$ are called *winners* of the decision. A decision operation is called *consistent with valuation* [WL14], if there is a binary relation \triangleright on \mathbb{X} such that

$$u \in \mathbb{D}(\nabla \Phi) \quad \Leftrightarrow \quad u \in \mathbb{D}(\Phi) \land \forall v \in \mathbb{D}(\Phi) : \Phi(u) \rhd \Phi(v).$$
 (1)

It is proved in [WL14] that, in this situation, properties of ∇ correspond to properties of \triangleright as follows:

Decision ∇	Binary relation >
– non-vanishing	- finite subset-topped
effective	 antisymmetric
subset-stable	- transitive

¹ Katholische Universität Eichstätt-Ingolstadt, Mathematisch-Geographische Fakultät, D-85071 Eichstätt, guenther.wirsching@ku.de

This implies that a decision operation ∇ which is consistent with valuation is non-vanishing, effective, and subset-stable, if and only if it is based on a total order \triangleright on $\mathbb X$ via (1). On the other hand, there is no apparent connection between \triangleright and the prefix relation on $\mathbb U$.

Join. The second cognitive operation considered here is 'join' of semantic units, and what this means for valuation. To fix notation, let $\Phi_1:\mathbb{U}_1\to\mathbb{X}$ and $\Phi_2:\mathbb{U}_2\to\mathbb{X}$ be two given valuation maps. For semantic units $u_1\in\mathbb{U}_1$ and $u_2\in\mathbb{U}_2$, given as order-deterministic pomsets, denote by $u_1\sqcup u_2$ their *join* [Re96], or, equivalently, their supremum w.r.t. prefix relation. It may happen that some of the joins $u_1\sqcup u_2$, when u_1 runs over \mathbb{U}_1 and u_2 runs over \mathbb{U}_2 , do not refer to real situations and therefor can be discarded. The remaining 'meaningful' joins are collected in a subset $\mathbb{V}\subseteq\mathbb{U}_1\sqcup\mathbb{U}_2$. Moreover, as \sqcup is idempotent, it may happen that $\varnothing\neq\mathbb{U}_1\cap\mathbb{U}_2\subseteq\mathbb{V}$. Now a valuation map $\Phi:\mathbb{V}\cup\mathbb{U}_1\cup\mathbb{U}_2\to\mathbb{X}$ which extends both Φ_1 and Φ_2 is called *consistent with join*, if there is a binary operation \mathbb{V} on \mathbb{X} such that

$$\forall u_1 \in \mathbb{U}_1 \text{ and } u_2 \in \mathbb{U}_2: \quad u_1 \sqcup u_2 \in \mathbb{V} \ \Rightarrow \ \Phi(u_1 \sqcup u_2) = \Phi(u_1) \vee \Phi(u_2).$$

If we assume that $\Phi(u_1 \sqcup u_2) = \Phi(u_1) \vee \Phi(u_2)$ is valid for arbitrary order-determinsitic pomsets u_1, u_2 , this would imply that \vee is taking the supremum w.r.t. some partial order \leq on \mathbb{X} , and that Φ respects the prefix relation in the sense that $\Phi(v) \leq \Phi(u)$ whenever v is a prefix of u. Note that at this stage, there is no apparent connection to the total order \triangleright considered in (1).

Conclusion. Suppose that we are to design a cognitive system, and we decided to use for modeling semantic units elements from the set $\mathbf{DPOM}(\mathbf{E})$ of order-deterministic pomsets over a given alphabet \mathbf{E} . If we wish to model uncertainty by a valuation map $\Phi: \mathbf{DPOM}(\mathbf{E}) \to \mathbb{X}$ which behaves well w.r.t. rational cognitive operations, then it suffices to ensure that Φ maps the prefix relation to a total order on \mathbb{X} , and the join \sqcup to taking the maximum w.r.t. that total order.

Keywords: Pomset, order-deterministic pomset, prefix relation, distributive lattice, unification, feature structure, uncertainty, semantic unit, valuation map, decision operation, binary relation, join operation, binary operation.

References

- [Re96] Rensink, A.: Algebra and Theory of Order-Deterministic Pomsets. Notre Dame Journal of Formal Logic AI Magazine, Vol. 37: 283–320, 1999.
- [Sk57] Sinner, B.F.: Verbal Behavior. Prentice-Hall, Englewood Cliffs, New Jersey, 1957.
- [WHKLR12] Wirsching, G.; Huber, M.; Koelbl, C.; Lorenz, R.; Römer, R.: Semantic Dialogue Modeling. Behavioral Cognitive Systems, Lecture Notes in Computer Science, Vol. 7403: 104–113, 2012.
- [WL13] Wirsching, G.; Lorenz, R.: Towards meaning-oriented language modeling. IEEE 4rd International Conference on Cognitive InfoCommunication, CogInfoCom2013: 369–374, 2013.
- [CEEJKL13] Carstensen K.W.; Ebert, Ch.; Ebert, C.; Jekat, S.; Klabunde, R.; Langer, H.: Computerlinguistik und Sprachtechnologie. Spektrum Akademischer Verlag, Heidelberg 2010.
- [WL14] Wirsching, G.; Lorenz, R.: Some algebraic aspects of semantic uncertainty and cognitive biases. IEEE 5rd International Conference on Cognitive InfoCommunication, CogInfoCom 2014.