
Using Games for Improved Diagnosis in Trustworthy
Design of Autonomic Systems ∗

Tiziana Margaria, Christian Wagner, Marco Bakera
Chair Service and Software Engineering

University of Potsdam, Germany
margaria,wagner,bakera@cs.uni-potsdam.de

The GEAR game-based model checker has been used successfully to investigate prop-
erties of space systems that must function largely autonomously in inhospitable and far
away environments, like the ESA ExoMars Rover. In this paper we summarize the adop-
tion of game-based verification technologies for the long-running Voyager II space mission
– long-running in this case means more than thirty years. To this aim, we are currently en-
abling GEAR’s game-based verification techniques via systematic model extraction from
a behavioral subset of a DSL for autonomous system specification.

1 Motivation

In the course of the SHADOWS project [SHA, SUM07] we developed a number of en-
abling techniques for functional self-healing. In particular, we introduced game based
model checking of behavioral models as a deep diagnosis technique, that allows an early
realignment between behavioral models and requirements expressed as temporal prop-
erties [BM]. We first applied it to the analysis of the recovery behavior of the ESA
ExoMars Rover, using for this GEAR, our game based model checker for modal mu-
calculus [BMRSntb, BMRSnta].

In the concrete mission example examined in SHADOWS, the ESA ExoMars Rover is
sent on a surface mission on Mars where it has to accomplish several tasks, including the
acquisition of subsurface soil samples using a drill. As customary, the mission is orga-
nized in a hierarchical three-tier control model which accounts for partial autonomy of the
Rover. Mission plans are designed and enforced by the ground control center, while finer-
grained operational decisions, at the task level, are completely autonomous: the Rover has
its own planning capabilities, which allows it to transform a task assignment into a suit-
able executable sequence of actions in a context-dependent and error-aware way. In this
case study, we took advantage of the interactive and exploratory benefits of game-based
verification technologies. In the case of problems within highly reactive and concurrent
systems – as in the context of autonomous aerospace missions – it is in fact hard to auto-

∗This work has been partially supported by the European Union Specific Targeted Research Project SHAD-
OWS (IST-2006-35157), exploring a Self-Healing Approach to Designing cOmplex softWare Systems.



matically find recovery mechanisms to overcome these problems. Even for human system
developers it is non-trivial to completely understand the nature of a problem if mismatches
between the behavioral specification and the system implementation occur. This is where
games provide an added value over traditional model checking.

The weak point was however the lack of a link to an adequate, formal description of
the Rover’s behavior. We derived our models and properties from the literature (textual
descriptions and previous studies) [BJK04, Kap05], while for a stringent demonstration of
the techniques and for a validation of the underlying SHADOWS methodology it would
have been advantageous to start from real models. This is now the case for the Voyager
case study.

2 The NASA Voyager Mission

The NASA Voyager Mission started in 1977 and was designed for exploration of the
outer planets of the Solar System. The twin spacecraft Voyager I and Voyager II are
still now taking pictures of planets and their satellites in 800x800 pixel resolution, then
radio-transmitting them to Earth. Voyager II has two on-board television cameras - one
for wide-angle images and one for narrow-angle images - that record images in black and
white. Each camera is equipped with a set of colour filters, which help images to be re-
constructed as fully-colored ones. Voyager II uses radar-like microwave frequencies to
send the stream of pixels towards the Earth. The signal suffers on this distance a 20 billion
times attenuation [Bro89]. In [VH09], the mission is specified as an autonomic system
composed of the Voyager II spacecraft, four antennas on Earth, and a Command Control
Center, all specified as distinct autonomic elements.

We showed in [BWM+] that we can link the behavioral modelling style of our techniques
with ASSL [Vas08], a rich domain-specific language for the specification of autonomous
systems, equipped with a formal semantics, and that we can easily and systematically
translate (parts of) the specification of the Voyager’s behavior into Service Logic Graphs
(SLGs), thus enabling the application of self-healing technologies to the large class of
autonomous systems describable in ASSL. The advantage of SLGs over other modelling
styles is that they are closer to the field engineer’s understanding, thus making advanced
game-based diagnosis features accessible to non-experts in formal methods and models.

The translation of parts of an ASSL specification for autonomic systems into a behavioral
model implies mapping the ASSL specific self-management policy, action, and event parts
of the system’s description to corresponding counterparts in a behavioral system model
that is based on a Service Logic Graph. We applied this translation step to the Voyager II
mission case study, opening up several options for verifying issues related to e.g. recovery
issues. Having detected the absence of a recovery mechanism upon transmission error
within the system specification, we can then leverage GEAR to fix this problem.



Figure 1: Behavioral model of the picture transmission process. Bottom right: a new error handling
recovery mechanism.

3 Verifying the Voyager’s Behavioral Model

Figure 1 contains the behavioral model of the Voyager II spacecraft. Note that the error
handling graph at the right was not part of the original ASSL specification.

A simple verification issue that immediately emerges is whether the system includes an
error-handling process whenever picture pixels are transmitted. This can be easily ex-
pressed in CTL [EJS93] as

AG(inProcessingPicturePixels⇒ EF(errorHandling))

This formula can be interpreted as follows:

Wherever the system evolves to (the AG-part), whenever picture pixels are
about to be processed (the atomic proposition inProcessingPicturePixels) it
follows that the system has an option to evolve into an error-handling process
(the EF(errorHandling)-part).

Since the original model of Figure1 does not support any kind of self-healing capabilities,
this property does not hold.

Therefore, in a first attempt to reconcile model and property, we added an error-handling
routine directly in the model. We slightly changed the design manually, by refining the
sendImgPixelMsg action, originally atomic, to an entire routine. Now, if problems during
the transmission process occur, the system tries to resend those picture pixels that were not
transmitted correctly. If the problem still exists afterwards, the system is halted and needs
manual interaction from ground control.



4 Enabling Model based Self-healing

Within SHADOWS, we adopt a model-based approach, where models of desired software
behavior direct the self-healing process. A game-based approach can do much more than
just allowing the identification of the missing recovery mechanism in the original specifi-
cation. Enabling this investigation for self-healing and self-healing enactment is our aim.
A domain-dependent guidance also enables to pinpoint that part of the model which is
best-suited for integration of recovery mechanisms. In particular we exploit the interactive
character of game-based model checking to show how to discover an error, then localize,
diagnose, and correct it. Design-time healing technologies that naturally emerge when
dealing with self-adaptive systems, as in the context of the SHADOWS project, demand
for a deeper insight of design-time faults to effectively identify and overcome them.

In general, model checking is used to decide whether an abstraction of a reactive system,
modeled, e.g., using a transition system or a Kripke structure, satisfies a requirement, spec-
ified, e.g., using temporal logics. In the case of failure, typically error paths are provided
as diagnostic information. This is unfortunately not possible as soon as branching-time
properties are considered, as their violation cannot be explained in terms of paths. Rather,
the diagnostic information has to be generalized to winning strategies of parity games. Par-
ity games are played by two players, both having complete information. Go or Chess are
examples of such games. They can be used for game-based model checking as introduced
in [LS], which is available for the full modal µ-calculus [Koz82] and thus also applicable
to, e.g., CTL and CTL*., which are expressible in µ-calculus. In a parity game, the game
graph derived from a model has game-graph nodes partitioned in two sets, one per player.
Whenever the game reaches a game-graph node, the player who ”owns” that game-graph
node has to move to another game-graph node, otherwise he loses the game.

The use of models rather than code is already a significant step towards the understandabil-
ity of the actual behavior’s description to non programmers, like the engineers, in charge
of designing a space module. This enables e.g. early discovery of misbehaviors, hazards,
and ambiguities via design-time analysis. We strive to improve the diagnostic features
making them as detailed as necessary yet as intuitive as possible.

For the Voyager mission, behavioural properties can be used to check for complete picture
transmission to the four antennas in case of transmission interrupts. The verification pro-
cess is able to assure at design time the application of all four color filters before picture
transmission. It is also essential for the picture transmission to send closing notification
signals of transmission endings to the antennas. These as well as other, more technical
business rules can be endured on the design by the mentioned model checking techniques.

If problems occur in the verification task, an immediate result of the game-based algo-
rithm of the model checker is an interactive counter-example. This counter-example both
pinpoints the problem of the property mismatch and provides a strategy encoded into the
counter-example to adapt and self-heal the system. In its display and interaction capabili-
ties, GEAR [BMRSntb] is in fact tailored for use by engineers. Its rich user interface that
allows engineers to interactively explore the problem space in a game-based way, and this
way discover and pinpoint the problems in system design.



Acknowledgement

We thank Falk Howar, Alexander Wickert, Bernhard Steffen, Mike Hinchey, and Emil
Vassev for the ongoing cooperation, that includes also model learning and other formal-
methods based analysis techniques.

References

[BJK04] G. Bormann, L. Joudrier, and K. Kapellos. FORMID: A formal specification and veri-
fication Environment for DREAMS. In Proc. 8th ESA ASTRA Workshop, 2004.

[BM] M. Bakera and T. Margaria. The SHADOWS Story on Implementation, Verification
and Property-Guided Autonomy for Self-Healing Systems. ERCIM News N.75, Special
theme: Safety-Critical Software, October 2008, pp. 38-39.

[BMRSnta] M. Bakera, T. Margaria, C. Renner, and B. Steffen. Game-Based Model Checking for
Reliable Autonomy in Space. Journal of the American Institute of Aeronautics and
Astronautics (AIAA), in print.

[BMRSntb] M. Bakera, T. Margaria, C. Renner, and B. Steffen. Tool-supported enhancement of
diagnosis in model-driven verification. ISSE, Innovations in Systems and Software
Engineering - a NASA journal, Springer Verlag, in print.

[Bro89] M. W. Browne. Technical Magic Converts A Puny Signal Into Pictures. NY Times,
1989.

[BWM+] M. Bakera, C. Wagner, T. Margaria, E. Vassev, M. Hinchey, and B. Steffen.
Component-Oriented Behavior Extraction for Autonomic System Design. NASA For-
mal Methods Workshop, April 2009, NASA AMES, Mountain View, CA.

[EJS93] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On Model-Checking for
Fragments of µ-Calculus. 1993.

[Kap05] K. Kapellos. MUROCO-II: FOrmal Robotic Mission Inspection and Debugging. Tech-
nical report, European Space Agency, 2005.

[Koz82] D. Kozen. Results on the Propositional µ-Calculus. In ICALP, volume 140 of LNCS,
pages 348–359, Aarhus, Denmark, 12–16 July 1982. Springer-Verlag.

[LS] M. Lange and C. Stirling. Model Checking Games for CTL. In Proc. of the Intern.
Conference on Temporal Logic, ICTL 2000, Leipzig, Germany, October 2000.

[SHA] SHADOWS. A Self-healing Approach to Designing Complex Software Systems.
https://sysrun.haifa.ibm.com/shadows/.

[SUM07] O. Shehory, S. Ur, and T. Margaria. Self-Healing Technologies in SHADOWS: Target-
ing Performance, Concurrency and Functional Aspects. In 10th (CONQUEST), 2007.

[Vas08] E. Vassev. Towards a Framework for Specification and Code Generation of Autonomic
Systems. PhD thesis, Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada, 2008.

[VH09] E. Vassev and M. Hinchey. ASSL Specification Model for the Image-processing Be-
havior in the NASA Voyager Mission. Technical report, Lero - The Irish Software
Engineering Research Center, 2009.


